Principles of Software Construction:
Objects, Design and Concurrency

Threa_ds

The Perils of Concurrency

Can't live with it.
Cant live without it.

15-214
toad

Fall 2013
Jonathan Aldrich Charlie Garrod

School of
Computer Science

@
institute for
I S SOFTWARE
RESEARCH

© 2012-13 C Garrod, J Aldrich, and W Scherlis

Administrivia

e Homework 4c due tonight

e Homework 5 coming soon
= Must select partner(s) by tonight (29 October)
= 5a due next Wednesday (06 November)
= 5b due the following Tuesday (12 November)
= 5¢ due the following Tuesday (19 November)

e Final exam is Monday 09 December, 8:30 - 11:30
a.m.

= institute for
15-214 Garrod 2 [Hi o

Key topics from last Thursday

Pap—— it FOf
15-214 Garrod 3 sorumie

Today: Concurrency, part 1

e The backstory
= Motivation, goals, problems, ...

e Basic concurrency in Java
= Synchronization

e Coming soon (but not today):
« Higher-level abstractions for concurrency
e Data structures
e Computational frameworks

15-214 Garrod

4

institute for
SOFTWARE
RESEARCH

Processor speeds over time

Intel Processor Clock Speed (MHz)

10000
Pentium 4 Prescott
Core 2 Extreme
1000
PentiumIil
Celeron Multicore Crisis
) is Here!
Pentium
100
80486
80386
10
80286
8080
1 T T T T T T T
1968 1973 1979 1984 1990 1995 2001 2006
CPU-Frequency 1993 - 2005
AMD and Intel
0.1

4000

3000 {----
L e e e T -

A1) Jpemereenemcaneonemamenennmnceneono

o
(=1
=]

g
2
:
3 1
g

Institute for
15-214 Garrod I | S [Feas:

Power requirements of a CPU

e Approx.: Capacitance * Voltage? * Frequency

e To increase performance:
= More transistors, thinner wires: more C
e More power leakage: increase V
= Increase clock frequency F
e Change electrical state faster: increase V

e Problem: Power requirements are super-linear to

performance
= Heat output is proportional to power input

e Institute for
15-214 Garrod e [Hin

One option: fix the symptom

e Dissipate the heat

institute for
15-214 Garrod 7 RESEARCH

One option: fix the symptom

e Better: Dissipate the heat with liquid nitrogen
= Overclocking by Tom's Hardware's 5 GHz project

=
iz
A
Girg
iy o

http://www.tomshardware.com/reviews/5-ghz-project,731-8.html

= institute for
15-214 Garrod s [H o

Another option: fix the underlying problem

e Reduce heat by limiting power input
= Adding processors increases power requirements linearly
with performance
e Reduce power requirement by reducing the frequency
and voltage
e Problem: requires concurrent processing

= institute for
15-214 Garrod 9 RESEARCH

Aside: Three sources of disruptive innovation

e Growth crosses some threshold
= e.g., Concurrency: ability to add transistors exceeded
ability to dissipate heat

e Colliding growth curves

= Rapid design change forced by jump from one curve onto
another

e Network effects
« Amplification of small triggers leads to rapid change

- institute for
15-214 Garrod 10 RESEARCH

Aside: The threshold for distributed computing

e Too big for a single computer?
= Forces use of distributed architecture
e Shifts responsibility for reliability from hardware to
software
e Allows you to buy cheap flaky machines instead of
expensive somewhat-flaky machines
—Revolutionizes data center design

= institute for
15-214 Garrod 11 RESEARCH

Aside: Network effects

e Metcalfe's rule: network value grows

quadratically in the number of nodes
= a.k.a. Why my mom has a Facebook account
= n(n-1)/2 potential connections for n nodes

= Creates a strong imperative to merge networks
e Communication standards, USB, media formats, ...

- institute for
15-214 Garrod 12 RESEARCH

Concurrency

e Simply: doing more than one thing at a time
= In software: more than one point of control
e Threads, processes

e Resources simultaneously accessed by more than
one thread or process

= institute for
15-214 Garrod 13 [Hi o

Concurrency then and now

e In the past multi-threading was just a

convenient abstraction
= GUI design: event threads
= Server design: isolate each client's work
« Workflow design: producers and consumers

e Now: must use concurrency for
scalability and performance

15-214 Garrod

Image Name |J Threads | Q

IPSSVC.EXE 86
svchost.exe 82
System 30 (
afsd_service.exe 51
Rtvscan.exe 47 |
winlogon.exe 39
explorer.exe 20
ccEvtMar.exe 19 (
svchost.exe 18
Isass.exe 18
tabtip.exe 17
svchost.exe 17
firefox.exe 16
services.exe 16 (
csrss.exe 13 (
tcserver.exe 10 (
KeyboardSurroga... 10
spoolsv.exe 10
tvt_reg_monitor_... 10
svchost.exe 10
POWERPNT.EXE 9 (
taskmar.exe 8
VPTray.exe 8
524EvMon.exe 8 (
EvtEng.exe 3
emacs.exe 7
tvtsched.exe 7
ibmpmsvc.exe 7
AcroRd32.exe 7
vpngui.exe 6 (
cvpnd.exe 6
AluSchedulerSve.... 6
ccSetMar.exe 6 (
svchost.exe 6
wisptis.exe 5 (
alg.exe 5
TPHKMGR.exe 5 (
ASRSVC.exe 5 (

institute tor
14 I S SOF TWARE
L RESEARCH

Problems of concurrency

e Realizing the potential
= Keeping all threads busy doing useful work

e Delivering the right language abstractions
= How do programmers think about concurrency?
= Aside: parallelism vs. concurrency

e Non-determinism
= Repeating the same input can yield different results

- institute for
15-214 Garrod 15 [

Realizing the potential

A A A A

> > > \ >
concurrency

time

e Possible metrics of success
= Breadth: extent of simultaneous activity
e width of the shape
=« Depth (or span): length of longest computation
e height of the shape
= Work: total effort required
e area of the shape

e Typical goals in parallel algorithm design?

- institute for
15-214 Garrod 16 [

Realizing the potential

A A A A

> > > \ >
concurrency

time

e Possible metrics of success
= Breadth: extent of simultaneous activity
e width of the shape
=« Depth (or span): length of longest computation
e height of the shape
= Work: total effort required
e area of the shape

e Typical goals in parallel algorithm design?
= First minimize depth (total time we wait), then minimize work

- institute for
15-214 Garrod 17 [Fies

Amdahl’s law: How good can the depth get?

e [deal parallelism with N processors:
- Speedup = N Speedup by Amdahl's Law (P=1024)

1,200.00

e In reality, some work is always
inherently sequential

- Let F be the portion of the total S
task time that is inherently 60000 -
sequential |

1 200.00

"Speedup = F LI _F)/N

-3 -3
6 ¢ 8
o o o
Serial Percent

0.00%
0.05%
0.15% +
0.25% 4
0.65% 4+
0.75% 4
0.85% 4
0.95% 4
1.05%

= Suppose F = 10%. What is the max speedup? (you choose N)

- \HSIUE’FOV
15-214 Garrod 18 SOLFl”[VARE

RESEARCH

Amdahl’s law: How good can the depth get?

e [deal parallelism with N processors:
- Speedup = N Speedup by Amdahl's Law (P=1024)

1,200.00

e In reality, some work is always
inherently sequential

- Let F be the portion of the total S
task time that is inherently 60000 -
sequential |

1 200.00

"Speedup = F LI _F)/N

-3 -3
6 ¢ 8
o o o
Serial Percent

0.00%
0.05%
0.15% +
0.25% 4
065% 4
0.75% 4
0.85% 4
0.95% 4
1.05%

= Suppose F = 10%. What is the max speedup? (you choose N)
e As N approaches co, 1/(0.1 + 0.9/N) approaches 10.

- institute for
15-214 Garrod 19 RESEARCH

Using Amdahl’s law as a design guide

20.00

- , | AT
e For a given algorithm, suppose .. [s orion || ‘
- N processors - 4 =% 1
- Problem size M AL
- Sequential portion F e
T
e An obvious question: I —

= What happens to speedup as N scales?

e Another important question:
« What happens to F as problem size M scales?

"For the past 30 years, computer performance has been driven by Moore’s
Law; from now on, it will be driven by Amdahl’s Law."
— Doron Rajwan, Intel Corp

= institute for
15-214 Garrod 20 [H o

Abstractions of concurrency

e Processes
= Execution environment is isolated
e Processor, in-memory state, files, ...
« Inter-process communication typically slow, via message
passing
e Sockets, pipes, ...

e Threads

= Execution environment is shared
= Inter-thread communication typically fast, via shared state

Process Process
Thread Thread Thread Thread

El Stte]

= institute for
15-214 Garrod 21 RESEARCH

Aside: Abstractions of concurrency

e What you see: Process
= State is all shared Thread Thread

Stte]

e A (slightly) more accurate view of the hardware:
= Separate state stored in

registers and caches Process
= Shared state stored in
caches and memory Thread Thread

= institute for
15-214 Garrod 22 [Hl o

Basic concurrency in Java

e The java.lang.Runnable interface
void run();

e The java.lang.Thread class
Thread (Runnable r);

void start();

static void sleep(long millis);
void join();

boolean isAlive();

static Thread currentThread();

e See IncrementTest.java

e \HSIUQFOV
15-214 Garrod 23 SOtFl”[VARE

RESEARCH

Atomicity

e An action is atomic if it is indivisible
= Effectively, it happens all at once
e No effects of the action are visible until it is complete
e No other actions have an effect during the action

e In Java, integer increment is not atomic

1. Load data from variable i
? is actually 2. Increment data by 1

3. Store data to variable i

al=rr

- institute for
15-214 Garrod 24 [Hles

One concurrency problem: race conditions

e A race condition is when multiple threads access
shared data and unexpected results occur
depending on the order of their actions

e E.g., from IncrementTest.java:
= Suppose classbData starts with the value 41.:

Thread A: One possible interleaving of actions:
classData++; 1A. Load data(41) from classData
Thread B: 1B. Load data(41) from classData
classData++; 2A. Increment data(41) by 1 -> 42

2B. Increment data(41) by 1 -> 42
3A. Store data(42) to classbData
3B. Store data(42) to classbData

- institute for
15-214 Garrod 25 [Hl e

Race conditions in real life

e E.g., check-then-act on the highway

PPy institute for
o) B SOFTWARE
=Ll RESEARCH

15-214 Garrod 26

Race conditions in real life

e E.g., check-then-act at the bank
= The "debit-credit problem"”

Alice, Bob, Bill, and the Bank

e A. Alice to pay Bob $30
= Bank actions
1. Does Alice have $30 ?
2. Give $30 to Bob
3. Take $30 from Alice

o B. Alice to pay Bill $30
= Bank actions
1. Does Alice have $30 ?
2. Give $30 to Bill
3. Take $30 from Alice

o If Alice starts with $40, can
Bob and Bill both get $30?

- institute for
15-214 Garrod 27 RESEARCH

Race conditions in real life

e E.g., check-then-act at the bank
= The "debit-credit problem"”

Alice, Bob, Bill, and the Bank

e A. Alice to pay Bob $30
= Bank actions
1. Does Alice have $30 ?
2. Give $30 to Bob
3. Take $30 from Alice

o B. Alice to pay Bill $30
= Bank actions
1. Does Alice have $30 ?
2. Give $30 to Bill
3. Take $30 from Alice

w>wm > >
WWN RN~

o If Alice starts with $40, can
Bob and Bill both get $30?

= institute for
15-214 Garrod 28 SOrFTaL:

RESEARCH

Race conditions in your real life

e E.g., check-then-act in simple code

public class StringConverter {
private Object o;
public void set(Object o) {
this.o = o;

}

public String get() {
if (o == null) return "null”;
return o.toString();

}

= See StringConverter.java, Getter.java, Setter.java

= institute for
15-214 Garrod 20 [H o

Some actions are atomic
Precondition: Thread A: Thread B:

int i = 7; 1 = 42; ans = 1;

e What are the possible values for ans?

= Institute For
159214 Garrod s0 [

Some actions are atomic
Precondition: Thread A: Thread B:

int i = 7; 1 = 42; ans = 1;

e What are the possible values for ans?

i: 00000...00000111 |

= institute for
15-214 Garrod a1 [e

Some actions are atomic
Precondition: Thread A: Thread B:

int i = 7; 1 = 42; ans = 1;

e What are the possible values for ans?

i: 00000...00000111 |

iz

e In Java:
= Reading an int variable is atomic
= Writing an int variable is atomic

= Thankfully, ans:_ IS not possible

= institute for
15-214 Garrod 32 [

Bad news: some simple actions are not atomic

e Consider a single 64-bit 1ong value

« Concurrently:

e Thread A writing high bits and low bits
e Thread B reading high bits and low bits

Precondition: Thread A: Thread B:
long i = 10000000000; i = 42; ans = 1i;
ans: (10000000000)
(42)

ans.:

(10000000042 or ...)

ans.:

= institute for
15-214 Garrod 33 [HI o

Thursday:

e More concurrency

= institute for
15-214 Garrod 3a [H e

