Threads

toad

Fall 2012

School of
- Computer Science

institute for

SOFTWARE
RESEARCH

Principles of Software Construction:
Objects, Design, and Concurrency

Course Introduction

Jonathan Aldrich Charlie Garrod

© 2012 W Scherlis and J Aldrich

Construction of
Software Systems

at Scale

15-214 toad 2 3;’;;,:‘;{'35

15-214

Libraries
Reuse
Design

Analysis

Concurrency

toad

3

nstitute } 1§
SOFTWARE
RESEARCH

graph search

[——

primes

NOIKIA

\ ﬂ K] ip H
L |
i 8
Srapy

DU g
i
R T

binary tree
GCD

sorting

AMAZON ounvszoncon Tosays pess Gitcarss el

¢!

ot Piime
& HHs Emrprn
. Vo, Signin | o wn
Uniimited nstnt Videos
MP3s & Cloud Player NP3Store CloudPlayer Cloudrive Kinde Ry *HSomare. Aldabonks FREE TWO-DAY SHIPPING
FOR COLLEGE STUDENTS
Amazon Cloud Drive . »Leam more
Inale Tire Ho

fandio The ultimate HD experience
o

rom $199 »Shopnow
DiielGames & Sofvare
Audible Audiobooks Kindle Paperwhite, from $119 > Shop now
Bocks

Movies, Music & Games
R —— Cool Wooden Steds Shos Trends Amazon Prime
Home, Garden & Tools
Grocery, Health & Beauty
Toys, Kids & Baby
Clothing, Shoes & Jewelry
Sports & Outdoors
Automative & Industrial

<)

THE AMAZON SHOE STORE

STAYING PO\/\/ER

Flexible crossrainers for o nofuss
opprooch 1o strength and conditioning—
from New Balance, Resbok, ond more.

The Nike+
SportWatch GPS
Put it on, go outside,
and get running.
»ieammare

» Full Store Directory

L0k Aswith Dowiarfiul and \arsatila.E.

institute for
toad 4 I S SOFTWARE

RESEARCH

Software and automobiles

1 Adaptive Cruise Control
2 Electronic Brake System MKE&0E
. |nf°tuinmen|3 Sensor Cluster
Chassis & Snfety 4 Gateway Data Transmitter
§ Force Feedback
Accelerator Pedal

6 Door Control Unit
7 Sunroof
Control Unit

Instrument Cluster

‘8 Reversible Seatbelt
Pretensioner

9 Seat Control Unit

10 Brakes

11 Closing Velocity Sensor

12 Side Satellites

13 Upfront Sensor

Gateways

automotive-eetimes.com Powertrain aalcar.com 14 Airbag Control Unit
Air-bag system Antilock brakes Automatic transmission
Alarm system Climate control Collision-avoidance system
Cruise control Communication system Dashboard instrumentation
Electronic stability control | Engine ignition Engine control
Electronic-secat control Entertainment system Navigation system
Power steering Tirc-pressurc monitoring Windshicld-wipcer control

Lol toad s [s

RESEARCH

Moore’s Law: transistors per chip

CPU Transistor Counts 1971-2008 & Moore’s Law

@ Quad-Core Itanium Tukwila

2,000,000,000 — Dual-Core ltanium 2 @ ® GT200
1,000,000,000 — PN e e ®RV770

G800
Itanium 2 with SMB cache @ /'. -
K10

Core 2 Quad -
ore 2 Duo
Itanium 2 @ = ‘: 89[‘
-

100,000,000 — . Yo
e’ s @ Barton ® Atorm

E Curve shows ‘Moore’s Law’ = ”.ng

= : -7

o 10,000,000 — transistor count doubling _-7 gKg ePm

8 every two years e #~ ® =

O i “® Pentium

CD 2+ -

@ 1,000,000 — ann oo

[’ ’ -

o -

|: 386 @~ ’

100,000 — =
- Similar curve for memory,
& 8088 slightly steeper
10,000 —
& “" 8080
2,300 — 4004 @ #5000
1971 1980 1990 2000 2008

Date of introduction

15-214 toad 6 CoFrvRE

RESEARCH

How much software?

PTT— Millions of Lines of Code (MLOC)
System Performed in | R
Software vist: [
=) 8 v
A-7 1964 10 I— |
F-111 1970 2 win2000 R
EI5 1975 35 NT4
F-16 1982 45 <
B-) 1990 63 UEEN
F-22 2000 80 NT3.1

0 5 10 15 20 25 30 35 40 45 50 55

(informal reports)

= institute for
15-214 toad 7 sormios:

The limits of exponentials

[Computing capability

Human capacity]

capability

time

= nstitute F) §
15-214 toad 8 sorTva

Scaling Up: From Programs to Systems

e You've written small- to medium-size programs in 15-122

e This course is about managing software complexity
« Scale of code: KLOC -> MLOC
« Worldly environment: external I/O, network, asynchrony
= Software infrastructure: libraries, frameworks, components
» Software evolution: change over time

= Contrast: algorithmic complexity
e Not an emphasis in this course

15-214 toad 9 sorrit

From Programs to Systems

Writing algorithms, data
structures from scratch

Reuse of libraries,
frameworks

Functions with inputs
and outputs

Asynchronous and
reactive designs

Parallel and distributed
computation

Sequential and local
computation

Full functional
specifications

Partial, composable,
targeted models

4339

Our goal: understanding both the building blocks and also the principles for
construction of software systems at scale

ste for

15-214 toad 10 SOTTARE

A framework for mobile app software (10S)

Operating
system

Event queue) Application

Core ubjacts

L_] T

(<=

15-214

it

App launck J

R

Your codse

4

& phons, SPAS or Salandar <
notification arrivas

<

>

applicationWil IResfiansActive:

]

>l

g
Igrm.r;’?/
(B =]

Begin rminaton saguance]{

applicationDidBecomeActive:

, S

-

Application termsinates J

|

applicationWillTerminate:

toad

1 [Hi:

titute for
SOFTWARE
RESEARCH

The four course themes

e Threads and Concurrency
« Concurrency is a crucial system abstraction \
e E.g., background computing while responding to users ¢
= Concurrency is necessary for performance
e Multicore processors and distributed computing
= Our focus: application-level concurrency
e Cf. functional parallelism (150, 210) and systems concurrency (213)

e Object-oriented programming
= For flexible designs and reusable code
= A primary paradigm in industry — basis for modern frameworks
= Focus on Java - used in industry, some upper-division courses

e Analysis and Modeling
= Practical specification techniques and verification tools
= Address challenges of threading, correct library usage, etc.

e Design
= Proposing and evaluating alternatives
= Modularity, information hiding, and planning for change
= Patterns: well-known solutions to design problems

f

15-214 toad 12 sor s

Motivating example #1:. GraphLayout

flea
=
flea
dog [~
SpOan tag
CLIE
table
_fcat
#5;% foo
Mouse £
plate
ke fark

Source code: http://java.sun.com/applets/ijdk/1.4/demo/applets/GraphlLayout/examplel.html

Screenshot from http://stackoverflow.com/questions/1318770/impressive-examples-in-java

15-214

toad

13

nstitute { 1
SOFTWARE
RESEARCH

Discussion: GraphLayout

e What does the design of GraphLayout look like,
conceptually?

e What is most important about the design?

e How should the GUI be organized? Why?

= institute for
15-214 toad 14 o

%2
S
| -
)
=
[
=
=

V

le #2

ing examp

t

vVa

Mot

Discussion: Virtual Worlds

e How can the virtual world to scale to thousands of users?

e How can we organize the system to easily add new things?

e How can we support different kinds of things, while taking
advantage of their similarities? (can you think of an
example?)

15-214 toad e L

RESEARCH

Considering the examples

e Threads and Concurrency
= In the GUI-based app
= On game clients
= On the game servers

e Object-oriented programming
= Organizing by object types, then actions

e Analysis and Modeling
= How to gain confidence regarding all possible executions

e Design
= How to organize systems that grow and evolve

= How to define the interfaces between infrastructure and our
code

= nstitute F b
15-214 toad 17 sorTva

Objects Analysis

Th rea_ds

toad

Fall 2012

School of
- Computer Science

institute for

SOFTWARE
RESEARCH

Principles of Software Construction:
Objects, Design, and Concurrency

Objects

Jonathan Aldrich Charlie Garrod

© 2012 W Scherlis and J Aldrich

Object-Oriented Programming Languages

o C++

e Java

o C#

e Smalltalk

e Scala

e Objective-C
e JavaScript
e Ruby

e PHP5

e Object Pascal/Delphi
e OCaml

f

15-214 toad 19 SO

Web

pectrum.ieee.org/at-work/tech-caggersZriigatop-10-programming-languages

Custon
appfications

for

businesses

Unix
operaling
Spsten,
device
drivers

PYTHOMN 5%
OBJECTIVE-C 4%
p

TIOBE Index

database queries,
academic
computing Web forms
and other
fnteractive
Web pages

Systems HASKELL 9%

software such
as Microsaft
Windows, and
large video
EAMES

PERL 8%

SHELL 7%

VISUAL BASIC 1% Web apps:

Cirrarid,
Google

JAVA 4%

RUBY 4%
JAVA 9%

PERL %% C# 6%
RUBY 1%

Most book titles Most discussed Most job posts

Powell's Books Tuternet Relay Char Craigslist

Object orientation (OO)

e History
= Simulation - Simula 67, first OO language
= Interactive graphics — SmallTalk-76 (inspired by Simula)

e Object-oriented programming (OOP)
= Organize code bottom-up rather than top-down
= Focus on concepts rather than operations

= Concepts include both conventional data types (e.g. List),
and other abstractions (e.g. Window, Command, State)

e Some benefits, informally stated
= Easier to reuse concepts in new programs
e Concepts map to ideas in the target domain
= Easier to extend the program with new concepts
e E.g. variations on old concepts
= Easier to modify the program if a concept changes
e Easier means the changes can be localized in the code base

15-214 toad 21 sorTinse

Objects

e Object
= A package of state (data) and behavior (actions)

e Data and actions

= Fields in the object hold data values
e Like the fields of a struct in C
e Access to fields can be restricted
« Methods describe operations or actions on that data
e Like functions associated with an abstract data type
e They have access to the all fields
e Method calls can be thought of as "messages” to the object

e Thus...

= Methods can control access to the fields
e Best practice: Don't allow fields to be seen from outside
= The object can be thought of as a service that is accessed
through a managed interface. The class described a family of
similar services.
e E.g., a particular button (object) vs. buttons in general (class)

15-214 toad 22 ;g’;g,:";:‘i",f

Example: Concept of a Rectangle

e What do you need to know about a rectangle?

e What might you want to do with a rectangle?

= institute for
15-214 toad 23 o

Example: Points and Rectangles

class Point {
int x, y;
int getX() { return x; } // a method,; getY() is similar
Point(int px, int py) { X = pXx; y = py; } // constructor for creating the object
b
class Rectangle {
Point origin;
int width, height;
Point getOrigin() { return origin; }
int getWidth() { return width; }
void draw() {
drawLine(origin.getX(), origin.getY(), // first line
origin.getX()+width, origin.getY());
... // more lines here
b
Rectangle(Point o, int w, int h) {
origin = o; width = w; height = h;

15-214 toad 24

institute for
SOFTWARE
RESEARCH

Example: Points and Rectangles

class Point {

int x, y;

int getX() { return this.x; } // a method; getY() is similar

Point(int px, int py) {this.x = px; this.y = py; } // constructor for creating the object
b
class Rectangle {

Point origin;

int width, height;

Point getOrigin() { return this.origin; }

int getWidth() { return this.width; }

void draw() {

this.drawLine(this.origin.getX(), this.origin.getY(), // first line
this.origin.getX()+this.width, this.origin.getY());

Some Client Code

Point o = new Point(0, 10); // allocates memory, calls ctor

Rectangle r = new Rectangle(o, 5, 10);
r.draw();
int rightEnd = r.getOrigin().getX() + r.getWidth(); // 5

nstitute { f

15-214 toad 25 |[BYf sormvaxe

What's really going on?

o : Point

x=0

Method Stack y=10

main() getX()
:-) — — r : Rectangle)
origin
rightEnd=5 Wrilc?tlh _
height = 10
getOrigin()
- getWidth()
Some Client Code
draw()

Point o = new Point(0, 10); // ¢
Rectangle r = new Rectangle(o, 5, 10);
r.draw();

ctor

int rightEnd = r.getOrigin().getX() + r.getWidth(); // 5

nstitute tor
15-214 | S [

Toad’s Take-Home Messages

e 214: managing complexity, from programs to systems =
= Threads and concurrency
= Object-oriented programming
= Analysis and modeling
= Design

e GraphLayout and virtual worlds illustrate some challenges

e Object-oriented programming organizes code around
concepts
= Methods capture behavior, fields capture state

= As we will see, this organization allows
e Greater reuse of concepts
e Better support for change when concepts vary

15-214 toad 27 o

