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Robust DTW-based Recognition Algorithm  
for Hand-held Consumer Devices 

 
 Chanwoo Kim and Kwang-deok Seo, Member, IEEE

Abstract — This paper presents a new robust Dynamic 
Programming (DP)-based recognition algorithm that is quite 
suitable for menu-driven recognition applications with small 
vocabulary size (typically less than 50). When compared to 
the conventional Dynamic Time Warping (DTW)-based 
recognizer, the proposed algorithm shows significantly 
improved recognition accuracy in speaker-independent 
cases. In addition, when compared to the conventional 
Hidden Markov Model (HMM)-based recognizer, the 
proposed algorithm requires smaller computational amount 
and parameter file size, while maintaining almost the same 
recognition rate for command recognition applications with 
small vocabulary size in hand-held consumer devices. 

Index Terms—dynamic programming, speech recognition, 
speech processing.  

I.   INTRODUCTION 

 Dynamic programming (DP) and its modifications have 
been successfully adopted for speech recognizer. This type of 
recognizer is commonly employed in handheld consumer 
devices like cell phones in the form of Dynamic Time 
Warping (DTW). Specifically, DTW-based recognition 
engine has been widely embedded inside Qualcomm MSM 
(mobile station modem) chips [1]. However, an inherent 
problem found in DTW algorithm is that it is vulnerable to 
speaker-independent (SI) recognition cases whereas it shows 
good performance for speaker-dependent (SD) cases [2], [10].  

Although HMM-based recognition engine has begun to be 
employed for handheld devices due to its robustness in SI 
cases [10] and advantages in large vocabulary size and 
continuous speech recognition, DTW method still has various 
applicable areas including menu-driven commanding and 
phone dialing due to its low computational complexity and 
easiness in implementation. Moreover, in the case where the 
number of reference patterns is small, the required DB size 
needed for DTW method can also be kept small. 

In this paper, we propose a robust DTW-based recognition 
algorithm that circumvents several inherent shortcomings of 
the conventional DTW algorithm. For this purpose, DP 
algorithm is employed in two levels: lower level and upper 
level. In the lower level, the algorithm is quite similar to the 
one that is used in the conventional DTW method while in the 
upper level we try to match the blocks of speech by using DP 
in order to obtain improved time alignment, thereby resulting  
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in much higher recognition rate in the cases of long sentences 
and SI speech  recognition. Even though an algorithm using 
two-level DP approach was already proposed for continuous 
speech recognition [3], our proposed algorithm is quite 
different from that one in that it obtains blocks of speech by 
partitioning each spoken sentence into voiced, unvoiced and 
silence parts and then performs DP matching for these blocks.  

Recently, there have been several studies incorporating 
parameters related to voiced/unvoiced decision into HMM-
based speech recognizer [7], [8], [9]. These parameters are 
employed either as a part of the feature vector [7], [9] or as a 
constraint in selecting an appropriate model [8]. As can be 
seen, these studies incorporate voiced/unvoiced decision 
resulting in improved recognition accuracy, while we exploit 
voiced/unvoiced and speech/silence decisions using DP in the 
proposed system. 

Through extensive simulations using 500 recorded 
sentences and ETRI 611 DB [14], the proposed algorithm 
consistently shows improved recognition rate compared to the 
conventional DTW algorithm. The proposed algorithm shows 
not only improved robustness for SI speech recognition but 
also improved quality for inter-sex recognition.  

The organization of this paper is as follows: In section II, 
previous works on the recognizer based on the template 
matching techniques are briefly reviewed and discussed. 
Section III introduces proposed robust DP-based recognition 
algorithm. Section IV includes several core experimental 
results to prove the robustness and superiority of the proposed 
method. The conclusions are provided in Section V.  

 

II. REVIEW OF THE PREVIOUS WORKS 

Currently, there are largely two types of recognizers ported 
on the current cell phones. The first one is based on template 
matching technique [2]. The template matching technique has 
been widely used for cell phones for a long time. Recently, 
recognizers based on HMM have just become to be used in 
hand-held devices. This is due to the fact that they are more 
flexible in large vocabulary system, and shows better 
performance in SI cases. The ease of adding new vocabularies 
in the pronouncing dictionary is another advantage of HMM-
based recognizers. However, recognizers based on the template 
matching techniques are still widely used for SD cases, since 
they are easy to implement, require small memory, and show 
impressive performance for SD cases. In this paper, we try to 
solve one inherent problem noticed in the template matching 
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technique: poor performance for SI cases.  Additional 
improvement can also be achieved such as robustness to inter-
sex recognition. 

In this section, we briefly review related conventional 
techniques for the proposed system. Template matching has 
long history in speech application [2]. Basically, it is based on 
the minimum distance between the test and the reference 
patterns along the aligned path, which is obtained using DP. In 
the conventional DP-matching technique, the plane of grids 
shown in Fig. 1 is generally utilized. This figure also shows an 
example of the alignment path. Global distance is the distance 
between the test and the reference patterns along the alignment 
path, and is computed along the alignment path. However, the 
alignment path is not apparent in the actual speech recognizers 
unless additional backtracking is performed.  

The procedure for computing the global distance ),( JID  
can be described by (1)-(3) [2], [17]: 

i) Initialization 
)0()0,0()0,0( mdD = ,                         (1) 

ii) Recursion 

For 0   i2  I, 0  j2  J , compute 
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where d((i1, j1), (i2, j2)) is the cost related to the movement 
from (i1, j1) to (i2, j2), 

iii) Termination 
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In the above equations from (1) to (3), a path from (i1, j1) to 
(i2, j2) is a single-step movement along the aligned path in 
Fig. 1. T in (3) is the total number of movement along the 
aligned path. The entire path starts from point of (0,0) and 
ends at (I,J). In (1) and (3), m(k) denotes the weight 
associated with a movement. Studies on appropriate value of 
m(k) can be found in [4], [23].  

In the above procedure, time alignment between the test 
and the reference patterns is the most important factor. 
However, the alignment result might not be so satisfactory in 
the actual experiments. Moreover, when the alignment is 
unreliable, the recognition results tend to be quite inaccurate.  

It is well known that the performance of a recognizer using 
template matching depends largely on the robustness of end-
detection. Study by Wilpon et al. shows that the recognition 
accuracy degrades significantly, when the end-detection 
results are unreliable [11]. To alleviate this problem, Bridle 
suggested an algorithm to relax both of the end points and to 
find out the optimal points using DP [12]. By adopting this 
scheme, we can enhance the robustness against endpoint 
perturbation. Unlike the above procedure and conventional 
techniques in previous researches, we note that the following 
approaches are the most distinguished aspects of our paper to 
enhance the performance of recognizer. 

i) In addition to the endpoints, we take the notable 
transition points inside both the reference and test patterns 
into account. The sequence of transition points in the test and 
the reference patterns might be quite different since there is a 
large variability in the uttered speech. However, using an 
additional DP algorithm to find the most matched transition 
points can resolve the problem. 

ii) In this paper, the voiced/unvoiced decision is performed 
on each frame and the results are incorporated in obtaining 
the transition points. Speech/silence decision or 
voiced/unvoiced decision might not be always accurate. 
Additionally, the pattern of the transition points might differ 
for different speakers. Previous researches show that 
information on voiced/unvoiced decision can enhance the 
recognition accuracy[7]-[9]. However, the conventional 
recognizers based on template matching do not actually 
employ this feature in the real system. The additional DP used 
for the proposed system tries to find the best matched 
transition points and alleviates the problem. That is, by 
introducing additional DP, the recognizer can be more robust 
against the variability in the speech pattern and possible 
errors in speech/silence, voice/unvoiced decisions. 
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III.    PROPOSED ALGORITHM 

The flow diagram of the proposed algorithm is illustrated in 
Fig. 2. In principle, we partition input speech into blocks of 
speech and apply DP in two levels. Partitioning is performed 
using notable transition points in the speech signal. Thereafter, 
in the lower level, partitioned global distance for each block is 
computed on a frame basis, which is quite similar to the case 
of conventional DTW algorithm. To find out the best-matched 
transition points, upper level DP is employed. By this upper 
level DP, we can obtain the total global distances between two 
speeches. Details on each stage are described in the following 
subsections. 
  Fig. 3 shows two speech samples in TIMIT DB [16], which 
are “she had your dark suit in greasy wash water all year.” 
spoken by two different speakers. Fig. 3(a) and (b) are 
TIMIT/TEST/DR1/MDAB0/SA1.WAV and TIMIT/TEST/ 
DR1/FJEM0/SA1.WAV, respectively. In this figure, V, U, and 
S mean voiced, unvoiced, and silence blocks, respectively. As 
shown in this figure, there are many similarities between the 
characteristics of the blocks in speech samples although their 
patterns are not exactly the same. In the proposed study, we try 
to match the transition points defining these blocks by using a 
dynamic programming algorithm. Inside each block, the 

partitioned global distance is computed in a similar manner 
with the conventional DTW algorithm. However, the total 
global distance between these two speeches are obtained from 
the abovementioned additional DP. In the subsequent 
subsections, we will present these algorithms in detail. 
Thereafter, as an example, we will show the block alignment 
results for these two speech samples in Fig. 8.  

A. Preprocessing 

To enhance the accuracy of the detected transition points, we 
perform a simple amplitude normalization scheme. As will be 
explained, we use energy as a measure for detecting the 
transition points. It is well known that the relative intensity of 
the input speech significantly affects the performance of the 
speech/silence detection and voiced/unvoiced decision using 
energy. Thus, we normalize the intensity of the input speech to 
this recognizer. This procedure is performed in two steps. First, 
a Voice Activity Detector (VAD) finds the speech parts and 
computes the standard deviation value for these parts. 
Thereafter, based on the computed standard deviation of 
speech parts, we make this standard deviation a predefined 
constant by multiplying a gain. The predefined constant in the 
proposed system is fixed to be 1000 in the case of 16 bits-per-
sample data. The accuracy of this constant is not so important.  
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However, this processing is effective in that it makes the 
speech signals be unbiased by their relative intensities, which 
makes detecting the transition points of the test and reference 
speeches based on energy be more reliable.  

B. Detecting Transition Point 

As mentioned previously, we partition both the reference 
and test speeches into blocks. This procedure is performed 
based on the results of voiced/unvoiced decision and 
speech/silence decision on each frame. We perform the 
speech/silence decision based on the energy measure of the 
frame. The following equation shows the average energy for a 
single frame: 

−

=

=
1

0

2 ][1 fN

nf

nx
N

AE                         (4) 

where Nf is the frame length and x[n] is the speech signal in the 
frame [13]. In our experiment, the sampling rate of the speech 
signal is 8 kHz and the frame length is 10 ms. In this case, we 
find an energy threshold of 104 to be appropriate. Although the 
energy itself is not a sufficient measure for speech/silence 
measure, the preprocessing stage and the subsequent state 
machine scheme can enhance the detection rate.  

In a similar manner, we perform the voiced/unvoiced 
decision using autocorrelation. This is based on the widely 
known fact that, for voiced parts, the periodicity is evident in 
the waveform, thus its autocorrelation function shows periodic 
peaks. We adopted the following measure for voiced/unvoiced 
decision: 

16016,
]0[
][max ≤≤= n

r

nr
VUV

n
x

x                 (5)                 

where rx[n] is the autocorrelation function. Many previous 

 
Fig. 4. State transition diagram for detecting transition points. 
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researches show that VUV approaches 1 when the signal is 
quite periodic and this value is close to 0 when periodicity is 
almost inexistent in the signal [13], [17]. 

The range of n in (5) is for the case of 8 kHz sampling rate. 
This range is obtained from the fact that the pitch value lies 
between 50 Hz and 500 Hz.  In the case of 16 kHz sampling 
rate as in TIMIT case, we should use 32  n  320 instead. We 
adopted the threshold value of 0.4 by experiment. Many other 
researches also show that this value is suitable for 
voiced/unvoiced decision [17]. Table I summarizes the 
decision conditions for each frame.  

 While we decide whether a frame is silence, voiced speech, 
or unvoiced speech using above measures (4) and (5), some 
abrupt errors in decision may occur. To prevent these abrupt 
errors, we adopt a simple state transition scheme shown in Fig. 
4. In this figure, there is a number on each arc. For a transition 
to occur, the measure obtained in (4) and (5) should satisfy the 
transition conditions at least for the specified number of 
frames. Specifically, for a transition from unvoiced to voiced 
state to occur, at least 3 consecutive frames should be decided 
to be voiced according to the measures (4) and (5).  

We tested the accuracy of the above scheme for detecting 
transition points on the actual 500 speech samples. Each 
sample contains transition points ranging from 5 to 20. 
Compared to detection by human, this scheme yields accuracy 

over 90 %. While there still may be some small number of 
errors in detecting the transition points, it does not affect the 
overall performance of the recognizer significantly. This is due 
to the fact that the upper-level DP algorithm selects transition 
points that are best matched to the ones in another speech. 

Since we classify each frame into voiced speech, unvoiced 
speech and silence by the above procedure, there are 6 
possible transition types. Table II shows each transition type 
and the constraints on the possible matching for this type. We 
established this constraint not only to reduce the computational 
amount in the upper-level and lower-level DP, but also to 
prevent some unreasonable matching from ever happening. For 
example, silence-to-voiced transition in a reference pattern 
cannot be mapped onto voiced-to-silence transition in the test 
pattern, since they are quite different in their acoustical 
characteristics.  

We perform the DP matching both in the lower and upper 
levels according to the constraints shown in Table II. In the 
lower level, we perform DP matching for a plane defined by 
speech blocks whose end points are transition points. If one of 
the end points is not allowed by this constraint, we do not have 
to perform the lower level DP matching. 
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 Similarly, in the upper level case, we perform DP 

matching only for grids satisfying this constraint in the same 
manner. The constraints in Table II are established by 
experiments considering acoustical characteristics. 

Fig. 5 shows an example of phone locations, average 
energy, and voiced/unvoiced (VUV) measure for a sample 
speech in TIMIT. As widely known, TIMIT includes hand-
labeled phone information. Fig. 5(a) shows the labels along 
with the speech waveform. Fig. 5(b) and (c) show the average 
energy AE and voiced/unvoiced decision measure VUV, 
respectively.  

In Fig. 6, we compare the voiced/unvoiced decision results 
using the TIMT label files and the described procedure. In 
this figure, V, U, and S stand for voiced part, unvoiced part, 
and silence part respectively. The vertical dashed lines in this 
figure denote the transition point. Fig. 6(a) shows 
speech/silence and voiced/unvoiced decision results which are 
obtained from phone location information in TIMIT phone 
label file. Thus, the decision result in Fig. 6(a) is directly 
related to the phone location plot in Fig. 5(a). The decision 
results shown in Fig. 6(b) are obtained by the method 
described in this section. You can find that the location of 
transition points and decision results in Fig. 6(a) and Fig. 6(b) 
are very similar and therefore the method in this subsection 
works reliably. Using the TIMIT phone label file, we 
extensively evaluated the accuracy of the described method 
on TIMT DB. We obtained accuracy over 90 %, which is a 
quite similar result as our pervious experiment with 500 
speech samples. 

C.  Lower-level DP Algorithm  

In the proposed algorithm, after the transition points are 
obtained, we perform lower-level DP to compute the distance 
between blocks of test and reference patterns. The endpoints 
of each block are the previously obtained transition points.  

Let us denote the transition points of the test and reference 
patterns by I and J respectively. If the number of transition 
points in the test and the reference patterns are Inum_trans and 
Jnum_trans respectively, the ranges of I and J can be denoted by 

  transnumII _0 ≤≤                                (6) 

 ._0 transnumJJ ≤≤                              (7) 

   In Fig. 6(b), we show the transition point indices of a 
sample speech in TIMIT. 

Fig. 7 illustrates an example of lower-level DP. Note that 
the speeches in the x-axis and y-axis are not the entire test or 
reference speeches but blocks obtained by the previous stage. 
As mentioned previously, the partitioned global distance, 

),(),( 2211 JIJIP → , is the distance between one block in the test 
speech and the other block in the reference speech. In this 
case, transition points I1 and I2 are the end points of a block in 
the test speech, and transition points J1 and J2 are the end 
points of a block in the reference speech. Then, the DP 
equations for obtaining ),(),( 2211 JIJIP →  can be given as follows: 

 
i) Initialization 
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ii) Recursion 
For l(I1 )   i2  l(I2 ), l(J1)  j2  l(J1) , compute 
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where d((i1, j1), (i2, j2)) is the cost related to the movement 
from (i1, j1) to (i2, j2), 

iii) Termination 
))(),(( 22

),(),(),(),( 22112211 JlIlPP ji
JIJIJIJI →→ =      (10) 

−

→ =
T

k

JIJI kmm
0

),(),( )(2211                                     (11) 

where m(k) is the path weight associated to k-th movement 
and ),(),( 2211 JIJIm →  is the accumulated path weight. 

In the above equations, li(I) and lj(J) are the functions that 
relate a transition point index to a frame index in the test and 

TABLE II 
CONSTRAINTS ON MATCHING TRANSITION POINT TYPES 

Transition Type Possible Matching Types 

silence to voiced silence to voiced 
silence to unvoiced 

silence to unvoiced silence to unvoiced 
silence to voiced 

voiced to silence voiced to silence 
unvoiced to silence 

voiced to unvoiced voiced to unvoiced 
voiced to silence 

unvoiced to voiced unvoiced to voiced 
silence to voiced 

unvoiced to silence unvoiced to silence 
voiced to silence 

 
Fig. 7. Lower-level DP alignment. 
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reference speeches, respectively. Specifically, li(I) is the 
frame index of I-th transition points in the test speech and lj(J) 
is the frame index of J-th transition points in the reference 
speech. 

As you can see in the above equations, the procedure for 
lower-level DP algorithm is quite similar to the conventional 
DTW-based recognition algorithm which was described by 
(1) to (3). Typically, as shown in (3), conventional DTW 
algorithm performs the path weight normalization by dividing 
the accumulated distance by the sum of path weight [2], [17]. 
However, in (10), we do not divide the obtained accumulated 
distance ),(),( 2211 JIJIP →  by the accumulated path weight 

),(),( 2211 JIJIm → . The reason is that the path weight 
normalization should be taken into account in subsequent 
upper-level DP that performs block alignment. For this reason, 
the accumulated path weight ),(),( 2211 JIJIm →  as well as the 
partitioned global distance ),(),( 2211 JIJIP →  should be stored for 
further use in the upper-level DP.  

The above procedure described in (8) to (11) should be 
performed for all possible blocks. The constraints on end 
points I1, I2, J1, and J2 will be explained in the next subsection. 

D.  Upper-level DP Algorithm 

After computing the partitioned global distances using (8)-
(10), we compute the total global distance by matching the 
blocks. Fig. 8 shows an example of the actual alignment result 
for speech blocks in two TIMIT speech samples. This 
matching process is performed by an additional DP. For this 
stage, we use another plane of grids where each grid denotes 
the beginning and ending points of each speech block. In Fig. 
8, you can see these grids. The resultant distance between the 
test and the reference patterns is the total weight.  

The following equations (12) to (15) are employed in the 
upper-level DP stage: 

 
i) Initialization 

0)0,0( =D ,                                 (12) 
 

ii) Recursion 
For 0  I2  Inum_trans and 0  J2  Jnum_trans, compute 
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where ),(),( 2221 JIIIP →  is the cost related to the movement 
from (I1, J1) to (I2, J2), 

iii) Termination 
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where ),(),( 2221 JIIIP → is the partitioned global distance 
obtained in (10). In (13) and (14), I2 and J2 are indices of I2-th 
transition point of the test speech and J2-th transition point of 
the reference speech, respectively. In the same way, I1 and J1 
are I1-th transition point of the test speech and J1-th transition 

point of the reference speech, respectively. D(I2,J2) means the 
sum of the partitioned global distances along the path from 
(0,0) to (I2,J2) that is obtained by DP.  in (13) is a weighing 
coefficient and will be explained in the next subsection E. In 
(14), as mentioned previously, the normalization is applied. φ  
denotes the path movement in this upper-level grid as shown 
in Fig. 8. ),(),( 2211 JIJIm →  is the weight associated with the path 
movement and was obtained in (11). 
In computation of this upper-level DP, we find that different 
local continuity constraint is necessary compared to the one 
adopted in the conventional DP-based recognizer. It is due to 
the fact that the DP matching in the upper level should be 
robust to the possible differences in the pattern of the 
transition points. According to our experiments, strict local 
continuity constraint sometimes results in performance 
degradation. You can also find the reason for this argument in 
Fig. 7 and Fig. 8. In these figures, the dotted lines partitioning 
speech waveforms denote transition points. As shown in these 
figures, the transition points are not the same in the test and 
the reference speeches. Note the solid line from (li(I1), lj(J1)) 
to (li(I2), lj(J2)) in Fig. 7 and the thick solid line for speech 
blocks from (I1, J1) to (I2, J2) in Fig. 8. In Fig. 7, two 
additional transition points are located inside a single block. 
In case of the thick solid line in Fig. 8, three additional 
transition points exist inside the block of the test speech while 
the aligned block of the reference speech does not contain any 
transition point. Thus, some of the transition points in one 
speech may not have corresponding transition points in the 
other speech. To take this fact into account, we need to adopt 
a less-constrained version of local path movement.  

The following equation shows the local continuity constraint 
used in our system: 

kJJ

kII

≤−≤
≤−≤
||1

||1

12

12                            (15) 

where I and J are the transition point indices for test and 
reference patterns respectively as before. The adopted value 
of k in the proposed system is 4. Fig. 9 shows the recognition 
accuracy for various values of k. 

The reason for adopting this constraint is that the patterns 
of transition points in the test and reference are not exactly 
the same as shown in Fig. 8. For example, the thick solid line 
in Fig. 8 shows the case of |I2 - I1| = 4 and |J2 - J1| = 1. 

The local continuity constraints in (15) also constrain the 
possible values of I1, I2, J1, and J2. From the range of 
transition points given by (6) and (7), additional constraints 
on I1, I2, J1, and J2 are as follows: 

._21

_21

0
0

transnum

transnum

JJJ

III

≤<≤

≤<≤
                     (16) 

Thus, we can conclude that (15) and (16) are constraints 
for the values of I1, I2, J1, and J2  in the lower and upper level 
DP described in (8) to (11) and (12) to (14). 
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φ

 
Fig. 8. The DP alignment in the upper level between two speech samples in TIMIT DB: 

TIMIT/TEST/DR1/FJME0/SA1.WAV and TIMIT/TEST/DR1/MDAB0/SA1.WAV. 
 

E.  Weighting on the Partitioned Speech  

Proper alignment of the partitioned speech is crucial for the 
overall performance. In this subsection, we explain about a 
weighting coefficient  in (13) which is very important for the 
overall performance of the recognizer. It is quite natural that 
blocks of the same characteristics are more likely to be well-
aligned than blocks of different characteristics. For example, 
as shown in Fig. 8, in most cases, voiced blocks in the test 
speech are aligned to voiced blocks in the reference speech. 
By introducing , the alignment path is more likely to follow 
segments comprised of blocks of the same characteristics. 

In the proposed system,  is 0.75 when the characteristics of 
blocks in the test and reference patterns are the same as in the 
case of voiced-voiced, unvoiced-unvoiced, and silence-silence. 
In other cases,  becomes 1. When different decision regions 
comprise a block, the most dominant decision in this block 
becomes the characteristic of the block. 

Fig. 10 compares the accuracy of the recognizer for various 
weighting coefficients. The dashed horizontal line in this 
figure shows the recognition accuracy when the conventional 
recognition algorithm is used. The data in this figure were 
obtained by conducting experiments on 500 speech samples 
recorded using a condenser mic. In this experiment, 12th order 
MFCC was used for both the conventional and proposed 
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algorithms. As can be seen in this figure, we note that a 
weighing coefficient somewhere between 0.7 and 0.75 is 
optimal. In the proposed recognizer, the weighting coefficient 
α of 0.75 is adopted. 

F.  Analysis on Computational Complexity 

It has been generally believed by previous researches that 
computation of node distance constitutes around 80 % of the 
total DTW computational complexity [2]. And the rest 
computational load is taken up for DP matching. Note that the 
node distance computation part of the proposed system is 
exactly the same as that of the conventional ones.  

In the lower level, the proposed algorithm requires only a 
little additional computation compared to the conventional DP 
matching. This is due to the fact that the lower level 
computation is basically the same as that of the conventional 
ones except that DP is applied for each partitioned blocks of 
speech. Moreover, the constraint described in Section III.B 
can even reduce the small additional computation. That 
constraint enables us not to compute all the partitioned global 
distances for each pair of speech blocks. Considering much 
smaller computational complexity for DP matching than that 
for node distance, the small additional computation required 
for DP matching in the lower level is quite ignorable.  

It is found by simulations that typical spoken speech 
samples with duration of 1 to 3 seconds contain around 5 to 25 
transition points. As explained before, upper level DP 

matching is performed on grids defined by these transition 
points. In the case of 10 ms frame length, there are 100 to 300 
frames in the speech signal, which follows from the fact that 
1s/10ms=100 and 3s/10ms=300. For the lower level DP 
matching, computation is done on each grid specified by 
frames. Thus, it is evident that the upper level DP requires 
much less computation than the lower level one. According to 
these analyses, we can conclude that there is no significant 
increase in the total computational amount for the proposed 
system compared to the conventional DTW algorithm. 

IV.  EXPERIMENTAL RESULTS 

To compare the proposed algorithm with a conventional 
DTW-based recognizer, the proposed algorithm is tested on 
500 sentences spoken by 5 speakers. We recorded the test 
speech samples at 8 kHz sampling rate using a condenser 
microphone inside a hand-held device. Among 500 sentences, 
100 speech samples are used for SD speech recognition cases 
and 400 samples are used for SI cases. In the test, the task of 
the recognizer is to select one of ten possible answers. In order 
to obtain various features in the evaluation phase, we used a 
feature extraction tool named HCopy that is a member of 
speech recognizer suite HTK [6]. 

For our baseline system, we use the configuration specified 
in Table III. Basically, this system is a recognizer based on 
12th order MFCC (Mel Frequency Cepstral Coefficient). 

For the above system, the recognition accuracy was 0.742. 
When the proposed algorithm was applied, we obtained an 
accuracy of 0.794, which corresponds to 5.2% gain over the 
original system.  

In many previous researches, it is frequently reported that 
incorporating dynamic features like differential or acceleration 
coefficient enhances recognition accuracy [5]. We performed 
the tests using the proposed algorithm on these dynamic 
features. Table IV summarizes the recognition accuracy for the 
same speech samples when dynamic features are added to the 
feature vector. Previous researches have proved that cepstral 
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    Fig. 10. Recognition accuracy for various weighting coefficients. 

TABLE III 
CONFIGURATION FOR THE BASELINE SYSTEM 

Item Value 

Window type Hamming window 
Window length 30 ms 
Feature type 12 th order MFCC  

(Zero order term included) 
Frame period 10 ms 
Preemphasis coefficient 0.95 
Number of channels 26 
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      Fig. 9. Recognition accuracy for various values of k. 
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mean subtraction (CMS), as well as the dynamic features, is 
useful for robustness of a recognizer. In this table, we also 
include the simulation results when CMS scheme is employed. 

Note that 2.0 to 5.4 % improvement in recognition accuracy 
was obtained by adopting the proposed algorithm. As shown in 
this table, you can also find that some improvements can be 
achieved by incorporating dynamic features. We also obtained 
notable performance improvement by adopting CMS. 

We carried out experiments using PLP (Perceptual Linear 
Prediction) and the results are shown in Table V. In this 
experiment, we employed 6th order PLP coefficients and 10th 
order liftering coefficient. As shown in this table, a PLP 
feature vector of length 7 (6th order) shows better results than 
a MFCC feature vector with differential and acceleration 
coefficients whose length is 39 (12th order). Note that 
reducing the feature order results in small parameter file size. 
In the case of PLP, we could not obtain significant increase in 
recognition accuracy by employing dynamic features. The 
performance improvement obtained by employing PLP as a 
feature vector is generally larger than previous researches on 
HMM. 

In SD cases, the improvement in speech recognition 
accuracy is not noticeable except for some of the long sentence 
cases, whereas the improvement reaches up to 5% for the SI 
cases. The insignificant improvement in SD cases is because 
the conventional DTW-based recognizer already shows good 
enough results. Thus little headroom is left over for further 
improvement. Considering the 5 speakers include a female, our 
system also shows robustness for inter-sex speech recognition 
cases. In the inter-sex recognition experiments on 80 speech 
samples, we obtained 3% increase in recognition accuracy. 

For another comparison, we performed the same test using a 
triphone HMM-based recognizer using MFCC and obtained 
the recognition rate of 92% for the same test set, which is 
almost the same as that of the proposed system. While HMM-

based recognizer needs a parameter file size of 748 KB, the 
proposed algorithm requires only 100 KB in this experiment. 
And for 10 vocabulary cases, the computational amount 
needed by the proposed algorithm is less than half of that is 
needed by the triphone HMM-based recognizer with pruning. 
We also find that for SD cases the DTW-based recognition 
engine shows better performance while HMM-based one 
shows superiority for SI cases. By adopting the proposed 
algorithm, we could reduce the differences in recognition 
accuracy for SI cases within 3%. According to this fact, the 
proposed algorithm is quite suitable for hand-held consumer 
devices with limited memory and CPU resources.  

We perform another experiment using a monophone HMM-
based recognizer with a single mixture. For our application, 
this recognizer requires almost the same parameter file size 
with the proposed system. However, for SD case, this simple 
HMM-based recognizer shows poor results, whose accuracy is 
lower than our system by more than 5 %. And for SI cases, the 
recognition accuracy is lower than the proposed system by 1 %. 
Note that the superiority of the proposed system over a HMM-
based one only exists when the number of vocabulary is small. 
However, for applications like menu commanding in handsets, 
the proposed system shows advantageous aspects due to its 
low computational requirement and acceptable performance in 
accuracy.  

In sum, the superiority of the proposed algorithm over the 
conventional DP-based recognizer is obvious. In some special 
applications with small vocabulary size and limited 
computational performance system, the proposed algorithm is 
advantageous compared to HMM-based algorithms. 

Additionally, we conducted experiments on a standardized 
ETRI 611 database which comprises 611 Korean words 
spoken by 6 speakers. This speech corpus is widely used for 
training and testing speech recognizers for Korean words [14]. 
Using this DB, we performed experiments on 500 tasks. Each 
task is selecting the answer from 10 input speeches recorded in 
DB. Using 6th order PLP with CMS, we obtain the results in 
Table VI for SD cases. For SI case, we performed experiments 
on another 500 tasks. Table VII shows the results. As shown in 
this table, the proposed algorithm shows notable improvements 
in SI cases. When you compare this recognition results with 

TABLE IV 
RECOGNITION ACCURACY WHEN DYNAMIC 

FEATURES ARE INCLUDED 

Feature Type 
Conventional 

Algorithm 
Proposed 
Algorithm 

2th order MFCC 0.742 0.794 
2th order MFCC 
 (CMS applied) 0.784 0.804 

12th order MFCC 
 with differential  

coefficients 
0.754 0.798 

12th order MFCC 
 with differential  

coefficients 
(CMS applied) 

0.786 0.824 

12th order MFCC 
with differential and 

 acceleration  
coefficients 

0.760 0.802 

12th order MFCC  
with differential  
and acceleration  

coefficients  
(CMS applied) 

0.792 0.828 

TABLE V 
RECOGNITION ACCURACY OBTAINED BY USING PLP 

Feature Type 
Conventional 

Algorithm 
Proposed 
Algorithm 

6th order PLP 0.812 0.830 
6th order PLP 

(CMS applied) 0.832 0.846 

TABLE VI 
RECOGNITION ACCURACY FOR ETRI 611 DB SD CASES 

Feature Type 
Conventional 

Algorithm 
Proposed 
Algorithm 

6th order PLP 0.922 0.932 
6th order PLP  

(CMS applied) 0.966 0.974 
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the previous results on speech samples that are recorded with a 
condenser mic, you can find that much better result is obtained 
for ETRI 611 DB case. This can be explained by the fact that 
ETRI 611 DB is made with high fidelity mic in a noiseless 
environment. Moreover, ETRI 611 DB comprises relatively 
short words unlike the previous experiments using sentences.  

Current CDMA handsets support DTW-based recognition by 
usually adopting Qualcomm proprietary solution [1] embedded 
inside MSM chip. We have now been continuing experiments 
on the proposed algorithm to have more competitive solution 
than the conventional DTW-based built-in solution and apply 
it to our commercial handsets under development.  

V. CONCLUSIONS 

In this paper, we propose a new robust DP-based speech 
recognition algorithm that is quite suitable for menu-driven 
recognition applications with small vocabulary size. The 
proposed algorithm shows improved robustness for SI cases 
compared to conventional DTW-based recognizers. This 
improvement can be explained in terms of DP matching using 
voiced/unvoiced and speech/silence information. By adopting 
this algorithm together with techniques like PLP and CMS, we 
could obtain even more improved results for the target 
application. The fact that it requires light computational 
complexity and small parameter file size makes it quite 
suitable for applications with small vocabulary size in hand-
held consumer devices. 
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TABLE VII 
RECOGNITION ACCURACY FOR ETRI 611 DB SI CASES 

Feature Type 
Conventional 

Algorithm 
Proposed 
Algorithm 

6th order PLP 0.870 0.898 
6th order PLP  

(CMS applied) 0.912 0.930 
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