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ABSTRACT

This paper presents a new feature extraction algorithned&bwer
Normalized Cepstral Coefficients (PNCC) that is based oit@yd
processing. Major new features of PNCC processing inclhde t
use of a power-law nonlinearity that replaces the traditiéog non-
linearity used in MFCC coefficients, a noise-suppressigorithm
based on asymmetric filtering that suppress backgroundaticei,

and a module that accomplishes temporal masking. We also pro

pose the use of medium-time power analysis, in which eniem
tal parameters are estimated over a longer duration thaomns c
monly used for speech, as well as frequency smoothing. Exper
mental results demonstrate that PNCC processing providesas-
tial improvements in recognition accuracy compared to MRDG
PLP processing for speech in the presence of various typadddf
tive noise and in reverberant environments, with only slighreater
computational cost than conventional MFCC processing, vetit
out degrading the recognition accuracy that is observetewtsin-
ing and testing using clean speech. PNCC processing als@pso
better recognition accuracy in noisy environments thahrtiegies

such as Vector Taylor Series (VTS) and the ETSI AdvancedtFron

End (AFE) while requiring much less computation. We descdh
implementation of PNCC using “on-line processing” that sloet
require future knowledge of the input.

Index Terms— Robust speech recognition, feature extrac-
tion, physiological modeling, rate-level curve, asymrufittering,
medium-time power estimation, temporal masking, modaiteafil-
tering, on-line speech processing

1. INTRODUCTION

In recent decades following the introduction of hidden Marknod-
els and statistical language models, the performance etigecog-
nition systems in benign acoustical environments has dieatiy
improved. Nevertheless, most speech recognition systemain
sensitive to the nature of the acoustical environmentsimvithich
they are deployed, and their performance deteriorateplshiarthe
presence of sources of degradation such as additive naear |
channel distortion, and reverberation.

One of the most challenging contemporary problems is tha

recognition accuracy degrades significantly if the tesirenment
is different from the training environment and/or if the astical
environment includes disturbances such as additive nofsmnel
distortion, speaker differences, reverberation, and so@ver the
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Fig. 1. The structure of the PNCC feature extraction algorithm.

years dozens if not hundreds of algorithms have been intextito
address this problem. Many of these conventional noise eosg
tion algorithms have provided substantial improvementccusacy
for recognizing speech in the presence of quasi-stationaige.
Unfortunately these same algorithms frequently do notipeogig-
nificant improvements in more difficult environments witarisitory
disturbances such as a single interfering speaker or bagkdrmu-
sic. The development of PNCC feature extraction was meti/aty
a desire to obtain a set of practical features for speectynébon
that are more robust with respect to acoustical variabiitighout
loss of performance when the speech signal is undistortebiwih
a degree of computational complexity that is comparablehsd t
of MFCC and PLP coefficients. While many of the attributes of
PNCC processing have been strongly influenced by considerat
of various attributes of human auditory processing, we liavered
approaches that provide pragmatic gains in robustnessadit com-
putational cost over approaches that are more faithful thtaty
physiology in developing the specific processing that i$quered.
Some of the innovations of the PNCC processing that we con-
sider to be the most important include:

e The replacement of the log nonlinearity in MFCC processing



by a power-law nonlinearity. Qm.1]

e The use of “medium-time” processing with a duration of 50- EI@
120 ms to analyze the parameters characterizing environmen LowpassFiltering
tal degradation, in combination with the traditional skiamie -y dm !
Fourier analysis with frames of 20-30 ms used in conven- +/

1 iti Halfwave
tional speech recognition systems. ajfvave

e The use of a form of “asymmetric nonlinear filtering” to es- QImi]
timate the level of the acoustical background noise for each |

time frame and frequency bin.

Temporal Asymmetric
Masking LowpassFiltering

. - . Qmi]
e The development of computationally-efficient realizatiaf "

the algorithms above that support “online” real-time pgse _
ing. Rdm1]

Excitation

e The use of a form of “temporal masking.”

2. STRUCTURE OF THE PNCC ALGORITHM Norse Removal —
Masking Estimation

Figure 1 shows the structure of the new PNCC approach which wgijg. 2. Functional block diagram of the modules for asymmetric
introduce in this paper. As in the case of MFCC processingea p noise suppression (ANS) and temporal masking in PNCC pseces
emphasis filter of the fornfH (z) = 1 — 0.97z~" is applied. A ing.
short-time Fourier transform (STFT) is performed using Hany
windows of duration 25.6 ms, with 10 ms between frames, uaing 2-1. Asymmetric noise suppression
DFT size of 1024. Spectral power in 40 analysis bands is oéthi
by weighting the magnitude-squared STFT outputs for pasitie-
quencies by the frequency response associated with a 4heha
gammatone-shaped filter bank whose center frequenciemeaaely
spaced in Equivalent Rectangular Bandwidth (ERB) [1] betw200
Hz and 8000 Hz. These filters are specified in detail in [2, 3g W
obtain the short-time spectral powB{m, ] using the squared gam-
matone summation, where and! represent the frame and channel
indices. As mentioned in our previous work [4], we estimatgian-
tity we refer to as ‘medium-time poweQ[m, [] b.y Comp“t'”g the ._linear suppression processing with temporal masking. kdiagin
running average aP[m, 1], the power observed in a single analysis 1, jescribing the general characteristics of the asymmeorilinear
frame. InPNCC, we us@[m, ] only _for noise estimation and com- fijter that is the first stage of processing. This filter is egmnted by
pensat_lon, which are used to modify the information basethen ine following equation for arbitrary input and OUtFﬂjt;n[mv lJand
short-time power estimate3m, []. Ovoutm, 1], respectively:

The processing described above is followed by a series of non o
linear time-varying operations that are performed usirgltimger- NaQout[m — 1,1 + (1 = Xa)Qin[m, 1],
duration temporal analysis that accomplish noise sulitraets well ~ if Qm[m > o) Jm—1,1]
as a degree of robustness with respect to reverberatiose®teps, Qout[m, ] = ~ = o <
which are major differences between the current implentiemtaf /\bQ‘?“th = LI+ (1= 2)Qin[m, 1,
PNCC and the previous version described in [4], are destribe if Qin[m, 1] < Qout[m —1,1]
detail in Secs. 2.1 and 2.2. In our previous research on bBpeec . . . .
enhancement and noise compensation technigugs [4]), it has wherem is the frame index andlis the channel index, and, and
been frequently observed that smoothing the responsesaches- A are constants between zero and onel I Ao > X > 0, the

nels is helpful. In PNCC, we use the same type of spectralivieig filter OUtpUIQO}” tends t_o foIIow_thdower envc_elopeof Qin[m, 1].
smoothing as in our previous research [4]. In order to minéfur- In our processing, we will use this slowly-var){lng Iower efape to
ther the potential impact of amplitude scaling in PNCC weokes serve as a model for the estimated medium-time noise lewveéltle

a stage of mean power normalization. We normalize input panve activity above this envelope is assumed to represent szexiofity.

the present online implementation of PNCC by dividing theoim- Hence, sul:_)tracting this low-level (_anvelope from the odgimput
ing power by a running average of the overall power. Moreitizta Qin[m, 1] _W'” remove a S!OWW varying non-speech component.
information about mean power normalization is provided2ing]. We will use the notation

The final stages of processing are also similar to MFCC and PLP Vout|m, 1] = Vin[m,
processing, with the exception of the carefully-chosen grelaw Qoutlm 1] = A0 [@on . 1] @)
nonlinearity with exponent /15. Finally, we note that if the shaded to represent the nonlinear filter described by Eq. (1). We tioat
blocks in Fig. 1 are omitted, the processing that remainsfesred  that this filter operates only on the frame indieegor each channel
to assimple power-normalized cepstral coefficients (SPNGEP-  indexl.
NCC processing has been employed in several of our otheiestud Keeping the characteristics of the asymmetric filter désdti
on robust recognition. above in mind, we may now consider the structure shown in Zig.

In this section, we discuss a new approach to noise compensat
which we refer to asasymmetric noise suppressi¢ANS). This
procedure is motivated by the common observation that teecp
power in each channel usually changes more rapidly thanable-b
ground noise power in the same channel [5]. In the approattwih
introduce, we obtain a running estimate of the time-varyiogse
floor using an asymmetric nonlinear filter, and subtract fiteath the
instantaneous power.

Figure 2 is a block diagram of the complete asymmetric non-

1)



In the first stage, the lower envelofk. [m, 1], which represents the where)\, is the forgetting factor for obtaining the on-line peak. As
average noise power, is obtained by ANS processing acgptdin  before,m is the frame index andis the channel index. Temporal
the equation: masking for speech segments is accomplished using thenfolijo

~ - equation:

Qie[m, 1] = AF0.999,0.5[Q[m, 1] (3)

Qolm, 1, Qolm, 1] > \Qplm = 1,1]
/’LtQP[m_]-vl]v Qo[m,l] < AtQF[m_lvl]

We have found [2] that if the forgetting factor; is equal to or less
than 0.85 and if u: < 0.2, recognition accuracy remains almost
fonstant for clean speech and most additive noise condijtamd if

At increases beyon@ 85, performance degrades. The value\pt=
0.85 also appears to be best in the reverberant condition. Feethe
reasons we use the valugs = 0.85 andy; = 0.2 in the standard
implementation of PNCC. The final output of the asymmetris@o
suppression and temporal masking moduleB|is, I] = Rsp[m, ]

for the excitation segments ard[m, ] = Qy[m,!] for the non-
excitation segments.

Qic[m, 1] is subtracted from the inpu@[m, I], effectively highpass  R.,[m,1] = { (8)
filtering the input, and that signal is passed through anlitleti-

wave linear rectifier to produce the rectified outgg[m,]. The
impact of the specific values of the forgetting factagsand A\, on
speech recognition accuracy is discussed below.

The remaining elements of ANS processing in the right-han
side of Fig. 2 (other than the temporal masking block) arkiited to
cope with problems that develop when the rectifier outpyimn, [|
remains zero for an interval, or when the local varianc€efm, []
becomes excessively small. Our approach to this problenots m
vated by our previous work [4] in which it was noted that ajudy
a well-motivated flooring level to power is very important fwise
robustness. In PNCC processing we apply the asymmetridnaamnl
filter for a second time to obtain the lower envelope of theirec
fier output@ s[m, {], and we use this envelope to establish this floor 3. EXPERIMENTAL RESULTS

level. This envelop@f[m, l] is obtained using asymmetric filtering ] ) ) - o
as before: In this section we describe the recognition accuracy obthirsing

_ _ PNCC processing in the presence of various types of degoadat
Qr[m, 1] = AF0.999,0.5[Qo[m, ] (4)  of the incoming speech signals. We used the version of cenven
- _tional MFCC processing implemented as partsphinx _fe in
i A.S shown in Fig. 2, we use the lower envelope O,f the reCtI'sphinxbase 04.1 both from the CMU Sphinx open source
fied signalQs[m, ] as a floqr level for the ANS processing output ¢oyehase. We used the PLP-RASTA implementation that i$-avai
R[m, ] after temporal masking: able at [6]. In all cases decoding was performed using théighyb
~ ~ ~ available CMU Sphinx 3.8 system using training fr@mhinxTrain
Roplm, 1] = max (Qum[m, 1], Qs[m, 1]) ®) 1.0 . We also compared PNCC with tiector Taylor seriegVTS)
whereQs, [m, 1] is the temporal masking output depicted in Fig. 2. N0iSe€ compensation algorithm [7] and &SI advanced front end
Temporal masking for speech segments is discussed in Sec. 2. (AFE) which has several noise suppression algorithms dreay8].
We have found that applying lowpass filtering to the signgt se In the case of the ETSI AFE, we exclgded the Iog energy element
ments that do not appear to be driven by a periodic excitdtino- because this resulted in be_tter results_ in our experlmm_tsgram
tion (as in voiced speech) improves recognition accuracyise by~ language model was used in all experiments. For experinberstsd
a small amount. For this reason we use the lower envelopeeof tHon the DARPA Wall Street Journal (WSJ) 5000-word database we
rectified signalR,. [m, I] directly for these non-excitation segments. {rained the system using the WSJO SI-84 training set aneidétson
This operation, which is effectively a further lowpass fitte, is not ~ the WSJO 5K test set.

performed for the speech segments because blurring the' goek Figu_re 3 describe the recognition accuracy obtained w_itEBN

ficients for speech degrades recognition accuracy. processing in the presence of street noise, and spe_ech fsm_lgle
Excitation/non-excitation decisions for this purposeattained ~ Interfering speaker as a function of SNR, as well as in theikitad

for each value ofn andl in a very simple fashion: reverberant environment as a function of reverberatioe fion the

~ ~ DARPA WSJO0 SI-84/5k database. For the experiments condlircte

“excitation segment” if Q[m,l] > cQi[m,l] (6a) noise we prefer to characterize the improvement in recimgnic-
“n ey it At e A ~ curacy by the amount of lateral shift of the curves providgdhe
non-excitation segment’ if Qm, [ - < ¢Quc[m, 1] (6) processing, which corresponds to an increase of the effeSINR.
whereQ;.[m, [] is the lower envelope a[m, [] as described above, In the presence of street noise, and interfering speech,(PptG-
and in and: is a fixed constant. In other words, a particular value ofvides improvements of approximately 7.5 dB, 3.5 dB, respelgt
Q[m, 1] is not considered to be a sufficiently-large excitation isit We also note that PNCC processing provides considerableirep
less than a fixed multiple of its own lower envelope. The patam Mment in reverberation, especially for longer reverberatimes.
values used for the current standard implementatiorare 0.999 The curves in Fig. 3 are organized in a way that highlights
and)\, = 0.5. We also observed that the threshold-parameter valughe various contributions of the major components. Begigniith
¢ = 2 provides the best performance for white noise, but the valudaseline MFCC processing the remaining curves show theteftd
of ¢ has little impact on performance in background music antén t adding in sequence (1) the power-law nonlinearity, (2) thes/pro-
presence of reverberation. cessing, and finally (3) the gammatone frequency integratipec-
tral smoothing, and mean power normalization. It can be &een
the curves that a substantial improvement can be obtaineginipy
_ ply replacing the logarithmic nonlinearity of MFCC prociegs by
In temporal masking, we first obtain the on-line peak po@gpm, (] the power-law rate-intensity function. The addition of &i€S pro-
for each channel using the following equation: cessing provides a substantial further improvement foogeition

- - - accuracy in noise. The temporal masking is particularlytutlin
Qplm, 1] = max ()\tQp[m — 1,1, Qo[m, l]) (7)  improving accuracy for reverberated speech and for speethei

2.2. Temporal masking
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presence of interfering speech. Figure 4 provide compesisd

PNCC processing to the baseline MFCC processing with cpstr
mean normalization, MFCC processing combined with theorect

Taylor series (VTS) algorithm for noise robustness [7], &l \as

RASTA-PLP feature extraction [9]. We note in Fig. 4 that PNCC

provides substantially better recognition accuracy thath MFCC
and RASTA-PLP processing for all conditions examined. #oal
provides recognition accuracy that is better than the coatlain of
MFCC with VTS, and at a substantially lower computationastco
than the computation that is incurred in implementing VT&e T
ETSI Advanced Front End (AFE) [8] generally provides slighet-
ter recognition accuracy than VTS in noisy environmentsthoeiac-
curacy obtained with the AFE does not approach that obtairitd
PNCC processing in the most difficult noise conditions. hsaitthe
AFE nor VTS improve recognition accuracy in reverberantiremy

ments compared to MFCC features, while PNCC provides measur

able improvements in reverberation, and a closely reldtgatithm
[10] provides even greater recognition accuracy in revatimn (at
the expense of somewhat worse performance in clean speech).

PNCC processing is approximately 34.6 percent more computa

tionally costly than MFCC processing and 1.31 percent mostlyg
than PLP processing in our calculation [2, 3]. More detaitédr-
mation about computational cost is available in [2, 3].

Further details about the motivation for and implementat6

PNCC processing are available in [2, 3]. Open Source MATLAB

code for PNCC may be found http://www.cs.cmu.edu/
“robust/archive/algorithms/PNCC 1EEETran . The
code in this directory was used for obtaining the resultstlfis

paper.
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