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Abstract In this paper, we investigate facial action recognition per
_ _ formance, across a broad gamut of facial representations,
_In this paper, we present results on expe_rlments_employ-on a database that is representative of spontaneous facial
ing Active Appearance Model (AAM) derived facial rep- behavior. These multiple facial representations are dériv
resentations, for the task of facial action recognition.- EX from a model-based approach, for modeling and tracking
perimental results demonstrate the benefit of AAM-derivedthe face, referred to in literature as an Active Appearance
representations on a spontaneous AU database containingviodel (AAM) [3]. Results demonstrate that AAM derived
“real-world” variation. Additionally, we explore a number  representations to be of real benefit for spontaneous facial
of normalization methods for these representations which pehavior when a number of “real-world” within-class vari-

increase facial action recognition performance. ations occur. Additionally, we explore a number of normal-
. ization methods for these representations which increase f
1. Introduction cial action recognition performance.

The Facial Action Coding System (FACS) is the leading
method for measuring facial movement in behavioral sci- 2. Background
ence [1]. Action units (AUs), which are the fundamen-
tal units employed in FACS. FACS has been successfully
applied [1], but not limited to, identifying the differerce
between simulated and genuine pain, differences betwee
when people are telling the truth versus lying, and differ-
ences between suicidal and non-suicidal patients. Tygical
FACS is performed manually by trained human experts.
With the advent of modern computer vision and pattern
recognition techniques, considerable progtesas been
made towards the lofty goal of “real-world” automatic fdcia

One of the first studies into representations of the face, for
automatic facial action recognition, was conducted by Do-
nato et al. [1]. Motivated by the plethora of work previ-
rbusly performed in the face recognition community, this
study was restricted to only 2-D appearance based repre-
sentations of the face (e.g. raw pixels, optical flow, Gabor
filters, etc.) as well as data-driven approaches for obtgini
compact features (e.g. PCA, LDA, ICA, etc.). These ap-
pearance based approaches were broadly categorized into
monolithic and parts based representations. That is, where
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y tically (monolithic) or locally (parts). In literature, ap

c_lass a_nd be_t ween-cl_ass Va”é.lt'on' _The task _o_f the SCIen'pearance based approaches have continued to be popular
tist/engineer is to design a facial action recognition eyst

that T bet | i hil .2~ as demonstrated by the recent feature evaluation paper by
al maximizes between-class vanation while minimiziNg g, eyt et al. [4]. A major criticism of purely appearance
within-class variation.

In “real world” facial action r nition. within-cl based approaches however, is their lack of shape registra-
n real wo acial action recognition, WIthIN-CIass ., ‘\when “real-world” variation tends to occur, their lack
variation can come in a number of forms. As pointed out in

. i of shape registration (i.e. knowledge of the position of the
arecent review paper by Pantic and Rothkrantz 2], strong eyes, brow, mouth, etc.) can make normalizing for this vari-
assumptions are commonly made to make the task of fa-

: X .. ation very difficult.
cial action recognition tractable. One of the most common, .
. . : . Model-based approaches offer an alternative to appear-
is the assumption that faces are frontal with minimal pose

o . . ance based approaches for representing the face. Typical
variation. Another assumption commonly made, is that an :
M approaches have been Active Shape Models (ASMs) [5] and
AU occurring in one area of the face (e.g. eyes/brow) can

never coincide with AUs occurring in other areas of the face Active Agpre]arance I\il)odels (AAI\élS) [(;5]dWhere Ib(()jt? appear-
(e.0. the mouth). ance and shape can be extracted and decoupled from one an-

other. Model-based approaches, like those seen in an AAM,
1Readers are encouraged to inspect the following reviewlest[1, 2]. have an inherent benefit over purely appearance based ap-




proaches in the sense they can account and attempt to notypes of muscle action. Contraction of the frontalis mus-
malize many types of of “real-world” variation. They are cle raises the brows in an arch-like shape (AU 1 in FACS)
however, limited in some circumstances by their ability to and produces horizontal furrows in the forehead (AU 1+2
accurately register the face in terms of shape and deal within FACS). Contraction of the corrugator supercilii and de-

3D variation. pressor supercilii muscles draws the inner (i.e., med@ab p
tion of the brows together and downward and causes verti-
3. Database and SCOpe cal wrinkles to form or deepen between the brows (AU 4 in

FACS). The levator palpebrae superioris (AU 5 in FACS) is
3.1. Database associated with the raising of the upper eyelid. Variations
Our experiments were carried out on video data-set,in AUs from the eye/brow region are thought to be com-
recorded at Rutgers Universftycontaining spontaneous mon/frequent when people are lying, so were concentrated
AUs where 33 people of varying ethnicity and sex lied or on for our experiments.

told the truth to an interviewer. Lies were elicited over Our experiments were conducted on the taskudfject-
whether a large sum of money had been stolen. Data fromindependentacial action recognition. Due to the meagre
20 of the subjects was available for our experiments, con-number of examples available, a leave-one-out approach [6]
taining 4 males and 16 females. Of the 20 subjects, 13 werehad to be employed during our experiments.

of European heritage, 1 of African heritage, and 6 Asian.

There was some degree of head movement in the data-seff. AAM Derived Representations

with frontal and out-of-plane head motion being common.

Lies were elicited in the following manner. A situation [N this section we describe both 2D and 3D active appear-
was created where the subject was allowed to take a check@nce models. We later derive features based on both models.
for a specified amount (typically $100), from an envelope in Elegse note examples of the AAM shape registration results
another room. Sometimes the money was there, and somell Figure 1.
times not. The subject was then interviewed about whether .
he/she took the check. The subject has to convince the in4.1. 2D Active Appearance Models
terviewer that he/she didot take the check, even if they The2D shapes of a 2D AAM [5] is a 2D triangulated mesh.
did. If the subject is believed, the check will be donated |n particular,s is a column vector containing the vertex lo-
to an organization that he/she supports. If not, the checkcations of the mesh. AAMs allow linear shape variation.
is donated to an organization he/she veheomently disagreeshis means that the 2D shapean be expressed as a base

with. Interviews typically lasted 5-7 minutes and congiste shapes, plus a linear combination of, shape vectors;:
of around 13 questions.

s = sp+ i Si 1
3.2. Scope 0 ;p @
Tfh © sck(?fe_ of t&z ;r)apernvi\;?sn re_l:c, t”iCt:ﬁ t(\)NLhenSpnezSCi taSkwhere the coefficientp = (p1,...,pm)" are the shape pa-
ot peak-lo-peaiiy recognition. 1ypicafy, when a S rameters. AAMs are normally computed from training data
annotated there is amsef offsetand peaktime stamp as- - . .
sociated with an individual AU sequence. Certified FACS consisting of a set of images with the shape mesh (hand)
codlers m\;vrlmally II:AéVSI;—goded the(sq(LaJ time .stamplsl along Withmarked on them [5]. The Procrustes alignment algorithm
the intensity of the AU. Certified FACS coders from the and Principal Component Analysis (PCA) are then applied

: . . ) : to compute the base shaggeand the shape variatian.
Un|ver_5|ty of Pittsburgh confl_rmed all coding. _Sequences Theappearancef a 2D AAM is defined within the base
for which manual FACS coding was not confirmed were

; . meshs,. Lets, also denote the set of pixels = (u,v)T
ﬁ}xgljggg' e?irrl:)(/arﬁgs gfn:;tleais(; 'Onftéztsﬁlnvée:aemmgsa’:i as _that lie inside the base mesh, a convenient abuse of ter-
P : . amp minology. The appearance of the AAM is then an image
sumed to be representative of a local AU 0 (i.e. neutral ex-

ression). AU 0 is employed later in our experiments in a A(u) defined over the pixela € so. AAMS allow linear
P L >Mploy P appearance variation. This means that the appearafce
normalization technique.

. . ._can be expressed as a base appeard lus a linear
Contraction of the facial muscles produces changes in P PP bee) p

the appearance and shape of facial landmarks (e.g., browss:ombmatlon of appearance images(u):

and in the direction and magnitude of motion on the sur- !

face of the skin and in the appearance of transient facial fea A(u) = Ap(u) + Z Ai Ai(u) (2
tures (e.g., wrinkles). In our experiments, we focus on two i=1

2We would like to thank Mark Frank and his group for the use sf hi Where the coefficients,; are the appearance Parameters-
database recorded at Rutgers University. The base (mean) appearantgand appearance imagds




Figure 1: AAM shape registration examples across a number of subjects

are usually computed by applying Principal Components a similar manner by applying Principal Components Analy-
Analysis to the (shape normalized) training images [5]. sis to the unwarped input texture maps.

Although Equations (1) and (2) describe the shape and To generate a 3D AAMmodel instancean image for-
appearance variation, they do not describe how to generatenation model is needed to convert the 3D shapeo a 2D
amodel instanceThe AAM instance with shape parameters mesh, onto which the appearance is warped. The following
p and appearance paramet@gsis created by warping the  scaled orthographiémaging model is used:
appearancel from the base mesiy, onto the model shape .
meshs. In particular, the pair of meshags ands define a u=Py,kx) =0 ( te ty 1tz ) X + ( Ou > .4
piecewise affine warp froms, to s denotedW (u; p). Note Je Jy Jz Ov
that for ease of presentation we have omitted any mention ofyyhere (0,,0,) is an offset to the origin, the projection
the 2D similarity transformation'that is useq with an AAM  gyesi — (iyiy,iz) andj = (j.,Jy,j-) are orthonormal
to normalize the shape [S]. In this paper we include the nor- (5.5 — j.j = 1,i.j = 0), ando is the scale. The 3D AAM in-
malizing warp inW (u; p) and the similarity normalization  stance is computed by first projecting every 3D shape vertex
parameters ip. See [7] for the details of how to do this. x = (z,y,2)T onto a 2D vertexa using Equation (4). The

appearancel(u) is then warped onto the 2D mesh (taking
4.2. 3D Active Appearance Models into account visibility) to generate the final model instanc

The3D shapes of a 3D AAM [8] is a 3D triangulated mesh. .
In particular,s is a column vector containing the vertex lo- 4.3. AAM Tracking

cations of the mesh. 3D AAMs also allow linear shape vari- We derive features for each of the 20 subjects in the FACS
ation. The 3D shape vect@rcan be expressed as a base database based on AAM tracking. We use real-time 2D+3D

shapes, plus a linear combination afi shape vectors;: fitting algorithm of [8]. To improve tracking performance
and robustness, each subject is tracked using a person-
g specific AAM model [9].
S =80+ BiSi ®) To compute subject-independent features for use in clas-
=1 sification we also build a singlgenericAAM model for all

where the coefficientp, are the shape parameters. 3D ;ub!'ects. A final AAM trqc_king re_sult is obt.ained by_pro-
AAMs can be computed from training data consisting of jecting eagh person-spemflc tracklng result into the gener
a set of3D rangeimages with the mesh vertices located M°d€l- This simply involves computing the 2D shapeD
in them. In this paper we automatically compute 3D shapep, and appearance parametais the generic model
shape from a training set of 2D examples using non-rigid given the vertex locationsof the person-specific fit.
structure-from-motion [8]. .

The appearance of a 3DMM is a 2D imadéu) just like 4.4. AAM Representations
the appearance of a 2D AAM. The appearance variation of aAs the AAM allows one to decouple appearance and shape
3DMM is also governed by Equation (2) and is computed in from of a face image a number of representations can be



derived (see Figure 2), When N is small the choice of distance metiiz(a, b)
between observation points becomes especially impor-
2DS: 2D shapes representation (see Equation (1)) of the tant [10]. One of the most common distance metrics em-
face and its facial features. Normalization processesployed in face recognition and facial action recognition is
can be applied such as: (i) the removal of the similar- the Mahalanobis distance,
ity transform (i.e. remove 2D translation, scale, and
rotation), and (ii) the application of an affine transform D(a,b) = (a—b)TW(a —b) (5)
given some fixed anchor points on the face. We shall
refer to (i) and (ii) as representati@DS-NSand2DS-
A respectively.

wherea andb are observation vectors being compared
and W is a weighting matrix. It is often advantageous to
attempt to learrwv from the train-set. Two common ap-

2DA: 2D appearanceA(u) representation (see Equation ProachestolearlW are,

(2)) of the appearance of the face given a static mean

shape. Principal Component Analysis (PCA): attempts to find

the K eigenvectorsV = {v,}X_,, corresponding to
the K largest eigenvalues, of the train-set’s covari-
ance matrix. Thesd( eigenvectors can be thought
of as theK largest modes of linear variation in the
train-set. The weighting matrix can then be defined
asW = VVT | Typically, K << N thereby con-
straining the matching af andb to a subspace where
training observations have previously spanned.

3DS: 3D shapes representation (see Equation (3)) where
the position in 3D of the face and its facial features has
been estimated. Normalization is applied through the
removal of the similarity transform in 3D (i.e. remove
3D translation, scale and rotation).

Linear Discriminant Analysis (LDA): attempts to find
the K eigenvectory = {vk},{(:1 of S;S,! whereS,
andS,, are the within- and between- class scatter ma-
trices of the train-set. Thesk eigenvectors can be
thought of as the largest modes of discrimination
in the train-set. Sinc&,S! is not symmetrical, we

W must employ simultaneous diagonalization [10] to find

e the solution. PCA is typically applied before LDA, es-

pecially if the dimensionality of the raw face represen-

tations is large, so as to minimize sample-size noise.

Figure 2: AAM Derived features. The AAM tracked result is used ] o
to compute the 2D shape, the shape-free appearance, and the 3D If there is not enough training data and many classes
shape. LDA overfits and can perform poorly, on the other hand

PCA could not be discriminative enough if two classes span
a similar subspace. For the purposes of this paper PCA used
in conjunction with LDA was found to be most suitable for
the task of facial action recognition; we shall refer to this
classifier alNN-LDA

5. Classifiers

In this paper, since we are dealing with peak-to-peak recog-
nition, we explored two commonly used classifiers for facial

action recognition [1, 4]. 5.2. Support Vector Machine (SVM)
Support vector machines (SVMs) have been demonstrated
5.1. Nearest Neighbor (NN) to be extremely useful in a number of pattern recognition

_ - ) _ tasks including face and facial action recognition. Thjsety
Nearest neighbor (NN) classifiers are typically employed in  ¢jassifier attempts to find the hyper-plane that maximizes
scenarios where there are many classes, and there is a minhe margin between positive and negative observations for
mal amount of training observations for each class (e.@ fac 5 gpecified class. A linear SVM classification decision is
recognition); making them well suited for the task of facial ade for an unlabeled test observatisrby,

action recognition. A NN classifier seeks to find i§fla-

beled train observations; ﬁ\’zl the single closest observa- true
tion to the unlabeled test observatiot; classifyingo* as wlo* > b (6)
having the nearest neighbor’s label. false



wherew is the vector normal to the separating hyperplane Observed
andb is the bias. Bothw andb were estimated so that they 1 1+2 4 5

minimize the structural risk of a train-set. Typically, is = 1+; 82'2‘2 ;;'gg g-gg 8-88
not defined explicitly, but through a linear sum of support 2 4 1250 000 8438 312
vectors. As a result SVMs offer additional appeal as they < 5 43.75 6.25 18.75 31.25

allow for the employment of non-linear combination func-
tions through the use of kernel functions such asrétukal Table 3: Confusion matrix for the shape feature 2DS-NS, demon-
basis functio{RBF), polynomia) sigmoidkernels. A RBF strating good performance on AUs 1, 1+2 and 4, but poor perfor-
kernel was used in our experiments throughout this papermance on AU5.
due to its good performance, and ability to perform well in

. Observed
may pattern recognition tasks [11]. Please refer to [11] for ] e " 5
additional information on SVM estimation and kernel se- 1 76.92 19.23 3.85 0
lection. We shall refer to this classifier 8¥ M-RBFE s 142 13.79 86.21 0 0
. L . o B 4 15.62 18.75 62.5 3.12
Since SVMs are intrinsically binary classifiers, special 2 5 18.75 125 125 5625

steps must be taken to extend them to the multi-class

scenario required for facial action recognition. In our Tapje 4: Confusion matrix for the appearance feature 2DA,
work, we adhered to the “one-against-one” approach [11] demonstrating reasonable performance on AUs 1, 1+2 and 4, but
in which K (K — 1)/2 classifiers are constructed, whete much better performance, with respect to 2DS-NS, on AU 5.

are the number of AU classes, and each one trains data from

two different classes. In classification we use a voting-stra

egy, where each binary classification is considered to be afion recognition task (i.e. restricting recognition to trea
single vote. A classification decision is achieved by choos- around the eyes/brow), and (b) subtracting the local AU

ing the class with the maximum number of votes. 0 from each sequence, significantly improves performance
for nearly every feature representation investigatedrdrhi

.- . 2D shape is the dominant feature with both the removal of
6. Recognltlon EXpe”mentS the similarity transform (2DS-NS) and the application of an
affine transform (2DS-A) performing well. However, pro-
vided one normalizes the 2D appearance (2DA) by the local
AU 0, the 2D appearance seems to be quite useful.

In Table 3 we see the confusion matrix for the dominant
representation 2DS-NS using a SVM-RBF classifier for the
task of recognizing AU classes 1, 1+2, 4, and 5. Interest-
ingly the performance of the recognizer suffers mainly from
the poor job it does on AU 5.

Inspecting Table 4 however, for the 2DA appearance fea-
ture one can see this recognizer does a good job on AUs
1, 1+2 and 4, but does a better job on AU5 than 2DS-NS
does. This may indicate that shape and appearance repre-
sentations of the face may hold some complimentary infor-
mation with regard to recognizing facial actions.

Table 1 depicts the recognition results for our experiments
on both the SVM and NN-LDA classifiers for the AU
classes 1, 1+2 and 4. A number of AAM derived repre-
sentations were analyzed. Specifically, we looked at repre-
sentations of the face based on 2D sh&iedj, 3D shape
(3D and 2D appearanceDA). In our experiments we
also investigated a number of normalization techniqués: (i
using the entire facenhole, (ii) using the entire face mi-
nus the local neutral (i.e. AU 0) faceviole-AUQ, (iii) us-

ing only the eye/brow regiorbfow), and (iv) using only the
eye/brow region minus the local neutral (i.e. AU 0) face
(brow-AUQ. Normalizations (iii) and (iv) were rationalized
based on our prior knowledge of where the AUs were oc-
curring spatially within the face. Similar recognition uiis

can be seen in Table 2 for the harder problem of recognizing . .
AU classes 1, 1+2, 4, and 5. 7. Discussion

One can see some immediate trends in Tables 1 and 2 this paper we have explored a number of representations
First, there does not seem to be any benefit in employingof the face, derived from AAMs, for the purpose of facial
3D shape representations of the face, even after the removalction recognition. We have demonstrated that a number of
of the similarity transform. One hypothesis for this poor re  representations derived from the AAM are highly useful for

sult, can be attributed to the noise associated with infgrri  the task of facial action recognition. A number of outcomes
the depth information of the face. Due to this noise, any 3D came from our experiments,

normalization, such as the removal of the similarity trans-
form, would add to the already considerable “real-world” e It was demonstrated that restricting the face area ac-

within-class variation. cording to the spatial location of the AU improved
A second trend worth noting is that normalization in the recognition performance. This improvement could be
form of: (a) restricting the spatial context of the faciat ac attributed to the removal of unwanted AU artifacts in



Whole Whole - AU 0 Brow Brow - AU 0
Feature | NN-LDA SVM-RBF NN-LDA SVM-RBF | NN-LDA SVM-RBF NN-LDA SVM-RBF
2DS 35.63 20.69 65.52 51.72 28.74 25.29 62.07 64.37
2DS-NS 54.02 60.92 77.01 82.76 56.32 60.92 80.46 89.66
2DS-A 55.17 44.83 67.82 68.97 56.32 59.77 68.97 72.41
2DA 54.02 39.08 59.77 70.11 57.47 42.53 62.07 75.86
3DS 48.28 45,98 57.47 62.07 42.53 47.13 55.17 70.11

Table 1: This table depicts results for feature evaluation on the task gfmitiom for AUs 1, 1+2 and 4. One can see that the optimal result
(italicized) was achieved using a SVM classifier for the 2D shape remis® where no similarity transform is applied (i.e. 2DS-NS).
The normalization steps of restricting the area of the face analyzed toghregign, and the normalization by AU 0 also have an additional

benefit.
Whole Whole - AU 0 Brow Brow - AU O

Feature | NN-LDA SVM-RBF NN-LDA SVM-RBF | NN-LDA SVM-RBF NN-LDA SVM-RBF
2DS 25.24 17.48 54.37 43.69 22.33 21.36 58.25 54.37

2DS-NS 45.63 51.46 59.22 70.87 45.63 53.40 71.84 79.61

2DS-A 45.63 51.46 53.40 60.19 48.54 52.43 60.19 64.08
2DA 53.40 32.04 20.83 36.52 49.51 51.46 64.08 71.84
3DS 30.10 35.92 45.63 52.43 33.98 35.92 47.57 59.22

Table 2: This table depicts results for feature evaluation on the task afigiom for AUs 1, 1+2 4 and 5. One can see that the optimal result
(italicized) was achieved using a SVM classifier for the 2D shape remi@sm where no similarity transform is applied (i.e. 2DS-NS).

This result is consistent with Table 1.

non-essential areas of the face. We have some addi- [3] T. Cootes, G. Wheeler, K. Walker, and C. Taylor, “Coupiéew
tional results that speculate different that the shape and
appearance representations of the face may be compli- (4]

mentary for different AUs.

e Normalization by the AU 0 frame fdpoth shape and

texture representations is significantly beneficial for

recognition performance.

(5]

e Shape features have a large role to play in facial action [6]

unit recognition. Based on our initial experiments the
ability to successfully register the shape of the face can
be highly beneficial in terms of AU recognition perfor-

mance.

Some additional work still needs to be done, with model

(7]
(8]

(9]

based representations of the face, in obtaining adequate 3D
depth information from the face. We believe further im- 10
provement in this aspect of model based representations of11)
the face, could play large dividends towards the lofty goal

of automatic ubiquitous facial action recognition.
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