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Abstract

We present an algorithm to detect deadlocks in concur-
rent message-passing programs. Even though deadlock is
inherently non-compositional and its absence is not pre-
served by standard abstractions, our framework employs
both abstraction and compositional reasoning to allevi-
ate the state space explosion problem. We iteratively con-
struct increasingly more precise abstractions on the ba-
sis of spurious counterexamples to either detect a dead-
lock or prove that no deadlock exists. Our approach is
inspired by the counterexample-guided abstraction refine-
ment paradigm. However, our notion of abstraction as well
as our schemes for verification and abstraction refinement
differ in key respects from existing abstraction refinement
frameworks. Our algorithm is also compositional in that
abstraction, counterexample validation, and refinement are
all carried out component-wise and do not require the con-
struction of the complete state space of the concrete sys-
tem under consideration. Finally, our approach is com-
pletely automated and provides diagnostic feedback in case
a deadlock is detected. We have implemented our technique
in the MAGIC verification tool and present encouraging re-
sults (up to 20 times speed-up in time and 4 times less mem-
ory consumption) with concurrent message-passing C pro-
grams. We also report a bug in the real-time operating sys-
tem MicroC/OS version 2.70.

1. Introduction

Ensuring that standard software components are assem-
bled in a way that guarantees the delivery of reliable ser-
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vices is an important task for system designers. Certifying
the absence of deadlock in a composite system is an exam-
ple of a stringent requirement that has to be satisfied before
the system can be deployed in real life. This is especially
true for safety-critical systems, such as embedded systems
or plant controllers, that are expected to always service re-
quests within a fixed time limit or be responsive to exter-
nal stimuli. Moreover, in case a deadlock is detected, it is
highly desirable to be able to provide system designers and
implementers with appropriate diagnostic feedback.

However, despite significant efforts, validating the ab-
sence of deadlock in systems of realistic complexity re-
mains a major challenge. The problem is especially acute
in the context of concurrent programs that communicate
via mechanisms with blocking semantics, e.g., synchronous
message-passing and semaphores. The primary obstacle
is the well-known state space explosion problem whereby
the size of the state space of a concurrent system in-
creases exponentially with the number of components. Two
paradigms are usually recognized as being the most effec-
tive against the state space explosion problem: abstraction
and compositional reasoning. Even though these two ap-
proaches have been widely studied in the context of for-
mal verification [17, 11, 27, 19], they find much less use in
deadlock detection. This is possibly a consequence of the
fact that deadlock is inherently non-compositional and its
absence is not preserved by standard abstractions (see Ex-
ample 3). Therefore, a compositional and abstraction-based
deadlock detection scheme, such as the one we present in
this article, is especially significant.

Counterexample-guided abstraction refinement [22]
(CEGAR for short) is a methodology that uses abstraction
in an automated manner and has been successful in veri-
fying real-life hardware [10] and software [3] systems. A
CEGAR-based scheme iteratively computes more and more
precise abstractions (starting with a very coarse one) of
a target system on the basis of spurious counterexamples
until a real counterexample is obtained or the system is
found to be correct. The approach presented in this arti-
cle combines both abstraction and compositional reason-
ing within a CEGAR-based framework for verifying the ab-
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sence of deadlocks in concurrent message-passing systems.
More precisely, suppose we have a system M composed
of components M1, . . . ,Mn executing concurrently. Then
our technique checks for deadlock inM using the following
three-step iterative process:

1. Abstract. Create an abstraction M̂ such that if M has
a deadlock, then so does M̂ . This is done component-
wise without having to construct the full state space of
M .

2. Verify. Check if M̂ has a deadlock. If not, report ab-
sence of deadlock in M and exit. Otherwise let π be a
counterexample that leads to a deadlock in M̂ .

3. Refine. Check if π corresponds to a deadlock in M .
Once again this is achieved component-wise. If π cor-
responds to a real deadlock, report presence of dead-
lock in M along with counterexample derived from π

and exit. Otherwise refineM̂ on the basis of π to ob-
tain a more precise abstraction and repeat from step 1.

In our approach, systems as well as their components are
represented as finite Labeled Transition Systems (LTSs), a
form of state machines. Note that only the verification stage
(step 2) of our technique requires explicit composition of
systems. All other stages can be performed one component
at a time. Since verification is performed only on abstrac-
tions (which are usually much smaller than the correspond-
ing concrete systems), this technique is able to significantly
reduce the state space explosion problem. Finally, when a
deadlock is detected, our scheme provides useful diagnostic
feedback in the form of counterexamples.

To the best of our knowledge, this is the first
counterexample-guided, compositional abstraction refine-
ment scheme to perform deadlock detection on concurrent
systems. We have implemented our approach in our C ver-
ification tool MAGIC [24] which extracts LTS models from
C programs automatically via predicate abstraction [34, 6].
Our experiments with a variety of benchmarks have yielded
encouraging results (up to 20 times speed-up in time and
4 times less memory consumption). We have also discov-
ered a bug in the real-time operating system MicroC/OS
version 2.70.

The rest of this article is organized as follows. In Sec-
tion 2 we summarize related work. This is followed by some
preliminary definitions and results in Section 3. In Section 4
we present our abstraction scheme, followed by counterex-
ample validation and abstraction refinement in Section 5
and Section 6 respectively. Our overall deadlock detection
algorithm is described in Section 7. Finally, we present ex-
perimental results in Section 8 and conclude in Section 9.

2. Related Work

The formalization of a general notion of abstraction first
appeared in [14]. The abstractions used in our approach are
conservative. They are only guaranteed to preserve ‘unde-
sirable’ properties of the system (e.g., [21, 11]). Conserva-
tive abstractions usually lead to significant reductions in the
state space but in general require an iterated abstraction re-
finement mechanism (such as CEGAR) in order to establish
specification satisfaction. CEGAR [22, 10] is an iterative
procedure whereby spurious counterexamples to a specifi-
cation are repeatedly eliminated through incremental refine-
ments of a conservative abstraction of the system. CEGAR
has been used, among others, in [29] (in non-automated
form), and [3, 31, 23, 18, 8, 12].

CEGAR-based schemes have been used for the verifi-
cation of both safety [3, 10, 18, 6] (i.e., reachability) and
liveness [5] properties. Compositionality has been most ex-
tensively studied in process algebra (e.g., [20, 28, 32]), par-
ticularly in conjunction with abstraction. Abstraction and
compositional reasoning have been combined [7] within a
single two-level CEGAR scheme to verify safety proper-
ties of concurrent message-passing C programs. None of
these techniques attempt to detect deadlock. In fact, the ab-
stractions used in these schemes do not preserve deadlock
freedom and hence cannot be used directly in our approach.

Deadlock detection has been widely studied in various
contexts. One of the earliest deadlock-detection tools, for
the process algebra CSP, was FDR [16]; see also [33, 4, 26,
32, 25]. Corbett has evaluated various deadlock-detection
methods for concurrent systems [13] while Demartini et
al. have developed deadlock-detection tools for concurrent
Java programs [15]. However, to the best of our knowledge,
none of these approaches involve abstraction refinement or
compositionality in automated form.

3. Background

In this section, we present some preliminary definitions
and results (many of which originate from CSP [20, 32])
that are used in the rest of the article.

Definition 1 (Labeled Transition System) A Labeled
Transition System (LTS) is a quadruple (S, init ,Σ, T ) such
that: (i) S is a finite non-empty set of states, (ii) init ∈ S
is an initial state, (iii) Σ is a finite set of actions (alphabet)
and (iv) T ⊆ S × Σ× S is a transition relation.

Given an LTS M = (S, init ,Σ, T ), we write S(M) and
Σ(M) to mean S and Σ respectively. We also write s

a→ s′

to mean (s, a, s′) ∈ T . If s
a→ s′ we say that there ex-

ists a transition from s to s′ labeled by a. The successor
function Succ : S(M) × Σ(M) → 2S(M) is defined as:



Succ(s, a) = {s′ | s a→ s′}. In the remainder of this arti-
cle, we use 〈x, y, . . .〉 to denote sequences and a to denote
concatenation of sequences. Our notions of paths and traces
are standard and are presented next.

Definition 2 (Path) A path of an LTS M is a finite non-
empty sequence 〈s0, a0, s1, a1, . . . , an−1, sn〉 such that: (i)
s0 = init and (ii) for 0 ≤ i < n, si

ai→ si+1. We write
Path(M) to denote the set of all paths of M .

Definition 3 (Trace) Let M be an LTS. A finite se-
quence 〈a0, . . . , an−1〉 ∈ Σ(M)∗ is a trace of M
iff there exist s0, s1, . . . , sn ∈ S(M) such that
〈s0, a0, s1, a1, . . . , an−1, sn〉 ∈ Path(M).

Paths and traces are usually represented with the letters
π and θ respectively.

A state s is said to refuse an action a iff there is no tran-
sition from s labeled by a. The refusal of a state is the set
of all actions that it refuses. Suppose θ is a sequence of ac-
tions and F is a set of actions. Then (θ, F ) is said to be a
failure of an LTS M iff M can participate in the sequence
of actions θ (i.e., θ is a trace of M ) and then reach a state
whose refusal is F . Finally, M has a deadlock iff it can
reach a state which refuses the entire alphabet Σ(M). We
now present these notions formally.

Definition 4 (Refusal) Let M be an LTS and s ∈ S(M).
Then Ref (s) = {a ∈ Σ(M) | ∀s′ ∈ S(M) � s a9 s′}.

Definition 5 (Failure) Let M be an LTS. A pair (θ, F ) ∈
Σ(M)∗ × 2Σ(M) is a failure of M iff the following con-
dition holds: writing θ = 〈a0, . . . , an−1〉, there exist
s0, s1, . . . , sn such that (i) 〈s0, a0, s1, a1, . . . , an−1, sn〉 ∈
Path(M) and (ii) F = Ref (sn). We write Fail(M) to de-
note the set of all failures of M .

Definition 6 (Deadlock) An LTSM is said to have a dead-
lock iff (θ,Σ(M)) ∈ Fail(M) for some θ ∈ Σ(M)∗.

Example 1 Figure 1 shows two LTSs M1 and M2. Let
Σ(M1) = {a, b, c} and Σ(M2) = {a, b′, c}. Then M1

has seven paths: 〈P 〉, 〈P, a,Q〉, 〈P, a,R〉, 〈P, a,Q, b, S〉,
〈P, a,R, b, S〉, 〈P, a,Q, b, S, c, T 〉, and 〈P, a,R, b, S, c, T 〉.
It has four traces: 〈〉, 〈a〉, 〈a, b〉, and 〈a, b, c〉, and
four failures (〈〉, {b, c}), (〈a〉, {a, c}), (〈a, b〉, {a, b}), and
(〈a, b, c〉, {a, b, c}). Hence M1 has a deadlock. Also, M2

has four paths, four traces, four failures and a deadlock.

The notion of parallel composition is central to our ap-
proach. We assume that when several components are exe-
cuted concurrently, they synchronize on shared actions and
proceed independently on local actions. This notion of par-
allel composition has been used in, e.g., CSP [20, 32], and
by Anantharaman et al. [2].
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Figure 1. Two sample LTSs M1 and M2. Initial
states are doubly circled.

Definition 7 (Parallel Composition) Let M1 =
(S1, init1,Σ1, T1), . . . , Mn = (Sn, initn,Σn, Tn) be
LTSs. Then their parallel composition, denoted by
M1 ‖ . . . ‖ Mn, is the LTS (S‖, init‖,Σ‖, T‖) such that
(i) S‖ = S1 × . . . × Sn, (ii) init‖ = (init1, . . . , initn),

(iii) Σ‖ =
⋃n
i=1 Σi, and (iv) (s1, . . . , sn)

a→ (s′1, . . . , s
′
n)

iff for 1 ≤ i ≤ n the following condition holds: if a ∈ Σi

then (si, a, s
′
i) ∈ Ti, and otherwise si = s′i.

Example 2 Figure 2 shows the LTS M1 ‖ M2 where M1

and M2 are the LTSs shown in Figure 1.
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Figure 2. Parallel composition of LTSsM1 and
M2 from Figure 1.

Given a trace of a concurrent system M‖, one can con-
struct projections by restricting the trace to the alphabets of
each of the components of M‖.

Definition 8 (Projection) Consider LTSs M1, . . . ,Mn.
Let M‖ = M1 ‖ . . . ‖ Mn. For 1 ≤ i ≤ n, the projection
function Proj i : Σ(M‖)∗ → Σ(Mi)

∗ is defined inductively
as follows (we write θ ↓ i to mean Proj i(θ)):

1. 〈〉 ↓ i = 〈〉.

2. If a ∈ Σ(Mi) then (〈a〉aθ) ↓ i = 〈a〉a(θ ↓ i).

3. If a 6∈ Σ(Mi) then (〈a〉aθ) ↓ i = θ ↓ i.



Definitions 7 and 8 immediately lead to the following
lemma, which essentially highlights the compositional na-
ture of failures. Its proof, as well as the proofs of related
results, are well-known [32].

Lemma 1 Let M1, . . . ,Mn be LTSs. Then (θ, F ) ∈
Fail(M1 ‖ . . . ‖ Mn) iff there exist F1, . . . , Fn such that:
(i) F =

⋃n
i=1 Fi, and (ii) for 1 ≤ i ≤ n, (θ ↓ i, Fi) ∈

Fail(Mi).

4. Abstraction

In this section we present our notion of abstraction. Our
framework employs quotient LTSs as abstractions of con-
crete LTSs. Given a concrete LTS M , one can obtain a
quotient LTS as follows. The states of the quotient LTS
are obtained by lumping together states of M ; alternatively,
one can view these lumps as equivalence classes of some
equivalence relation on S(M). Transitions of the quotient
LTS are defined existentially.

Definition 9 (Quotient LTS) Let M = (S, init ,Σ, T ) be
an LTS and R ⊆ S × S an equivalence relation. For
an arbitrary s ∈ S we let [s]R denote the equivalence
class of s. M and R then induce a quotient LTS MR =
(SR, initR,ΣR, TR) where: (i) SR = {[s]R | s ∈ S},
(ii) initR = [init ]R, (iii) ΣR = Σ, and (iv) TR =
{([s]R, a, [s′]R) | (s, a, s′) ∈ T}.

We write [s] to mean [s]R when R is clear from the con-
text. MR is often called an existential abstraction of M .
The states of M are referred to as concrete states while
those of MR are called abstract states. We use the Greek
letter α to represent abstract states, and continue to denote
concrete states with the Roman letter s.

Quotient LTSs have been studied in the verification liter-
ature. In particular, the following result is well-known [9].

Proposition 1 Let M be an LTS, R an equivalence rela-
tion on S(M), and MR the quotient LTS induced by M
and R. If 〈s0, a0, s1, a1, . . . , an−1, sn〉 ∈ Path(M), then
〈[s0], a0, [s1], a1, . . . , an−1, [sn]〉 ∈ Path(MR).

Example 3 Note the following facts about the LTSs in Fig-
ure 3: (i) M1 and M2 both have deadlocks but M1 ‖ M2

does not; (ii) neither M3 nor M4 has a deadlock but M3 ‖
M4 does; (iii) M1 has a deadlock and M3 does not have
a deadlock but M1 ‖ M3 has a deadlock; (iv) M1 has a
deadlock and M4 does not have a deadlock but M1 ‖ M4

does not have a deadlock; (v) M1 has a deadlock but the
quotient LTS obtained by lumping all the states of M1 into
a single equivalence class does not have a deadlock.

M1 M2

M3 M4

a
b

b
a

a b
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b a

Figure 3. Four sample LTSs. Initial states are
doubly circled.

As Example 3 highlights, deadlock is non-compositional
and its absence is not preserved by existential abstractions
(nor is it preserved by universal abstractions). So far we
have presented well-known definitions and results to pre-
pare the background. We now present what constitute the
core technical contributions of this article.

We begin by taking a closer look at the non-preservation
of deadlock by existential abstractions. Consider a quo-
tient LTS MR and a state [s] of MR. It can be proved
that Ref ([s]) =

⋂
s′∈[s] Ref (s′). In other words, the re-

fusal of an abstract state [s] under-approximates the re-
fusals of the corresponding concrete states. However, in
order to preserve deadlock we require that refusals be over-
approximated. We achieve this by taking the union of the
refusals of the concrete states. This leads to the notion of an
abstract refusal, which we now define formally.

Definition 10 (Abstract Refusal) Let M be an LTS, R ⊆
S(M) × S(M) an equivalence relation, and MR the quo-
tient LTS induced by M and R. Then the abstract refusal
function AbsRef : S(MR) → 2Σ(MR) is defined as fol-
lows:

AbsRef (α) =
⋃

s∈α
Ref (s)

For a parallel composition of quotient LTSs, we extend the
notion of abstract refusal as follows. Let MR1

1 , . . . ,MRn
n

be quotient LTSs. Let α = (α1, . . . , αn) ∈ S(MR1
1 ‖ . . . ‖

MRn
n ). Then AbsRef (α) =

⋃n
i=1 AbsRef (αi).

Next, we introduce the notion of abstract failures, which
are similar to failures, except that refusals are replaced by
abstract refusals.

Definition 11 (Abstract Failure) Let M̂ be an LTS for
which abstract refusals are defined (i.e., M̂ is either a
quotient LTS or a parallel composition of such). A pair
(θ, F ) ∈ Σ(M̂)∗ × 2Σ(M̂) is said to be an abstract
failure of M̂ iff the following condition holds: writing
θ = 〈a0, . . . , an−1〉, there exist α0, α1, . . . , αn such that
(i) 〈α0, a0, α1, a1, . . . , an−1, αn〉 ∈ Path(M̂) and (ii) F =



AbsRef (αn). We write AbsFail(M̂) to denote the set of all
abstract failures of M̂ .

The following lemma essentially states that the failures
of an LTS M are always subsumed by the abstract failures
of its quotient LTS MR.

Lemma 2 LetM be an LTS,R ⊆ S(M)×S(M) an equiv-
alence relation, and MR the quotient LTS induced by M
and R. Then for all (θ, F ) ∈ Fail(M), there exists F ′ ⊇ F
such that (θ, F ′) ∈ AbsFail(MR).

Proof 1 1. From (θ, F ) ∈ Fail(M) and Def-
inition 5: let θ = 〈a0, . . . , an−1〉 and
〈s0, a0, s1, a1, . . . , an−1, sn〉 ∈ Path(M) such
that F = Ref (sn).

2. From 1 and Proposition 1:
〈[s0], a0, [s1], a1, . . . , an−1, [sn]〉 ∈ Path(MR).

3. From 2 and Definition 11: (θ,AbsRef ([sn])) ∈
AbsFail(MR).

4. From Definition 10: AbsRef ([sn]) ⊇ Ref (sn).

5. From 3, 4 and using F ′ = AbsRef ([sn]) we get our
result.

�

As the following two lemmas show, abstract failures are
compositional: the abstract failures of a concurrent system
M‖ can be decomposed naturally into abstract failures of
the components of M‖. Proofs of Lemmas 3 and 4 follow
the same lines as Lemma 1.

Lemma 3 Let MR1
1 , . . . ,MRn

n be quotient LTSs, and
〈α0, a0, . . . , ak−1, αk〉 ∈ Path(MR1

1 ‖ . . . ‖ MRn
n ). Let

θ = 〈a0, . . . , ak−1〉 and αk = (α1
k, . . . , α

n
k ). Then for

1 ≤ i ≤ n, (θ ↓ i,AbsRef (αik)) ∈ AbsFail(MRi
i ).

Lemma 4 Let MR1
1 , . . . ,MRn

n be quotient LTSs. Then
(θ, F ) ∈ AbsFail(MR1

1 ‖ . . . ‖ MRn
n ) iff there ex-

ist F1, . . . , Fn such that: (i) F =
⋃n
i=1 Fi, and (ii) for

1 ≤ i ≤ n, (θ ↓ i, Fi) ∈ AbsFail(MRi
i ).

In the rest of this article we often make implicit use
of the following facts. Let MR1

1 , . . . ,MRn
n be quotient

LTSs. Then Σ(MR1
1 ‖ . . . ‖ MRn

n ) =
⋃n
i=1 Σ(MRi

i ) =⋃n
i=1 Σ(Mi) = Σ(M1 ‖ . . . ‖Mn).
The notion of abstract failures leads naturally to the no-

tion of abstract deadlocks.

Definition 12 (Abstract Deadlock) Let MR1
1 , . . . ,MRn

n

be quotient LTSs and M̂‖ = MR1
1 ‖ . . . ‖ MRn

n .

M̂‖ is said to have an abstract deadlock iff

(θ,Σ(M̂‖)) ∈ AbsFail(M̂‖) for some θ ∈ Σ(M̂‖)∗.

LetMR1
1 , . . . ,MRn

n be quotient LTSs and M̂‖ = MR1
1 ‖

. . . ‖ MRn
n . Clearly, M̂‖ has an abstract deadlock iff

there exists 〈α0, a0, α1, a1, . . . , an−1, αn〉 ∈ Path(M̂‖)

such that AbsRef (αn) = Σ(M̂‖). We call such a path a
counterexample to abstract deadlock freedom, or simply an
abstract counterexample. It is easy to devise an algorithm to
check whether M̂‖ has an abstract deadlock and also gen-
erate a counterexample in case an abstract deadlock is de-
tected. We call this algorithm AbsDeadlock.

AbsDeadlock explores the reachable states of M̂‖ in,
say, breadth-first manner. For each state α, it checks if
AbsRef (α) = Σ(M̂‖). If so, it generates a counterexample
from the initial state to α by standard techniques, reports
the presence of an abstract deadlock and terminates. If no
state α with AbsRef (α) = Σ(M̂‖) can be found, it reports

the absence of abstract deadlocks and terminates. Since M̂‖
has a finite number of states and transitions, AbsDeadlock
always terminates with the correct answer.

The following lemma shows that abstract deadlock free-
dom in the composition of quotient LTSs entails deadlock
freedom in the composition of the corresponding concrete
LTSs.

Lemma 5 Let M1, . . . ,Mn be LTSs and R1, . . . , Rn
equivalence relations on S(M1), . . . , S(Mn) respectively.
If MR1

1 ‖ . . . ‖ MRn
n does not have an abstract deadlock

then M1 ‖ . . . ‖Mn does not deadlock either.

Proof 2 It suffices to prove the contrapositive. Let us de-
note M1 ‖ . . . ‖Mn by M‖ and MR1

1 ‖ . . . ‖MRn
n by M̂‖.

Now suppose M‖ has a deadlock.

1. By Definition 6: (θ,Σ(M‖)) ∈ Fail(M‖) for some
θ = 〈a0, . . . , ak−1〉.

2. From 1 and Lemma 1: there exist F1, . . . , Fn such
that: (i)

⋃n
i=1 Fi = Σ(M‖) and (ii) for 1 ≤ i ≤ n,

(θ ↓ i, Fi) ∈ Fail(Mi).

3. From 2(ii) and Lemma 2: for 1 ≤ i ≤ n, ∃F ′i ⊇ Fi
such that (θ ↓ i, F ′i ) ∈ AbsFail(MRi

i ).

4. From 2(i) and 3:
⋃n
i=1 F

′
i ⊇

⋃n
i=1 Fi = Σ(M‖) =

Σ(M̂‖), thus
⋃n
i=1 F

′
i = Σ(M̂‖).

5. From 3, 4 and Lemma 4: (θ,Σ(M̂‖)) ∈ AbsFail(M̂‖).

6. From 5 and Definition 12: M̂‖ has an abstract dead-
lock.

�

Unfortunately, the converse of Lemma 5 does not hold (a
counterexample is not difficult to find and we leave this task



to the reader). Suppose therefore that AbsDeadlock reports
an abstract deadlock for MR1

1 ‖ . . . ‖ MRn
n along with an

abstract counterexample π. We must then decide whether
π also leads to a deadlock in M1 ‖ . . . ‖ Mn or not. This
process is called counterexample validation and is presented
in the next section.

5. Counterexample Validation

In this section we present our approach to check
the validity of an abstract counterexample returned by
AbsDeadlock.

Definition 13 (Valid Counterexample) Let
MR1

1 , . . . ,MRn
n be quotient LTSs and let π =

〈α0, a0, . . . , ak−1, αk〉 be an abstract counterexample
returned by AbsDeadlock on MR1

1 ‖ . . . ‖ MRn
n . Write

θ = 〈a0, . . . , ak−1〉 and αk = (α1
k, . . . , α

n
k ). We say

that π is a valid counterexample iff for 1 ≤ i ≤ n,
(θ ↓ i,AbsRef (αik)) ∈ Fail(Mi).

A counterexample is said to be spurious iff it is not valid.
Let M be an arbitrary LTS, θ ∈ Σ(M)∗, and F ⊆ Σ(M).
It is easy to design an algorithm that takes M , θ, and F as
inputs and returns TRUE if (θ, F ) ∈ Fail(M) and FALSE

otherwise. We call this algorithm IsFailure and give its
pseudo-code in Figure 4. Starting with the initial state, Is-
Failure repeatedly computes successors for the sequence
of actions in θ. If the set of successors obtained at some
point during this process is empty, then (θ, F ) 6∈ Fail(M)
and IsFailure returns FALSE. Otherwise, if X is the set of
states obtained after all actions in θ have been processed,
then (θ, F ) ∈ Fail(M) iff there exists s ∈ X such that
Ref (s) = F . The correctness of IsFailure should be clear
from Definition 5.

Algorithm IsFailure (M, θ, F )
// M is an LTS, θ ∈ Σ(M)∗, F ⊆ Σ(M)

suppose M = (S, init ,Σ, T ) and θ = 〈a0, . . . , an−1〉;
let X := {init};
for i := 0 to n− 1

let X :=
⋃
s∈X Succ(s, ai);

if X = ∅ return FALSE;
end-for;
return

∨
s∈X(Ref (s) = F );

Figure 4. Algorithm IsFailure returns TRUE if
(θ, F ) ∈ Fail(M) and FALSE otherwise.

Lemma 6 Let MR1
1 , . . . ,MRn

n be quotient LTSs and let π
be an abstract counterexample returned by AbsDeadlock on

MR1
1 ‖ . . . ‖ MRn

n . If π is a valid counterexample then
M1 ‖ . . . ‖Mn has a deadlock.

Proof 3 Let us denote M1 ‖ . . . ‖ Mn by M‖ and MR1
1 ‖

. . . ‖ MRn
n by M̂‖. Also let π = 〈α0, a0, . . . , ak−1, αk〉,

θ = 〈a0, . . . , ak−1〉, and αk = (α1
k, . . . , α

n
k ).

1. Since π is an abstract counterexample:
AbsRef (αk) = Σ(M̂‖) = Σ(M‖).

2. From 1 and Definition 10:
⋃n
i=1 AbsRef (αik) =

AbsRef (αk) = Σ(M‖).

3. Counterexample is valid: for 1 ≤ i ≤ n, (θ ↓
i,AbsRef (αik)) ∈ Fail(Mi).

4. From 3 and Lemma 1: (θ,
⋃n
i=1 AbsRef (αik)) ∈

Fail(M‖).

5. From 2, 4 and Definition 6: M‖ has a deadlock.

�

6. Abstraction Refinement

In case the abstract counterexample π returned by
AbsDeadlock is found to be spurious, we wish to refine our
abstraction on the basis of π and re-attempt the deadlock
check. In this section we present our abstraction refinement
scheme. We begin with the notion of abstract successors.

Definition 14 (Abstract Successor) Let M be an LTS,
R ⊆ S(M) × S(M) an equivalence relation, and let
s ∈ S(M) and a ∈ Σ(M). Then AbsSucc(s, a) = {[s′] ∈
S(MR) | s′ ∈ Succ(s, a)}.

In other words, α is an abstract successor of s un-
der action a iff M has an a-labeled transition from s to
some element of α. In our framework, abstraction refine-
ment involves refining an existing equivalence relation on
the basis of abstract successors. More precisely, given
M , R, α ∈ S(MR) and A ⊆ Σ(M), we denote by
Split(M,R,α,A) the equivalence relation obtained from
R by sub-partitioning the equivalence class α according
to the following scheme: ∀s, s′ ∈ α, s and s′ belong to
the same sub-partition of α iff ∀a ∈ A � AbsSucc(s, a) =
AbsSucc(s′, a).

Note that the equivalence classes (abstract states) other
than α are left unchanged. It is easy to see that
Split(M,R,α,A) is a refinement of R. In addition,
Split(M,R,α,A) is a proper refinement of R iff α is split
into more than one piece, i.e., if the following condition
holds: (PR) There exist a ∈ A, s, s′ ∈ α, and α′ ∈ S(MR)
such that α′ ∈ AbsSucc(s′, a) and α′ 6∈ AbsSucc(s, a).

In our approach, abstraction refinement involves com-
puting proper refinements of equivalence relations based



on abstract successors. This is achieved by the algorithm
AbsRefine presented in Figure 5. More precisely, AbsRe-
fine takes the following as inputs: (i) an LTS M , (ii) an
equivalence relation R ⊆ S(M) × S(M), (iii) a trace
θ ∈ Σ(M)∗, and (iv) a set of actions F ⊆ Σ(M). In
addition, the inputs to AbsRefine must obey the following
two conditions: (AR1) (θ, F ) ∈ AbsFail(MR) and (AR2)
(θ, F ) 6∈ Fail(M). AbsRefine then computes and returns a
proper refinement of R.

Algorithm AbsRefine (M,R, θ, F )
// M is an LTS, θ ∈ Σ(M)∗, F ⊆ Σ(M)
// R ⊆ S(M)× S(M) is an equivalence relation

1: suppose θ = 〈a0, . . . , ak−1〉;
2: find π = 〈α0, a0, . . . , ak−1, αk〉 ∈ Path(MR)

such that F = AbsRef (αk);
// π exists because of condition AR1

3: let X := α0;
4: for i := 0 to k − 1
5: let X := (

⋃
s∈X Succ(s, ai)) ∩ αi+1;

6: if X = ∅ return Split(M,R,αi, {ai});
7: end-for;
8: return Split(M,R,αk,AbsRef (αk));

Figure 5. Algorithm AbsRefine for doing ab-
straction refinement.

We now establish the correctness of AbsRefine. We con-
sider two possible scenarios.

1. Suppose AbsRefine returns from line 6 when the value
of i is l. Since αl

al→ αl+1 we know that there exists
s ∈ αl such that αl+1 ∈ AbsSucc(s, al). Let X ′ de-
note the value ofX at the end of the previous iteration.
For all s′ ∈ X ′, αl+1 6∈ AbsSucc(s′, al). Note that
X ′ 6= ∅ as otherwise AbsRefine would have terminated
with i = l − 1. Therefore, there exists s′ ∈ X ′ such
that αl+1 6∈ AbsSucc(s′, al). Hence the call to Split
at line 6 satisfies condition PR and AbsRefine returns a
proper refinement of R.

2. Suppose AbsRefine returns from line 8. We know
that at this point X 6= ∅. Pick an arbitrary s ∈
X . It is clear that there exist s0, . . . , sk−1 such that
〈s0, a0, . . . , sk−1, ak−1, s〉 ∈ Path(M). Hence by
condition AR2, Ref (s) 6= F . Again s ∈ αk, and from
the way π has been chosen at line 2, F = AbsRef (αk).
Hence by Definition 10, Ref (s) ⊆ F . Pick a ∈
Σ(M) such that a ∈ F and a 6∈ Ref (s). Then
AbsSucc(s, a) 6= ∅. Again since a ∈ AbsRef (αk)
there exists s′ ∈ αk such that a ∈ Ref (s′). Hence
AbsSucc(s′, a) = ∅. Hence the call to Split at line

8 satisfies condition PR and once again AbsRefine re-
turns a proper refinement of R.

7. Overall Algorithm

In this section we present our iterative deadlock de-
tection algorithm and establish its correctness. Let
M1, . . . ,Mn be arbitrary LTSs and M‖ = M1 ‖ . . . ‖ Mn.
The algorithm IterDeadlock takes M1, . . . ,Mn as inputs
and reports whether M‖ has a deadlock or not. If there is a
deadlock, it also reports a trace of each Mi that would lead
to the deadlock state. Figure 6 gives the pseudo-code for
IterDeadlock . It is an iterative algorithm and uses equiv-
alence relations R1, . . . , Rn such that, for 1 ≤ i ≤ n,
Ri ⊆ S(Mi) × S(Mi). Note that initially each Ri is set
to the trivial equivalence relation S(Mi)× S(Mi).

Algorithm IterDeadlock (M1, . . . ,Mn) // (Mi)’s are LTSs
1: for i := 1 to n : let Ri := S(Mi)× S(Mi);
2: forever do

// abstract and verify
3: let x := AbsDeadlock(MR1

1 , . . . ,MRn
n );

4: if (x = ‘no abstract deadlock’) then
report ‘no deadlock’ and exit;

5: suppose π = 〈α0, a0, . . . , ak−1, αk〉 is the
counterexample reported by AbsDeadlock;

6: suppose θ = 〈a0, . . . , ak−1〉 and αk = (α1
k, . . . , α

n
k );

// validate counterexample
7: find i ∈ {1, 2, . . . , n} such that

¬IsFailure(Mi, θ ↓ i,AbsRef (αik));
8: if no such i then report ‘deadlock’

and the (θ ↓ i)’s as counterexample;
// refine abstraction

9: let Ri := AbsRefine(Mi, Ri, θ ↓ i,AbsRef (αik));
10: end-do;

Figure 6. Pseudo-code for algorithm
IterDeadlock .

Theorem 1 The algorithm IterDeadlock is correct and al-
ways terminates.

Proof 4 First we argue that both AR1 and AR2 are sat-
isfied every time AbsRefine is invoked on line 9. The
case for AR1 follows from Lemma 3 and the fact that
〈α0, a0, . . . , ak−1, αk〉 ∈ Path(MR1

1 ‖ . . . ‖ MRn
n ). The

case for AR2 is trivial from line 7 and the definition of Is-
Failure.

Next we show that if IterDeadlock terminates it does so
with the correct answer. There are two possible cases:



1. Suppose IterDeadlock exits from line 4. Then we know
that MR1

1 ‖ . . . ‖ MRn
n does not have an abstract

deadlock. Hence by Lemma 5, M1 ‖ . . . ‖ Mn does
not have a deadlock.

2. Otherwise, suppose IterDeadlock exits from line 8.
Then we know that for 1 ≤ i ≤ n, (θ ↓ i,
AbsRef (αik)) ∈ Fail(Mi). Hence by Definition 13,
π is a valid counterexample. Therefore, by Lemma 6,
M1 ‖ . . . ‖Mn has a deadlock.

Finally, termination follows from the fact that the AbsRe-
fine routine invoked on line 9 always produces a proper re-
finement of the equivalence relation Ri. Since each Mi has
only finitely many states, this process cannot proceed indef-
initely. (In fact, the abstract LTSs converge to the bisim-
ulation quotients of their concrete counterparts, since Ab-
sRefine each time performs a unit step of the Paige-Tarjan
algorithm [30]; however in practice deadlock freedom is
often established or disproved well before the bisimulation
quotient is achieved.)

�

8. Experimental Results

We implemented our technique in the MAGIC tool.
MAGIC extracts finite LTS models from C programs using
predicate abstraction. These LTSs are then analyzed for
deadlock using the approach presented in this article. Once
a real counterexample π is found at the level of the LTSs
MAGIC analyzes π and, if necessary, creates more refined
models by inferring new predicates. Our actual implemen-
tation is therefore a two-level CEGAR scheme. We elide
details of the outer predicate abstraction-refinement loop as
it is similar to our previous work [7].

Figure 7 summarizes our results. The ABB benchmark
was provided to us by our industrial partner, ABB [1] Cor-
poration. It implements part of an interprocess communi-
cation protocol (IPC-1.6) used to mediate communication
in a multi-threaded robotics control automation system de-
veloped by ABB. The implementation is required to sat-
isfy various safety-critical properties, in particular, dead-
lock freedom. The IPC protocol supports multiple modes
of communication, including synchronous point-to-point,
broadcast, publish/subscribe, and asynchronous commu-
nication. Each of these modes is implemented in terms
of messages passed between queues owned by different
threads. The protocol handles the creation and manipulation
of message queues, synchronizing access to shared data us-
ing various operating system primitives (e.g., semaphores),
and cleaning up internal state when a communication fails
or times out.

In particular, we analyzed the portion of the IPC protocol
that implements the primitives for synchronous communi-
cation (approx. 1500 LOC) among multiple threads. With
this type of communication, a sender sends a message to a
receiver and blocks until an answer is received or it times
out. A receiver asks for its next message and blocks until a
message is available or it times out. Whenever the receiver
gets a synchronous message, it is then expected to send a
response to the sender. MAGIC successfully verified the ab-
sence of deadlock in this implementation.

The SSL benchmark represents a deadlock-free system
(approx. 700 LOC) consisting of one OpenSSL server and
one OpenSSL client. The UCOSD-n benchmarks are de-
rived from the MicroC/OS version 2.7, a real-time operating
system for embedded processors, and consist of n threads
(approx. 6000 LOC) executing concurrently. Access to
shared data is protected via locks. This implementation
suffers from deadlock. In contrast, the UCOSN-n bench-
marks are deadlock-free. The RW-n benchmarks imple-
ment a deadlock-free reader-writer system (194 LOC) with
n readers, n writers, and a controller. The controller ensures
that at most one writer has access to the critical section.
Finally, the DPN-n benchmarks represent a deadlock-free
implementation of n dining philosophers (251 LOC), while
DPD-n implements n dining philosophers (163 LOC) that
can deadlock. As Figure 7 shows, even though the imple-
mentations are of moderate size, the total state space is often
quite large due to exponential blowup.

All our experiments were carried out on an AMD Athlon
XP 1600+ machine with 1 GB of RAM. Values under Iter-
Deadlock refer to measurements for our approach while
those under Plain correspond to a naive approach involving
only predicate abstraction refinement. We note that Iter-
Deadlock outperforms Plain in almost all cases. In many
cases IterDeadlock is able to establish deadlock or dead-
lock freedom while Plain runs out of time. Even when both
approaches succeed, IterDeadlock can yield over 20 times
speed-up in time and require over 4 times less memory (RW-
6). For the experiments involving dining philosophers with
deadlock however, Plain performs better than IterDeadlock.
This is because in these cases Plain terminates as soon as it
discovers a deadlocking scenario, without having to explore
the entire state-space. In contrast, IterDeadlock has to per-
form many iterations before finding an actual deadlock.

9. Conclusion

We presented a novel algorithm to detect deadlocks
in concurrent blocking message-passing programs. The
strength of our approach is that it leverages the two powerful
paradigms of abstraction and compositional reasoning, de-
spite the fact that deadlock is non-compositional and its ab-
sence is not preserved by standard abstractions. In addition,



Name Plain IterDeadlock
SM SR I T M SM SR I T M

ABB 2.1× 109 * * * 162 4.1× 105 1973 861 1446 33.3
SSL 49405 25731 1 44 43.5 16 16 16 31.9 40.8

UCOSD-2 1.1× 105 5851 5 24 14.5 374 261 77 14.5 12.9
UCOSD-3 2.1× 107 * * * 58.6 6144 4930 120 221.8 15
UCOSN-4 1.9× 107 39262 1 18.1 14.1 8192 2125 30 8.1 10.5
UCOSN-5 9.4× 108 4.2× 105 1 253 52.2 65536 12500 37 80 12.7
UCOSN-6 4.7× 1010 * * * 219.3 5.2× 105 71875 44 813 30.8

RW-4 1.3× 109 8369 4 6.48 10.8 5120 67 54 4.40 10.0
RW-5 9.0× 1010 54369 4 35.1 15.9 24576 132 60 7.33 10.4
RW-6 5.8× 1012 3.5× 105 4 257 45.2 1.1× 105 261 66 12.6 10.8
RW-7 1.5× 1014 * * * 178 5.2× 105 518 72 25.3 11.8
RW-8 * * * * * 2.4× 106 1031 78 60.5 14.0
RW-9 * * * * * 1.7× 107 2056 84 132 14.5

DPN-3 3.6× 107 1401 2 .779 - 5832 182 27 .849 -
DPN-4 1.1× 1010 16277 2 11.8 10.9 1.0× 105 1274 34 7.86 9.5
DPN-5 3.2× 1012 1.9× 105 2 197 28.0 1.9× 106 8918 41 84.6 11.4
DPN-6 9.7× 1014 * * * 203 3.4× 107 62426 48 831 26.1
DPD-9 3.5× 1022 11278 1 22.5 12.0 5.2× 109 13069 46 191 12.2

DPD-10 1.1× 1025 38268 1 87.6 17.3 6.2× 1010 44493 51 755 18.4

Figure 7. Experimental results. SM = maximum # of states; SR = # of reachable states; I = # of
iterations; T = time in seconds; M = memory in MB; time limit = 1500 sec; - indicates negligible value;
* indicates out of time; notable figures are highlighted.

our technique is automated and employs iterative abstrac-
tion refinement to scale to real-life examples. Experimental
results demonstrate the effectiveness of our approach on in-
dustrial benchmarks. We believe it can be improved further
by using assume-guarantee style reasoning, and we plan to
investigate this issue in the future.
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