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Abstract

In this paper, we present results on experiments employ-
ing Active Appearance Model (AAM) derived facial rep-
resentations, for the task of facial action recognition. Ex-
perimental results demonstrate the benefit of AAM-derived
representations on a spontaneous AU database containing
“real-world” variation. Additionally, we explore a number
of normalization methods for these representations which
increase facial action recognition performance.

1. Introduction
The Facial Action Coding System (FACS) is the leading
method for measuring facial movement in behavioral sci-
ence [1]. Action units (AUs), which are the fundamen-
tal units employed in FACS. FACS has been successfully
applied [1], but not limited to, identifying the differences
between simulated and genuine pain, differences between
when people are telling the truth versus lying, and differ-
ences between suicidal and non-suicidal patients. Typically,
FACS is performed manually by trained human experts.

With the advent of modern computer vision and pattern
recognition techniques, considerable progress1 has been
made towards the lofty goal of “real-world” automatic facial
action recognition. However, for any pattern recognition
task there always exists a constant conflict between within-
class and between-class variation. The task of the scien-
tist/engineer is to design a facial action recognition system
that maximizes between-class variation while minimizing
within-class variation.

In “real world” facial action recognition, within-class
variation can come in a number of forms. As pointed out in
a recent review paper by Pantic and Rothkrantz [2], strong
assumptions are commonly made to make the task of fa-
cial action recognition tractable. One of the most common,
is the assumption that faces are frontal with minimal pose
variation. Another assumption commonly made, is that an
AU occurring in one area of the face (e.g. eyes/brow) can
never coincide with AUs occurring in other areas of the face
(e.g. the mouth).

1Readers are encouraged to inspect the following review articles [1,2].

In this paper, we investigate facial action recognition per-
formance, across a broad gamut of facial representations,
on a database that is representative of spontaneous facial
behavior. These multiple facial representations are derived
from a model-based approach, for modeling and tracking
the face, referred to in literature as an Active Appearance
Model (AAM) [3]. Results demonstrate that AAM derived
representations to be of real benefit for spontaneous facial
behavior when a number of “real-world” within-class vari-
ations occur. Additionally, we explore a number of normal-
ization methods for these representations which increase fa-
cial action recognition performance.

2. Background
One of the first studies into representations of the face, for
automatic facial action recognition, was conducted by Do-
nato et al. [1]. Motivated by the plethora of work previ-
ously performed in the face recognition community, this
study was restricted to only 2-D appearance based repre-
sentations of the face (e.g. raw pixels, optical flow, Gabor
filters, etc.) as well as data-driven approaches for obtaining
compact features (e.g. PCA, LDA, ICA, etc.). These ap-
pearance based approaches were broadly categorized into
monolithic and parts based representations. That is, where
patches of pixels within the face are either analyzed holis-
tically (monolithic) or locally (parts). In literature, ap-
pearance based approaches have continued to be popular
as demonstrated by the recent feature evaluation paper by
Bartlett et al. [4]. A major criticism of purely appearance
based approaches however, is their lack of shape registra-
tion. When “real-world” variation tends to occur, their lack
of shape registration (i.e. knowledge of the position of the
eyes, brow, mouth, etc.) can make normalizing for this vari-
ation very difficult.

Model-based approaches offer an alternative to appear-
ance based approaches for representing the face. Typical
approaches have been Active Shape Models (ASMs) [5] and
Active Appearance Models (AAMs) [5] where both appear-
ance and shape can be extracted and decoupled from one an-
other. Model-based approaches, like those seen in an AAM,
have an inherent benefit over purely appearance based ap-
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proaches in the sense they can account and attempt to nor-
malize many types of of “real-world” variation. They are
however, limited in some circumstances by their ability to
accurately register the face in terms of shape and deal with
3D variation.

3. Database and Scope
3.1. Database
Our experiments were carried out on video data-set,
recorded at Rutgers University2, containing spontaneous
AUs where 33 people of varying ethnicity and sex lied or
told the truth to an interviewer. Lies were elicited over
whether a large sum of money had been stolen. Data from
20 of the subjects was available for our experiments, con-
taining 4 males and 16 females. Of the 20 subjects, 13 were
of European heritage, 1 of African heritage, and 6 Asian.
There was some degree of head movement in the data-set
with frontal and out-of-plane head motion being common.

Lies were elicited in the following manner. A situation
was created where the subject was allowed to take a check,
for a specified amount (typically $100), from an envelope in
another room. Sometimes the money was there, and some-
times not. The subject was then interviewed about whether
he/she took the check. The subject has to convince the in-
terviewer that he/she didnot take the check, even if they
did. If the subject is believed, the check will be donated
to an organization that he/she supports. If not, the check
is donated to an organization he/she veheomently disagrees
with. Interviews typically lasted 5-7 minutes and consisted
of around 13 questions.

3.2. Scope
The scope of this paper was restricted to the specific task
of peak-to-peakAU recognition. Typically, when an AU is
annotated there is anonset, offsetandpeaktime stamp as-
sociated with an individual AU sequence. Certified FACS
coders manually FACS-coded these time stamps along with
the intensity of the AU. Certified FACS coders from the
University of Pittsburgh confirmed all coding. Sequences
for which manual FACS coding was not confirmed were
excluded. Only AUs of at least intensityB were employed
in our experiments. Onset and offset time stamps were as-
sumed to be representative of a local AU 0 (i.e. neutral ex-
pression). AU 0 is employed later in our experiments in a
normalization technique.

Contraction of the facial muscles produces changes in
the appearance and shape of facial landmarks (e.g., brows)
and in the direction and magnitude of motion on the sur-
face of the skin and in the appearance of transient facial fea-
tures (e.g., wrinkles). In our experiments, we focus on two

2We would like to thank Mark Frank and his group for the use of his
database recorded at Rutgers University.

types of muscle action. Contraction of the frontalis mus-
cle raises the brows in an arch-like shape (AU 1 in FACS)
and produces horizontal furrows in the forehead (AU 1+2
in FACS). Contraction of the corrugator supercilii and de-
pressor supercilii muscles draws the inner (i.e., medial) por-
tion of the brows together and downward and causes verti-
cal wrinkles to form or deepen between the brows (AU 4 in
FACS). The levator palpebrae superioris (AU 5 in FACS) is
associated with the raising of the upper eyelid. Variations
in AUs from the eye/brow region are thought to be com-
mon/frequent when people are lying, so were concentrated
on for our experiments.

Our experiments were conducted on the task ofsubject-
independentfacial action recognition. Due to the meagre
number of examples available, a leave-one-out approach [6]
had to be employed during our experiments.

4. AAM Derived Representations
In this section we describe both 2D and 3D active appear-
ance models. We later derive features based on both models.
Please note examples of the AAM shape registration results
in Figure 1.

4.1. 2D Active Appearance Models
The2D shapes of a 2D AAM [5] is a 2D triangulated mesh.
In particular,s is a column vector containing the vertex lo-
cations of the mesh. AAMs allow linear shape variation.
This means that the 2D shapes can be expressed as a base
shapes0 plus a linear combination ofm shape vectorssi:

s = s0 +

m
∑

i=1

pi si (1)

where the coefficientsp = (p1, . . . , pm)T are the shape pa-
rameters. AAMs are normally computed from training data
consisting of a set of images with the shape mesh (hand)
marked on them [5]. The Procrustes alignment algorithm
and Principal Component Analysis (PCA) are then applied
to compute the base shapes0 and the shape variationsi.

Theappearanceof a 2D AAM is defined within the base
meshs0. Let s0 also denote the set of pixelsu = (u, v)T

that lie inside the base meshs0, a convenient abuse of ter-
minology. The appearance of the AAM is then an image
A(u) defined over the pixelsu ∈ s0. AAMs allow linear
appearance variation. This means that the appearanceA(u)
can be expressed as a base appearanceA0(u) plus a linear
combination ofl appearance imagesAi(u):

A(u) = A0(u) +
l

∑

i=1

λi Ai(u) (2)

where the coefficientsλi are the appearance parameters.
The base (mean) appearanceA0 and appearance imagesAi
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Figure 1: AAM shape registration examples across a number of subjects.

are usually computed by applying Principal Components
Analysis to the (shape normalized) training images [5].

Although Equations (1) and (2) describe the shape and
appearance variation, they do not describe how to generate
amodel instance.The AAM instance with shape parameters
p and appearance parametersλi is created by warping the
appearanceA from the base meshs0 onto the model shape
meshs. In particular, the pair of meshess0 ands define a
piecewise affine warp froms0 to s denotedW(u;p). Note
that for ease of presentation we have omitted any mention of
the 2D similarity transformation that is used with an AAM
to normalize the shape [5]. In this paper we include the nor-
malizing warp inW(u;p) and the similarity normalization
parameters inp. See [7] for the details of how to do this.

4.2. 3D Active Appearance Models
The3D shapes of a 3D AAM [8] is a 3D triangulated mesh.
In particular,s is a column vector containing the vertex lo-
cations of the mesh. 3D AAMs also allow linear shape vari-
ation. The 3D shape vectors can be expressed as a base
shapes0 plus a linear combination ofm shape vectorssi:

s = s0 +
m

∑

i=1

pi si (3)

where the coefficientspi are the shape parameters. 3D
AAMs can be computed from training data consisting of
a set of3D range images with the mesh vertices located
in them. In this paper we automatically compute 3D
shape from a training set of 2D examples using non-rigid
structure-from-motion [8].

The appearance of a 3DMM is a 2D imageA(u) just like
the appearance of a 2D AAM. The appearance variation of a
3DMM is also governed by Equation (2) and is computed in

a similar manner by applying Principal Components Analy-
sis to the unwarped input texture maps.

To generate a 3D AAMmodel instance, an image for-
mation model is needed to convert the 3D shapes into a 2D
mesh, onto which the appearance is warped. The following
scaled orthographicimaging model is used:

u = Pso(x) = σ

(

ix iy iz
jx jy jz

)

x +

(

ou

ov

)

. (4)

where (ou, ov) is an offset to the origin, the projection
axesi = (ix, iy, iz) and j = (jx, jy, jz) are orthonormal
(i·i = j·j = 1, i·j = 0), andσ is the scale. The 3D AAM in-
stance is computed by first projecting every 3D shape vertex
x = (x, y, z)T onto a 2D vertexu using Equation (4). The
appearanceA(u) is then warped onto the 2D mesh (taking
into account visibility) to generate the final model instance.

4.3. AAM Tracking
We derive features for each of the 20 subjects in the FACS
database based on AAM tracking. We use real-time 2D+3D
fitting algorithm of [8]. To improve tracking performance
and robustness, each subject is tracked using a person-
specific AAM model [9].

To compute subject-independent features for use in clas-
sification we also build a singlegenericAAM model for all
subjects. A final AAM tracking result is obtained by pro-
jecting each person-specific tracking result into the generic
model. This simply involves computing the 2D shapep, 3D
shapep, and appearance parametersλ in the generic model
given the vertex locationss of the person-specific fit.

4.4. AAM Representations
As the AAM allows one to decouple appearance and shape
from of a face image a number of representations can be
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derived (see Figure 2),

2DS: 2D shape, s representation (see Equation (1)) of the
face and its facial features. Normalization processes
can be applied such as: (i) the removal of the similar-
ity transform (i.e. remove 2D translation, scale, and
rotation), and (ii) the application of an affine transform
given some fixed anchor points on the face. We shall
refer to (i) and (ii) as representation2DS-NSand2DS-
A respectively.

2DA: 2D appearance, A(u) representation (see Equation
(2)) of the appearance of the face given a static mean
shape.

3DS: 3D shape, s representation (see Equation (3)) where
the position in 3D of the face and its facial features has
been estimated. Normalization is applied through the
removal of the similarity transform in 3D (i.e. remove
3D translation, scale and rotation). 2 D S2 D A3 D SW a r p t om e a n s h a p e

Figure 2: AAM Derived features. The AAM tracked result is used
to compute the 2D shape, the shape-free appearance, and the 3D
shape.

5. Classifiers

In this paper, since we are dealing with peak-to-peak recog-
nition, we explored two commonly used classifiers for facial
action recognition [1,4].

5.1. Nearest Neighbor (NN)
Nearest neighbor (NN) classifiers are typically employed in
scenarios where there are many classes, and there is a mini-
mal amount of training observations for each class (e.g. face
recognition); making them well suited for the task of facial
action recognition. A NN classifier seeks to find ofN la-
beled train observations{oi}

N
i=1

the single closest observa-
tion to the unlabeled test observationo∗; classifyingo∗ as
having the nearest neighbor’s label.

WhenN is small the choice of distance metricD(a,b)
between observation points becomes especially impor-
tant [10]. One of the most common distance metrics em-
ployed in face recognition and facial action recognition is
the Mahalanobis distance,

D(a,b) = (a − b)T W(a − b) (5)

wherea andb are observation vectors being compared
andW is a weighting matrix. It is often advantageous to
attempt to learnW from the train-set. Two common ap-
proaches to learnW are,

Principal Component Analysis (PCA): attempts to find
the K eigenvectorsV = {vk}

K
k=1

, corresponding to
the K largest eigenvalues, of the train-set’s covari-
ance matrix. TheseK eigenvectors can be thought
of as theK largest modes of linear variation in the
train-set. The weighting matrix can then be defined
asW = VVT . Typically, K << N thereby con-
straining the matching ofa andb to a subspace where
training observations have previously spanned.

Linear Discriminant Analysis (LDA): attempts to find
theK eigenvectorsV = {vk}

K
k=1

of SbS
−1

w whereSb

andSw are the within- and between- class scatter ma-
trices of the train-set. TheseK eigenvectors can be
thought of as theK largest modes of discrimination
in the train-set. SinceSbS

−1

w is not symmetrical, we
must employ simultaneous diagonalization [10] to find
the solution. PCA is typically applied before LDA, es-
pecially if the dimensionality of the raw face represen-
tations is large, so as to minimize sample-size noise.

If there is not enough training data and many classes
LDA overfits and can perform poorly, on the other hand
PCA could not be discriminative enough if two classes span
a similar subspace. For the purposes of this paper PCA used
in conjunction with LDA was found to be most suitable for
the task of facial action recognition; we shall refer to this
classifier asNN-LDA.

5.2. Support Vector Machine (SVM)
Support vector machines (SVMs) have been demonstrated
to be extremely useful in a number of pattern recognition
tasks including face and facial action recognition. This type
of classifier attempts to find the hyper-plane that maximizes
the margin between positive and negative observations for
a specified class. A linear SVM classification decision is
made for an unlabeled test observationo∗ by,

wT o∗

true
≷

false
b (6)
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wherew is the vector normal to the separating hyperplane
andb is the bias. Bothw andb were estimated so that they
minimize the structural risk of a train-set. Typically,w is
not defined explicitly, but through a linear sum of support
vectors. As a result SVMs offer additional appeal as they
allow for the employment of non-linear combination func-
tions through the use of kernel functions such as theradial
basis function(RBF),polynomial, sigmoidkernels. A RBF
kernel was used in our experiments throughout this paper
due to its good performance, and ability to perform well in
may pattern recognition tasks [11]. Please refer to [11] for
additional information on SVM estimation and kernel se-
lection. We shall refer to this classifier asSVM-RBF.

Since SVMs are intrinsically binary classifiers, special
steps must be taken to extend them to the multi-class
scenario required for facial action recognition. In our
work, we adhered to the “one-against-one” approach [11]
in whichK(K − 1)/2 classifiers are constructed, whereK
are the number of AU classes, and each one trains data from
two different classes. In classification we use a voting strat-
egy, where each binary classification is considered to be a
single vote. A classification decision is achieved by choos-
ing the class with the maximum number of votes.

6. Recognition Experiments

Table 1 depicts the recognition results for our experiments
on both the SVM and NN-LDA classifiers for the AU
classes 1, 1+2 and 4. A number of AAM derived repre-
sentations were analyzed. Specifically, we looked at repre-
sentations of the face based on 2D shape (2DS), 3D shape
(3DS) and 2D appearance (2DA). In our experiments we
also investigated a number of normalization techniques: (i)
using the entire face (whole), (ii) using the entire face mi-
nus the local neutral (i.e. AU 0) face (whole-AU0), (iii) us-
ing only the eye/brow region (brow), and (iv) using only the
eye/brow region minus the local neutral (i.e. AU 0) face
(brow-AU0). Normalizations (iii) and (iv) were rationalized
based on our prior knowledge of where the AUs were oc-
curring spatially within the face. Similar recognition results
can be seen in Table 2 for the harder problem of recognizing
AU classes 1, 1+2, 4, and 5.

One can see some immediate trends in Tables 1 and 2.
First, there does not seem to be any benefit in employing
3D shape representations of the face, even after the removal
of the similarity transform. One hypothesis for this poor re-
sult, can be attributed to the noise associated with inferring
the depth information of the face. Due to this noise, any 3D
normalization, such as the removal of the similarity trans-
form, would add to the already considerable “real-world”
within-class variation.

A second trend worth noting is that normalization in the
form of: (a) restricting the spatial context of the facial ac-

1 1+2 4 5

1 86.42 11.54 3.85 0.00

1+2 3.45 96.55 0.00 0.00

4 12.50 0.00 84.38 3.12

5 43.75 6.25 18.75 31.25

Observed

A
c

tu
a

l

Table 3: Confusion matrix for the shape feature 2DS-NS, demon-
strating good performance on AUs 1, 1+2 and 4, but poor perfor-
mance on AU 5.

Observed

A
c

tu
a

l

1 1+2 4 5

1 76.92 19.23 3.85 0

1+2 13.79 86.21 0 0

4 15.62 18.75 62.5 3.12

5 18.75 12.5 12.5 56.25

Table 4: Confusion matrix for the appearance feature 2DA,
demonstrating reasonable performance on AUs 1, 1+2 and 4, but
much better performance, with respect to 2DS-NS, on AU 5.

tion recognition task (i.e. restricting recognition to thearea
around the eyes/brow), and (b) subtracting the local AU
0 from each sequence, significantly improves performance
for nearly every feature representation investigated. Third,
2D shape is the dominant feature with both the removal of
the similarity transform (2DS-NS) and the application of an
affine transform (2DS-A) performing well. However, pro-
vided one normalizes the 2D appearance (2DA) by the local
AU 0, the 2D appearance seems to be quite useful.

In Table 3 we see the confusion matrix for the dominant
representation 2DS-NS using a SVM-RBF classifier for the
task of recognizing AU classes 1, 1+2, 4, and 5. Interest-
ingly the performance of the recognizer suffers mainly from
the poor job it does on AU 5.

Inspecting Table 4 however, for the 2DA appearance fea-
ture one can see this recognizer does a good job on AUs
1, 1+2 and 4, but does a better job on AU5 than 2DS-NS
does. This may indicate that shape and appearance repre-
sentations of the face may hold some complimentary infor-
mation with regard to recognizing facial actions.

7. Discussion
In this paper we have explored a number of representations
of the face, derived from AAMs, for the purpose of facial
action recognition. We have demonstrated that a number of
representations derived from the AAM are highly useful for
the task of facial action recognition. A number of outcomes
came from our experiments,

• It was demonstrated that restricting the face area ac-
cording to the spatial location of the AU improved
recognition performance. This improvement could be
attributed to the removal of unwanted AU artifacts in
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Whole Whole - AU 0 Brow Brow - AU 0
Feature NN-LDA SVM-RBF NN-LDA SVM-RBF NN-LDA SVM-RBF NN-LDA SVM-RBF

2DS 35.63 20.69 65.52 51.72 28.74 25.29 62.07 64.37
2DS-NS 54.02 60.92 77.01 82.76 56.32 60.92 80.46 89.66
2DS-A 55.17 44.83 67.82 68.97 56.32 59.77 68.97 72.41
2DA 54.02 39.08 59.77 70.11 57.47 42.53 62.07 75.86
3DS 48.28 45.98 57.47 62.07 42.53 47.13 55.17 70.11

Table 1: This table depicts results for feature evaluation on the task of recognition for AUs 1, 1+2 and 4. One can see that the optimal result
(italicized) was achieved using a SVM classifier for the 2D shape representation where no similarity transform is applied (i.e. 2DS-NS).
The normalization steps of restricting the area of the face analyzed to the eye region, and the normalization by AU 0 also have an additional
benefit.

Whole Whole - AU 0 Brow Brow - AU 0
Feature NN-LDA SVM-RBF NN-LDA SVM-RBF NN-LDA SVM-RBF NN-LDA SVM-RBF

2DS 25.24 17.48 54.37 43.69 22.33 21.36 58.25 54.37
2DS-NS 45.63 51.46 59.22 70.87 45.63 53.40 71.84 79.61
2DS-A 45.63 51.46 53.40 60.19 48.54 52.43 60.19 64.08
2DA 53.40 32.04 20.83 36.52 49.51 51.46 64.08 71.84
3DS 30.10 35.92 45.63 52.43 33.98 35.92 47.57 59.22

Table 2: This table depicts results for feature evaluation on the task of recognition for AUs 1, 1+2 4 and 5. One can see that the optimal result
(italicized) was achieved using a SVM classifier for the 2D shape representation where no similarity transform is applied (i.e. 2DS-NS).
This result is consistent with Table 1.

non-essential areas of the face. We have some addi-
tional results that speculate different that the shape and
appearance representations of the face may be compli-
mentary for different AUs.

• Normalization by the AU 0 frame forboth shape and
texture representations is significantly beneficial for
recognition performance.

• Shape features have a large role to play in facial action
unit recognition. Based on our initial experiments the
ability to successfully register the shape of the face can
be highly beneficial in terms of AU recognition perfor-
mance.

Some additional work still needs to be done, with model
based representations of the face, in obtaining adequate 3D
depth information from the face. We believe further im-
provement in this aspect of model based representations of
the face, could play large dividends towards the lofty goal
of automatic ubiquitous facial action recognition.
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