
© 2012-2013 W Scherlis, J Aldrich, C Garrod, and C Kästner

School of
Computer Science

Principles of Software Construction:

Objects, Design, and Concurrency

Testing and Invariants

Jonathan Aldrich Charlie Garrod

215-214

The four course themes

• Threads and Concurrency
� Concurrency is a crucial system abstraction

� E.g., background computing while responding to users

� Concurrency is necessary for performance

� Multicore processors and distributed computing

� Our focus: application-level concurrency

� Cf. functional parallelism (150, 210) and systems concurrency (213)

• Object-oriented programming
� For flexible designs and reusable code

� A primary paradigm in industry – basis for modern frameworks

� Focus on Java – used in industry, some upper-division courses

• Analysis and Modeling
� Practical specification techniques and verification tools

� Address challenges of threading, correct library usage, etc.

• Design
� Proposing and evaluating alternatives

� Modularity, information hiding, and planning for change

� Patterns: well-known solutions to design problems

315-214

Learning Goals

• Different strategies of quality assurance, different
meanings of quality

• Importance of specifications (formal or informal)

• Testing approaches, benefits, and limitations

• Unit testing

• Ability to use JUnit

• Test coverage: what it tells you, what it doesn’t

• Ability to use EclEmma for line coverage

• Class invariants and assertions

4
15-214

Correctness?

515-214

Software Quality

• Sufficiency
� Fails to implement the specifications … Satisfies all of the specifications

• Robustness
� Will crash on any anomalous even … Recovers from all anomalous events

• Flexibility
� Will have to be replaced entirely if specification changes … Easily adaptable to

reasonable changes

• Reusability
� Cannot be used in another application … Usable in all reasonably related

applications without modification

• Efficiency
� Fails to satisfy speed or data storage requirement … satisfies speed or data storage

requirement with reasonable margin

• Reliability
� Won't achieve required mean time between failure … will achieve the required

mean time between failure

• Scalability
� Cannot be used as the basis of a larger version … is an outstanding basis…

• Security
� Security not accounted for at all … No manner of breaching security is known

Source: Braude, Bernstein,
Software Engineering. Wiley 2011

615-214

Functional Correctness

• Specification

• Formal Verification

• Unit Testing

• Type Checking

• Statistic Analysis

• Requirements definition

• Inspections, Reviews

• Integration/System/Acceptance/Regression/GUI/Bl
ackbox/ Model-Based/Random Testing

• Change/Release Management

15-214
15-313

715-214

Textual Specification

public int read(byte[] b, int off, int len) throws IOException

� Reads up to len bytes of data from the input stream into an array of bytes. An
attempt is made to read as many as len bytes, but a smaller number may be read.
The number of bytes actually read is returned as an integer. This method blocks
until input data is available, end of file is detected, or an exception is thrown.

� If len is zero, then no bytes are read and 0 is returned; otherwise, there is an
attempt to read at least one byte. If no byte is available because the stream is at
end of file, the value -1 is returned; otherwise, at least one byte is read and stored
into b.

� The first byte read is stored into element b[off], the next one into b[off+1], and so
on. The number of bytes read is, at most, equal to len. Let k be the number of
bytes actually read; these bytes will be stored in elements b[off] throughb[off+k-
1], leaving elements b[off+k] through b[off+len-1] unaffected.

� In every case, elements b[0] through b[off] and
elements b[off+len] through b[b.length-1] are unaffected.

• Throws:

� IOException - If the first byte cannot be read for any reason other than end of file,
or if the input stream has been closed, or if some other I/O error occurs.

� NullPointerException - If b is null.

� IndexOutOfBoundsException - If off is negative, len is negative, or len is greater
than b.length - off

815-214

Specifications

• Contains
� Functional behavior

� Erroneous behavior

� Quality attributes

• Desirable attributes
� Complete

• Does not leave out any desired behavior

� Minimal
• Does not require anything that the user does not care about

� Unambiguous
• Fully specifies what the system should do in every case the user cares

about

� Consistent
• Does not have internal contradictions

� Testable
• Feasible to objectively evaluate

� Correct
• Represents what the end-user(s) need

915-214

Function Specifications

• A function’s contract is a statement of the responsibilities of that
function, and the responsibilities of the code that calls it.
� Analogy: legal contracts

• If you pay me $30,000

• I will build a new room on your house

� Helps to pinpoint responsibility

• Contract structure
� Precondition: the condition the function relies on for correct operation

� Postcondition: the condition the function establishes after correctly
running

• (Functional) correctness with respect to the specification
� If the client of a function fulfills the function’s precondition, the function

will execute to completion and when it terminates, the postcondition will
be fulfilled

• What does the implementation have to fulfill if the client violates
the precondition?

9

1015-214

Formal Specifications

/*@ requires len >= 0 && array != null && array.length == len;
@
@ ensures \result ==
@ (\sum int j; 0 <= j && j < len; array[j]);
@*/

int total(int array[], int len);

1115-214

Example Java I/O Library Specification (abridged)

public int read(byte[] b, int off, int len) throws IOException

� Reads up to len bytes of data from the input stream into an array of bytes. An
attempt is made to read as many as len bytes, but a smaller number may be read.
The number of bytes actually read is returned as an integer. This method blocks
until input data is available, end of file is detected, or an exception is thrown.

� If len is zero, then no bytes are read and 0 is returned; otherwise, there is an
attempt to read at least one byte. If no byte is available because the stream is at
end of file, the value -1 is returned; otherwise, at least one byte is read and stored
into b.

� The first byte read is stored into element b[off], the next one into b[off+1], and so
on. The number of bytes read is, at most, equal to len. Let k be the number of
bytes actually read; these bytes will be stored in elements b[off] throughb[off+k-
1], leaving elements b[off+k] through b[off+len-1] unaffected.

� In every case, elements b[0] through b[off] and
elements b[off+len] through b[b.length-1] are unaffected.

• Throws:

� IOException - If the first byte cannot be read for any reason other than end of file,
or if the input stream has been closed, or if some other I/O error occurs.

� NullPointerException - If b is null.

� IndexOutOfBoundsException - If off is negative, len is negative, or len is greater
than b.length - off

1215-214

Example Java I/O Library Specification (abridged)

public int read(byte[] b, int off, int len) throws IOException

� Reads up to len bytes of data from the input stream into an array of bytes. An
attempt is made to read as many as len bytes, but a smaller number may be read.
The number of bytes actually read is returned as an integer. This method blocks
until input data is available, end of file is detected, or an exception is thrown.

� If len is zero, then no bytes are read and 0 is returned; otherwise, there is an
attempt to read at least one byte. If no byte is available because the stream is at
end of file, the value -1 is returned; otherwise, at least one byte is read and stored
into b.

� The first byte read is stored into element b[off], the next one into b[off+1], and so
on. The number of bytes read is, at most, equal to len. Let k be the number of
bytes actually read; these bytes will be stored in elements b[off] throughb[off+k-
1], leaving elements b[off+k] through b[off+len-1] unaffected.

� In every case, elements b[0] through b[off] and
elements b[off+len] through b[b.length-1] are unaffected.

• Throws:

� IOException - If the first byte cannot be read for any reason other than end of file,
or if the input stream has been closed, or if some other I/O error occurs.

� NullPointerException - If b is null.

� IndexOutOfBoundsException - If off is negative, len is negative, or len is greater
than b.length - off

• Multiple error cases, each with a
precondition

• Includes “runtime exceptions”
not in throws clause

• Specification of return
• Timing behavior (blocks)
• Case-by-case spec

• len=0 ���� return 0
• len>0 && eof ���� return -1
• len>0 && !eof ����return >0

• Exactly where the data is stored
• What parts of the array are not

affected

1315-214

Textual Specifications

List:

booleanbooleanbooleanboolean addAll(intintintint index, Collection<? extends extends extends extends E> c)

Inserts all of the elements in the specified collection into this list at the specified position (optional
operation). Shifts the element currently at that position (if any) and any subsequent elements to the right
(increases their indices). The new elements will appear in this list in the order that they are returned by the
specified collection's iterator. The behavior of this operation is undefined if the specified collection is
modified while the operation is in progress. (Note that this will occur if the specified collection is this list, and
it's nonempty.)

Parameters:
index - index at which to insert the first element from the specified collection
c - collection containing elements to be added to this list

Returns:
true if this list changed as a result of the call

Throws:
UnsupportedOperationException - if the addAll operation is not supported by this list
ClassCastException - if the class of an element of the specified collection prevents it from

being added to this list
NullPointerException - if the specified collection contains one or more null elements and this

list does not permit null elements, or if the specified collection is null
IllegalArgumentException - if some property of an element of the specified collection

prevents it from being added to this list
IndexOutOfBoundsException - if the index is out of range (index < 0 || index > size())

1415-214

Quality Attribute Specifications: Discussion

• How would you specify…
� Availability?

� Modifiability?

� Performance?

� Security?

� Usability?

1515-214

/*@ requires len >= 0 && array.length == len

@ ensures \result ==

@ (\sum int j; 0 <= j && j < len; array[j])

@*/

float sum(int array[], int len) {

assert len >= 0;

assert array.length == len;

float sum = 0.0;

int i = 0;

while (i < len) {

sum = sum + array[i]; i = i + 1;

}

return sum;

assert …;

}

Runtime Checking of Specifications

Notation from the Java Modeling Language (JML)

java -ea Main

1615-214

/*@ requires len >= 0 && array.length == len

@ ensures \result ==

@ (\sum int j; 0 <= j && j < len; array[j])

@*/

float sum(int array[], int len) {

if (len < 0 || array.length != len)

throw IllegalArgumentException(…);

float sum = 0.0;

int i = 0;

while (i < len) {

sum = sum + array[i]; i = i + 1;

}

return sum;

assert …;

}

Runtime Checking of Specifications

Notation from the Java Modeling Language (JML)

Check arguments
even when assertions
are disabled.
Good for robust
libraries!

1715-214

Data Structure Invariants (cf. 122)
struct list {

elem data;
struct list* next;

};
struct queue {

list front;
list back;

};

1815-214

Data Structure Invariants (cf. 122)
struct list {

elem data;
struct list* next;

};
struct queue {

list front;
list back;

};

bool is_queue(queue Q) {
if (Q == NULL) return false;
if (Q->front == NULL || Q->back == NULL) return false;
return is_segment(Q->front, Q->back);

}

1915-214

Data Structure Invariants (cf. 122)
struct list {

elem data;
struct list* next;

};
struct queue {

list front;
list back;

};

bool is_queue(queue Q) {
if (Q == NULL) return false;
if (Q->front == NULL || Q->back == NULL) return false;
return is_segment(Q->front, Q->back);

}

void enq(queue Q, elem s)
//@requires is_queue(Q);
//@ensures is_queue(Q);
{

list l = alloc(struct list);
Q->back->data = s;
Q->back->next = l;
Q->back = l; }

2015-214

Data Structure Invariants (cf. 122)

• Properties of the Data Structure

• Should always hold before and after method execution

• May be invalidated temporarily during method execution

void enq(queue Q, elem s)
//@requires is_queue(Q);
//@ensures is_queue(Q);
{ … }

2115-214

Class Invariants

• Properties about the fields of an object

• Established by the constructor

• Should always hold before and after execution of public
methods

• May be invalidated temporarily during method execution

2215-214

Class Invariants

• Properties about the fields of an object

• Established by the constructor

• Should always hold before and after execution of public
methods

• May be invalidated temporarily during method execution
public class SimpleSet {

int contents[];
int size;

//@ ensures sorted(contents);
SimpleSet(int capacity) { … }

//@ requires sorted(contents);
//@ ensures sorted(contents);
boolean add(int i) { … }

//@ requires sorted(contents);
//@ ensures sorted(contents);
boolean contains(int i) { … }

}

public class SimpleSet {

int contents[];
int size;

//@invariant sorted(contents);

SimpleSet(int capacity) { … }

boolean add(int i) { … }

boolean contains(int i) { … }
}

