
toad

Fall 2012

© 2012 W Scherlis and J Aldrich

School of
Computer Science

School of
Computer Science

Principles of Software Construction:

Objects, Design, and Concurrency

Course Introduction

Jonathan Aldrich Charlie Garrod

toad 215-214

Construction of

Software Systems

at Scale

toad 315-214

Libraries
Reuse
Design

Analysis
Concurrency

toad 415-214

binary tree

graph search

sorting

BDDs

primes

GCD

toad 515-214

Software and automobiles

automotive-eetimes.com aa1car.com

toad 615-214

Moore’s Law: transistors per chip

Similar curve for memory,
slightly steeper

toad 715-214

How much software?

(informal reports)

toad 815-214

The limits of exponentials

time

c
a
p

a
b

il
it

y

Computing capability

Human capacity

toad 915-214

Scaling Up: From Programs to Systems

• You’ve written small- to medium-size programs in 15-122

• This course is about managing software complexity
� Scale of code: KLOC -> MLOC
� Worldly environment: external I/O, network, asynchrony
� Software infrastructure: libraries, frameworks, components
� Software evolution: change over time

� Contrast: algorithmic complexity
• Not an emphasis in this course

toad 1015-214

Our goal: understanding both the building blocks and also the principles for
construction of software systems at scale

From Programs to Systems

Writing algorithms, data
structures from scratch

Functions with inputs
and outputs

Sequential and local
computation

Full functional
specifications

Reuse of libraries,
frameworks

Asynchronous and
reactive designs

Parallel and distributed
computation

Partial, composable,
targeted models

toad 1115-214

A framework for mobile app software (IOS)

toad 1215-214

The four course themes

• Threads and Concurrency
� Concurrency is a crucial system abstraction

• E.g., background computing while responding to users

� Concurrency is necessary for performance
• Multicore processors and distributed computing

� Our focus: application-level concurrency
• Cf. functional parallelism (150, 210) and systems concurrency (213)

• Object-oriented programming
� For flexible designs and reusable code
� A primary paradigm in industry – basis for modern frameworks
� Focus on Java – used in industry, some upper-division courses

• Analysis and Modeling
� Practical specification techniques and verification tools
� Address challenges of threading, correct library usage, etc.

• Design
� Proposing and evaluating alternatives
� Modularity, information hiding, and planning for change
� Patterns: well-known solutions to design problems

toad 1315-214

Motivating example #1: GraphLayout

Source code: http://java.sun.com/applets/jdk/1.4/demo/applets/GraphLayout/example1.html

Screenshot from http://stackoverflow.com/questions/1318770/impressive-examples-in-java

toad 1415-214

Discussion: GraphLayout

• What does the design of GraphLayout look like,
conceptually?

• What is most important about the design?

• How should the GUI be organized? Why?

toad 1515-214

Motivating example #2: Virtual Worlds

toad 1615-214

Discussion: Virtual Worlds

• How can the virtual world to scale to thousands of users?

• How can we organize the system to easily add new things?

• How can we support different kinds of things, while taking
advantage of their similarities? (can you think of an
example?)

toad 1715-214

Considering the examples

• Threads and Concurrency
� In the GUI-based app
� On game clients
� On the game servers

• Object-oriented programming
� Organizing by object types, then actions

• Analysis and Modeling
� How to gain confidence regarding all possible executions

• Design
� How to organize systems that grow and evolve
� How to define the interfaces between infrastructure and our

code

toad

Fall 2012

© 2012 W Scherlis and J Aldrich

School of
Computer Science

School of
Computer Science

Principles of Software Construction:

Objects, Design, and Concurrency

Objects

Jonathan Aldrich Charlie Garrod

toad 1915-214

Object-Oriented Programming Languages

• C++

• Java

• C#

• Smalltalk

• Scala

• Objective-C

• JavaScript

• Ruby

• PHP5

• Object Pascal/Delphi

• OCaml

• …

toad 2015-214

http://spectrum.ieee.org/at-work/tech-careers/the-top-10-programming-languages
Oct. 2011

toad 2115-214

Object orientation (OO)

• History
� Simulation – Simula 67, first OO language
� Interactive graphics – SmallTalk-76 (inspired by Simula)

• Object-oriented programming (OOP)
� Organize code bottom-up rather than top-down
� Focus on concepts rather than operations
� Concepts include both conventional data types (e.g. List),

and other abstractions (e.g. Window, Command, State)

• Some benefits, informally stated
� Easier to reuse concepts in new programs

• Concepts map to ideas in the target domain

� Easier to extend the program with new concepts
• E.g. variations on old concepts

� Easier to modify the program if a concept changes
• Easier means the changes can be localized in the code base

toad 2215-214

Objects

• Object
� A package of state (data) and behavior (actions)

• Data and actions
� Fields in the object hold data values

• Like the fields of a struct in C
• Access to fields can be restricted

� Methods describe operations or actions on that data
• Like functions associated with an abstract data type
• They have access to the all fields
• Method calls can be thought of as “messages” to the object

• Thus…
� Methods can control access to the fields

• Best practice: Don’t allow fields to be seen from outside

� The object can be thought of as a service that is accessed
through a managed interface. The class described a family of
similar services.

• E.g., a particular button (object) vs. buttons in general (class)

toad 2315-214

Example: Concept of a Rectangle

• What do you need to know about a rectangle?

• What might you want to do with a rectangle?

toad 2415-214

Example: Points and Rectangles

class Point {

int x, y;

int getX() { return x; } // a method; getY() is similar

Point(int px, int py) { x = px; y = py; } // constructor for creating the object

}

class Rectangle {

Point origin;

int width, height;

Point getOrigin() { return origin; }

int getWidth() { return width; }

void draw() {

drawLine(origin.getX(), origin.getY(), // first line

origin.getX()+width, origin.getY());

… // more lines here

}

Rectangle(Point o, int w, int h) {

origin = o; width = w; height = h;

}

}

toad 2515-214

Example: Points and Rectangles

class Point {

int x, y;

int getX() { return this.x; } // a method; getY() is similar

Point(int px, int py) {this.x = px; this.y = py; } // constructor for creating the object

}

class Rectangle {

Point origin;

int width, height;

Point getOrigin() { return this.origin; }

int getWidth() { return this.width; }

void draw() {

this.drawLine(this.origin.getX(), this.origin.getY(), // first line

this.origin.getX()+this.width, this.origin.getY());

… // more lines here

}

Rectangle(Point o, int w, int h) {

this.origin = o; this.width = w; this.height = h;

}

}

Some Client Code

Point o = new Point(0, 10); // allocates memory, calls ctor

Rectangle r = new Rectangle(o, 5, 10);
r.draw();
int rightEnd = r.getOrigin().getX() + r.getWidth(); // 5

toad 2615-214

What’s really going on?

Some Client Code

Point o = new Point(0, 10); // allocates memory, calls ctor

Rectangle r = new Rectangle(o, 5, 10);
r.draw();
int rightEnd = r.getOrigin().getX() + r.getWidth(); // 5

main()
o
r
rightEnd=5

Method Stack

r : Rectangle
origin
width = 5
height = 10
getOrigin()
getWidth()
draw()

o : Point
x = 0
y = 10
getX()

toad 2715-214

Toad’s Take-Home Messages

• 214: managing complexity, from programs to systems
� Threads and concurrency
� Object-oriented programming
� Analysis and modeling
� Design

• GraphLayout and virtual worlds illustrate some challenges

• Object-oriented programming organizes code around
concepts
� Methods capture behavior, fields capture state
� As we will see, this organization allows

• Greater reuse of concepts
• Better support for change when concepts vary

