Object§ Analysis

B e
A 3 / o
LR N, e
) - T

Principles of Software Construction:
Objects, Design and Concurrency

Threa_ds

The Perils of Concurrency, Part 3

Can't live with it.
Cant live without it.

15-214
toad

Fall 2013
Jonathan Aldrich Charlie Garrod

School of
Computer Science

@
institute for
I S SOFTWARE
RESEARCH

© 2012-13 C Garrod, J Aldrich, and W Scherlis

Administrivia

e Homework 5: The Framework Strikes Back
= 5a presentations tomorrow!
e We will re-publish room assignments via Piazza
e Commit/push design & presentation by 8:59 a.m.

institute for
15-214 Garrod 2 [Hi o

Key topics from last Thursday

Pap—— it FOf
15-214 Garrod 3 sorumie

Dealing with deadlock

e One option: If thread needs a lock out of order,

restart the thread
= Get the new lock in order this time

e Another option: Arbitrarily kill and restart long-
running threads

e Optimistic concurrency control
= e.g., with a copy-on-write system
= Don't lock, just detect conflicts later
e Restart a thread if a conflict occurs

Pap—— it FOf
15-214 Garrod 4 sorumie

Concurrency control in Java

e Using primitive synchronization, you are

responsible for correctness:
= Avoiding race conditions
= Progress (avoiding deadlock and livelock)

e Java provides tools to help:
= volatile fields
= java.util.concurrent.atomic
= java.util.concurrent

- institute for
15-214 Garrod s [H i

Aside: The power of immutability

e Recall: Data is mutable if it can change over time.

Otherwise it is immutable.
» Primitive data declared as final is always immutable

e After immutable data is initialized, it is immune
from race conditions

= institute for
15-214 Garrod 6 [H o

Today: More concurrency

e High-level abstractions of concurrency

e In the trenches of parallelism
= Using the Java concurrency framework
= Prefix-sums implementation

- institute for
15-214 Garrod 7 M

Recall: work, breadth, and depth

A A A A

> > >
concurrency

time

e Work: total effort required
= area of the shape

e Breadth: extent of simultaneous activity
= width of the shape

e Depth (or span): length of longest computation
« height of the shape

e P institute for
15-214 Garrod s [

Concurrency at the language level

e Consider:
int sum = 0;
Iterator i = coll.iterator();
while (i1.hasNext()) {
sum += i.next();

}
e In python:
sum = 0;

for item in coll:
sum += item

- institute for
15-214 Garrod 9 RESEARCH

Parallel quicksort in Nesl|

function quicksort(a) =
if (#a < 2) then a

else
let pivot = a[#a/2];
lesser = {e in a| e < pivot};
equal = {e in a| e == pivot};
greater = {e in a| e > pivot};
result = {quicksort(v): v 1in [lesser,greater]};

in result[0] ++ equal ++ result[l];

e Operations in {} occur in parallel

e What is the total work? What is the depth?
« What assumptions do you have to make?

- institute for
15-214 Garrod 10 SOFTWARE

RESEARCH

Prefix sums (a.k.a. inclusive scan)

e Goal: given array x[0..n-1], compute array of the

sum of each prefix of x
[sum(x[0..0]),
sum(x[0..1]),
sum(x[0..2]),

;um(x[Omn-l])]
ee.g., x = [13, 9, -4, 19, -6, 2, 6, 3]
prefix sums: [13, 22, 18, 37, 31, 33, 39, 42]

= institute for
15-214 Garrod 11 [H o

Parallel prefix sums

e Intuition: If we have already computed the partial
sums sum(x[0..3]) and sum(x[4..7]), then we can
easily compute sum(x[0..7])

ee.g., x = (13, 9, -4, 19, -6, 2, 6, 3]

institute for

15-214 Garrod 12 SOt

Parallel prefix sums algorithm, winding

e Computes the partial sums in a more useful manner

[131 91 _41

NN

(13, 22, -4,

15-214 Garrod

-6, 2, 6, 3]
-6, -4, 6, 9]

-
institute for
13 ' S SOFTWARE
RESEARCH

Parallel prefix sums algorithm, winding

e Computes the partial sums in a more useful manner

[131 91 _41

NN

(13, 22, -4,

T~

(13, 22, -4,

15-214 Garrod

-6, 2, 6, 3]
-6, -4, 6, 9]
—6, _4[6[5]

-
institute for
14 i S SOFTWARE
RESEARCH

Parallel prefix sums algorithm, winding

e Computes the partial sums in a more useful manner

[13, o, -4, 19, -6, 2, 6, 3]
N NJ N N
(13, 22, -4, 15, -6, -4, 6, 91
\\\\\\\\\31 \\\\\\\\\31

(13, 22, -4, 37, -6, -4, 6, 51
|

[13, 22, -4, 37, -6, -4, 6, 42]

institute for

15-214 Garrod 15 sorminse

Parallel prefix sums algorithm, unwinding

e Now unwinds to calculate the other sums

(13, 22, -4, 37, -6, -4, 6, 42]
(13, 22, -4, 37, -6, 33, 6, 42]

= institute for
15-214 Garrod 16 [HH o

Parallel prefix sums algorithm, unwinding

e Now unwinds to calculate the other sums

(13, 22, -4, 37, -6, -4, 6, 42]
(13, 22, -4, 37, -6, 33, 6, 42]

NN N N

(13, 22, 18, 37, 31, 33, 39, 42]

e Recall, we started with:
[13, 9, -4, 19, -6, 2, 6, 3]

institute for

15-214 Garrod 17 sorminse

Parallel prefix sums

e Intuition: If we have already computed the partial
sums sum(x[0..3]) and sum(x[4..7]), then we can
easily compute sum(x[0..7])

ee.g., x = (13, 9, -4, 19, -6, 2, 6, 3]

e Pseudocode:
prefix sums(x):
for d in 0 to (lgn)-1: // d is depth
parallelfor i in 29-1 to n-1, by 2¢+!:
x[1+29] = x[1] + x[i+29]

for d in (lgn)-1 to O:
parallelfor i in 29-1 to n-1-2¢, by 29*l:
if (i-29 >= 0):
x[1] = x[1] + x[1i-29]

= institute for
15-214 Garrod 18 RESEARCH

Parallel prefix sums algorithm, in code

e An iterative Java-esque implementation:
void computePrefixSums(long[] a) {
for (int gap = 1; gap < a.length; gap *= 2) {
parfor(int i=gap-1; itgap<a.length; 1 += 2*gap) {
a[i+tgap] = a[i1] + a[itgap];
}
}
for (int gap a.length/2; gap > 0; gap /= 2) {
parfor(int i=gap-1; itgap<a.length; 1 += 2*gap) {
a[i1] = a[i1] + ((i-gap >= 0) ? a[i-gap] : 0);

}
}

ute for

= Institute
15-214 Garrod 19 ﬁ?sTX“R’E"S

Parallel prefix sums algorithm, in code

e A recursive Java-esque implementation:
volid computePrefixSumsRecursive(long[] a, int gap) {
if (2*gap — 1 >= a.length) {
return;

}

parfor(int i=gap-1; i+gap<a.length; i += 2*gap) {
a[i+gap] = a[i] + a[itgap];

}

computePrefixSumsRecursive(a, gap*2);

parfor(int i=gap-1; i+gap<a.length; i += 2*gap) {
a[i] = a[i] + ((i-gap >= 0) ? a[i-gap] : 0);
}
}

15-214 Garrod 20 i for

RESEARCH

Parallel prefix sums algorithm

e How good is this?

= institute for
15-214 Garrod 21 [H o

Parallel prefix sums algorithm

e How good is this?
= Work: O(n)
= Depth: O(lg n)

e See Main.java, PrefixSumsNonSequentiallmpl.java

= institute for
15-214 Garrod 22 [Hl o

Goal: parallelize PrefixSumsNonSequentiallmpl

e Specifically, parallelize the parallelizable loops
parfor(int i=gap-1; itgap<a.length; 1 += 2*gap) {
a[i+gap] = a[i] + a[itgap];

}
e Partition into multiple segments, run in different

threads

for(int i=left+gap-1; it+gap<right; i += 2*gap) {
a[itgap] = a[i] + a[itgap];
}

Pap—— it FOV
159214 Garrod 23 SOttt

Recall the Java primitive concurrency tools

e The java.lang.Runnable interface
void run();

e The java.lang.Thread class
Thread (Runnable r);

void start();

static void sleep(long millis);
void join();

boolean isAlive();

static Thread currentThread();

= Institute Fof
15-214 Garrod 24 SOFTWARE

RESEARCH

Recall the Java primitive concurrency tools

e The java.lang.Runnable interface
void run();

e The java.lang.Thread class
Thread (Runnable r);

void start();

static void sleep(long millis);
void join();

boolean isAlive();

static Thread currentThread();

e The java.util.concurrent.Callable<V> interface
» Like java.lang.Runnable but can return a value
\% call();

e \HSIUE’FOV
15-214 Garrod 25 SOLFl”[VARE

RESEARCH

A framework for asynchronous computation

e The java.util.concurrent.Future<Vv> interface
\Y get();
\Y get(long timeout, TimeUnit unit);
boolean isDone();
boolean cancel (boolean mayInterruptIfRunning);
boolean isCancelled();

e The java.util.concurrent.ExecutorService

interface

Future submit (Runnable task);

Future<v> submit (Callable<V> task);

List<Future<V>> invokeAll(Collection<Callable<V>>
tasks);

Future<v> invokeAny(Collection<Callable<Vv>>
tasks);

- Institute FOV
15-214 Garrod 26 sorTuAte

RESEARCH

Executors for common computational patterns

e From the java.util.concurrent.Executors class

static
static
static
static

ExecutorService
ExecutorService
ExecutorService
ExecutorService

newSingleThreadExecutor();
newFixedThreadPool (int n);
newCachedThreadPool();
newScheduledThreadPool(int n);

e Aside: see NetworkServer.java (later)

15-214 Garrod

-
institute for
27 I S SOFTWARE
RESEARCH

Fork/Join: another common computational pattern

e In a long computation:
= Fork a thread (or more) to do some work
= Join the thread(s) to obtain the result of the work

- institute for
15-214 Garrod 28 RESEARCH

Fork/Join: another common computational pattern

e In a long computation:
= Fork a thread (or more) to do some work
= Join the thread(s) to obtain the result of the work

e The java.util.concurrent.ForkJoinPool class
« Implements ExecutorService
= Executes java.util.concurrent.ForkJoinTask<V> Or
java.util.concurrent.RecursiveTask<V> Or
java.util.concurrent.RecursiveAction

= institute for
15-214 Garrod 29 RESEARCH

The RecursiveAction abstract class

public class MyActionFoo extends RecursiveAction {
public MyActionFoo(..) {
store the data fields we need

}

@Override
public void compute() {
if (the task is small) {
do the work here;
return;

}

invokeAll (new MyActionFoo(..), // smaller
new MyActionFoo(..), // tasks
) s /] ..

ite for

= INstitL D
15-214 Garrod 30 sormings

A ForkdJoin example

e See PrefixSumsParallelImpl.java,
PrefixSumsParallelLoop1.java, and
PrefixSumsParallelLoop2.java

e See the processor go, go go!

institute for

15-214 Garrod 31 sorminse

Parallel prefix sums algorithm

e How good is this?
« Work: O(n)
= Depth: O(lg n)

e See PrefixSumsSequentiallmpl.java

= institute for
15-214 Garrod 32 [HI o

Parallel prefix sums algorithm

e How good is this?
= Work: O(n)
= Depth: O(lg n)

e See PrefixSumsSequentiallmpl.java
= n-1 additions
= Memory access is sequential

e For PrefixSumsNonsequentiallmpl.java

= About 2n useful additions, plus extra additions for the loop
indexes
= Memory access is non-sequential

e The punchline: Constants matter.

Pap—— it FOV
159214 Garrod 33 SOttt

Next time...

= institute for
15-214 Garrod P | S [et

