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1. Introduction 
 

The estimation of human motion from a monocular sequence of 2D images is difficult for 
many reasons: the non-linear dynamics of the limbs, ambiguities in the mapping from the 2D 
image to the 3D model, self occlusions, the similarity of the appearance of different limbs, 
and image noise etc. In this project, we learn and model background scenes statistically to 
detect foreground objects, distinguish people from other objects by checking skin-color blobs 
in the foregrounds. After we estimate the position of the body in the foreground region, we 
apply a Bayesian approach to track body motion, which is to compute the posterior 
probability distribution over the parameters of the 2D cardboard body model and dynamic 
model. Since the project has to be finished in 4 or 5 weeks, we make many simplifications in 
the realization. There are still many ideas that we plan to add into the current framework in 
the future. 
 

There have been a significant number of projects on detecting and tracking people. 
Generally, they can be divided into three categories. The first category is to search over 
model parameters using the information from former images, and to measure the similarity 
between the predicted and the actual current image. This strategy has three standard steps in 
the literature: 

I) Match template [1, 3~5]. Both [1] and [4] rely on background subtraction. In [4], the 
author located the body parts by silhouettes analysis. Due to the variety of body 
appearance in different pose, the accuracy of the algorithm is not satisfactory. 

II) Find people by finding face according to the fact that people’s normalized skin color 
is surprising constant across different skin pigmentation and radiation damage [6]. 
This approach is most successful when frontal faces are visible. 

III) Search over correspondence between image configurations and object features [7~9].  
The second category is to assemble image features into increasingly larger group, using 

the current group as a rough hypothesis about the object identity to select the next grouping 
activity.  In the experiments using this strategy, the person is restricted to be naked or wear 
swimming suits. So the application will be highly limited.  

Both of the two first strategies use quite sparse information from the images: such as 
edges [4], blobs [1] or other detected features. The third strategy is to use dense image 
information according to brightness constancy assumption [9]. Problem of detecting the 
model motion can be formulated as computing one of parameterized optical flow [24]. 
Though this method can provide dense image information, it is more sensitive to changes of 
appearance on human, such as wrinkles on the clothes, shading etc.    

The choice of human model used for tracking depend on what kind of information has to 
be extracted, and also on what constraints can be introduced on the environments and on the 
activities of the tracked human. Generally, there are 3D limbs model for action recognition 
and 2D planar patches model for body pose recovery.  
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The way used in the project to detect and track human motion focuses on the motion of 

the figure. The human body is modeled as a 2D articulated object, parameterized by a set of 
joint angles and an appearance function for each of the rigid parts. With the aid of foreground 
detection, we compute the posterior distribution of these parameters by particle sampling, 
and propagate it through time.   

 
2. System outline 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
  

 
 
 
 
 

 
 

Fig.1. Detection and tracking system 
 

The system diagram is shown in Figure 1. We use image sequence of walking people 
from [21].  Every frame is 320*240 resolution. The system is built by Visual C++. The 
working platform is 1.8 GHz Pentium IV PC.  

 
3. Background learning and foreground detection 

I. Haritaoglu et al [4] built a statistical model for a background scene to detect 
foreground regions even when the background scene is not completely stationary. Our 
project follows their algorithm, which is described as follows: 

i) The pixel intensity of a completely stationary background can be reasonably 
modeled with a Gaussian distribution.  
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ii) The background scene is modeled by representing each pixel by three values: its 
minimum m(x) and maximum intensity values n(x) and the maximum intensity 
difference d(x) between consecutive frames observed during this training period.  

We do not include the model of updating background model parameters in our 
project, because we only test short-term image sequence (about 100 frames). Illumination 
can be assumed not to change much in such short period of time. 

A Gaussian filter is applied to the image sequence first to reduce the image noise. 
Foreground objects are segmented from the background in each frame of the video 
sequence by a four-stage process: thresholding, noise cleaning, morphological filtering, 
and skin-color detection. Each pixel is first classified as either a background or a 
foreground pixel using the background model. Pixel x from image I is a foreground pixel 
if : 
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Thresholding alone, however, is not sufficient to obtain clear foreground regions; it 
results in a significant level of image noise. After thresholding, one erosion process is 
applied to foreground pixels to eliminate one-pixel thick noise. Then, a fast binary 
connected-component operator is applied to find the foreground region. The small 
regions, whose areas are smaller than 8 pixels in our project, are eliminated. The regions 
are restored to their original sizes by a dilation process. In the bounding boxes of every 
remained foreground regions, we reapply background subtraction. Finally a binary 
connected component analysis is applied to the foreground pixels. Each foreground is 
assigned a unique label. 

We judge whether the object is a person by detect whether there are skin color blobs 
in the bounding boxes [6]. Skin color is detected using a classifier with an empirically 
estimated Gaussian probability model of “skin” and “not-skin”. By converting (R, G, B) 
triples into triples of the form (log(g), log(R)-log(G), log(B)-(log (G)+log(R))/2), skin 
cue is largely invariant to intensity or saturation, as this is robust to shading due to 
illumination. If there are skin color blobs with area great than a threshold, we classify the 
foreground region as a person.    

 
4. Body motion tracking 

 After we detect the region that is likely to be a person, we want to estimate the 
motion of the head, limbs, and torso. In [7], a generative model of human appearance and 
motion is defined in Bayesian framework. The probabilistic formulation of the generative 
model provides the basis for evaluating the likelihood of the image measurements given 
the model parameters. A particle filtering approach is used to represent and propagate the 
posterior distribution over time, thus tracking multiple hypotheses in parallel.  

Our project uses the Bayes’ framework similar to [7], but has a simpler 2D body 
model instead of 3D cylindrical model in [7]. The appearance model is updated according 
to the extent that is occluded. We also use information from foreground detection in 
likelihood computing to increase accuracy. To reduce the computational complexity, the 
parameter space is partitioned according to the independency between some parameters. 
The parameters with higher hierarchy will be propagated first. The improved algorithm is 
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much more efficient than propagating all parameters simultaneously. Therefore we 
expect it to work better if the motion model can be trained by enough data using MPCA 
in the future.    

    
4.1 2D cardboard body model 
 

   
              (a)                                          (b) 

Figure. 2.(a) Human body model  (b)Match the model with the image 
 

To track articulated human motion, we approximate the limbs and torso as   
rectangular planar [2]. In our simplified model, every joint has only one DOF, expressed 
as θi. The body is assumed to be upright. In our experiments, we assume that there are 
only two orientations of the torso: left or right body side to the camera. If the orientation 
is equal to 1, we map the body in the order of right arm, right leg, torso, head, left leg, 
and left arm; if the orientation is equal to –1, the mapping order is left arm, left leg, torso, 
head, right leg, and right arm instead. The limbs that are mapped first will be covered by 
the later mapped one if they are in the same position. So the entire pose of the body is 
given by 11 parameters, that is, 9 joint angles at neck, shoulders, elbows, hips, and knees, 
and the position of the torso. Let Φ be the vector containing these 11 parameters. 

We assume the ratio between the sizes of the different body parts is constant in the 
image sequence. Actually this holds only when the orientation of the body keeps constant, 
the path of the motion is parallel to the image plane of the camera, and the static camera 
is modeled as a pinhole camera. The size of the model is therefore scaled by ratio 
between the height of the model and the height of the detected foreground region.  

4.2 Appearance model 
We assume that each limb and torso is textured mapped with an appearance model, 

R(.). Moreover, it is desirable to estimate the appearance parameters through time to 
reflect the changing appearance of the object in the video. Here we compute the 
probability that a limb is occluded. If it is below the threshold, the appearance function 
Rt(.) at time t is taken to be the mapping of the image at time t-1 onto the shape model by 
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the shape parameters at time t-1, otherwise, it is taken as the initial mapping function that 
is learned offline.  

Given the parameters in the shape model and an appearance function for each of the 
rigid part, we can render images of how the body is likely to appear.  

4.3 Motion Model 
Our project uses a first order motion model, including velocity V only, to estimate the 

parameters of the shape model in subsequent frames.   
4.4 Tracking Algorithm 

4.4.1 Bayesian Formulation 
The goal of tracking a human figure can now be formulated as the computation of the 

posterior probability distribution over the parameters Rt , Φt and Vt of the model at time t, 

given a image sequence tI
−

. Using Bayes’ rule and the Markov assumptions, the posterior 
distribution can be expressed as [7]:  
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4.4.2 Particle sampling 

Due to the nonlinearity of the likelihood function over the model parameters, we 
cannot derive an analytic expression for it in the entire state space. So we represent the 
posterior as a weighted set of state samples, which are propagated using a particle filter 
with sequential importance sampling [23]. The detailed algorithm in [7] can be briefly 
described as below. 

Each state, st, is represented by a vector of parameters in shape model and motion 
model. Appearance model can be determined by the shape parameters and the images, so 
we need not consider it here. The posterior at time t-1 is represented by N state samples 
( 410≈N in our experiments). We first draw N samples according to the posterior 
probability distribution at time t-1. For each state sample, we propagate the angular 
velocities and shape parameters forward in time by sampling from their prior. At this 
point we have new values of Φ t and R t which can be used to compute the likelihood 

),|( ttt RIp φ . The N likelihoods are normalized to sum to one and the resulting set of 

samples approximates the posterior distribution )|,,(
_

tttt IRVp φ  at time t. 
4.4.3 Likelihood computation 

The likelihood ),|( ttt RIp φ  is the probability of observing image It given the human 
model that has configuration Φ t and appearance R t at time t. In the 2D cardboard body 
model, the shape of each rigid part does not change in the video. So the projection is very 
fast.  

We can represent the likelihood as: 
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Where S is the bounding box of foreground region. Sf is the foreground region. Sm is 
the region with mapped body model. Max is an empirical large value to penalize the 
mismatch between Sf and Sm. σ is empirically determined.  

4.4.4 Dynamic model 
For a constrained activity such as walking or running, we assume that the angular 

velocity of the joints and the velocity of the body are constant over time. So the dynamics 
are represented by 

)),((),|( 1111 φσφφφφ −−−− +−= tttttt VGVp  
),()|( 11 Vtttt VVGVVp σ−− −=  

Where G(x, σ) denotes a Gaussian distribution with zero mean and standard deviation 
σ, evaluated at x. The standard deviations φσ and Vσ  are also empirically determined.  

4.4.5 Parameter space partition 
It is very time-consuming to search in the high degrees of freedom parameter space. 

According to the independency between the velocity of the torso and the velocity of the 
joint angles, and the fact that torso belongs to a higher level hierarchy in the body 
structure, the distribution over the position of the torso is propagated first, and the 
distributions of other joint angles are propagated conditioned on the already found 
distribution of the torso position. This is obviously much more efficient than propagating 
all parameters simultaneously. 

Function ),(
_

tt IIf has to be changed in likelihood computation of propagating torso 
position, because we cannot penalize the pixels that are in foreground but not in mapped 
torso region now. σ in (3) will be changed at the same time.  
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Where Sm is the region with mapped torso. 
 

5. Experiment results 
On a Pentium IV 1.8GHz PC, the Visual C++ implementation takes approximately 

3seconds/frame for experiments with 10,000 state samples. At frame 0, the posterior 
distribution is initialized manually with a Gaussian prior. To visualize the posterior 
distribution we display the contour of the every rigid part in the 2D model corresponding 
to the expected value of the model parameters.  

We track a person walking on a straight path parallel to the camera plane over frames. 
The global rotation of the torso held constant. The model successfully tracks the person. 
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The legs are estimated accurately in most frames, but the arms drift in some frames due 
to the occlusion and the ambiguities of their poses.  

 

 
 

Figure 2. Tracking results of a walking human 
 

6. Conclusion  
Our project combines the method of background modeling used in W4 and the 

Bayesian formulation in [7]. It can track articulated human figures in 2D using monocular 
image motion information.  

Because search in such high degrees of freedom of articulated body motion is 
exponential computational complexity, our project is far from practical uses. There are 
several approaches to reduce the computational complexity. One is to relax constraints 
arising from articulation, and track limbs as if their motion were independent. The other 
is to introduce constraints, such as labeling using markers or color coding, prior 
assumptions about motion trajectories [7] or view restrictions. J Deutscher [10] develops 
an algorithm, called annealed particle filtering, that is to take a series of simplified 
versions of the evaluations function, use the converged result of every simpler version as 
a start point for a search on a less simple version, ending at an extremum of the original 
evaluation function. This method works well in decreasing the search in high dimensional 
configuration spaces. Another method in [7, 18] is to train the motion model using 
PCA/MPCA. Because many human activities are highly constrained and the body is often 
moved in symmetric and repetitive patterns, the parameters in the model can be reduced 
to 50% and the time for computation per frame is decreased greatly. Both of the two 
methods need great training data, so we cannot test it in our current project. We plan to 
test our system more thoroughly on other image sequences and try different algorithms to 
increase robustness and efficiency in the future.    
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