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Abstract— In human walking, the swing leg moves backward
just prior to ground contact, i.e. the relative angle between
the thighs is decreasing. We hypothesized that this swing leg
retraction may have a positive effect on gait stability, because
similar effects have been reported in passive dynamic walking
models, in running models, and in robot juggling. For this study,
we use a simple inverted pendulum model for the stance leg. The
swing leg is assumed to accurately follow a time-based trajectory.
The model walks down a shallow slope for energy input which
is balanced by the impact losses at heel strike. With this model
we show that a mild retraction speed indeed improves stability,
while gaits without a retraction phase (the swing leg keeps moving
forward) are consistently unstable. By walking with shorter steps
or on a steeper slope, the range of stable retraction speeds
increases, suggesting a better robustness. The conclusions of this
paper are therefore twofold; (1) use a mild swing leg retraction
speed for better stability, and (2) walking faster is easier.

Index Terms— Swing leg trajectory, dynamic walking, biped,
swing leg retraction

I. INTRODUCTION

In human walking, the swing leg moves forward to maximal
extension and then it moves backward just prior to ground
contact. This backward motion is called ‘swing leg retraction’;
the swing foot stops moving forward relative to the floor
and it may even slightly move backward. In biomechanics
it is generally believed that humans apply this effect (also
called ‘ground speed matching’) in order to reduce heel strike
impacts. However, we believe that there is a different way
in which swing leg retraction can have a positive effect on
stability; a fast step (too much energy) would automatically
lead to a longer step length, resulting in a larger energy loss
at heel strike. And conversely, a slow step (too little energy)
would automatically lead to a shorter step length, resulting in
less heel strike loss. This could be a useful stabilizing effect
for walking robots.

The primary motivation to study swing leg retraction comes
from our previous work on passive dynamic walking [15], [4],
[18]. Passive dynamic walking [11] robots can demonstrate
stable walking without any actuation or control. Their energy
comes from walking downhill and their stability results from
the natural dynamic pendulum motions of the legs. Interest-
ingly, such walkers possess two equilibrium gaits, a ‘long
period gait’ and a ‘short period gait’ [12], [5]. The long
period gait has a retraction phase, and this gait is the only
one that can be stable. The short period gait has no swing
leg retraction. This solution is usually dismissed, as it never
provides passively stable gaits.

More motivation stems from work on juggling and running,
two other underactuated dynamic tasks with intermittent con-

tact. The work on juggling [14] featured a robot that had to hit
a ball which would then ballistically follow a vertical trajectory
up and back down until it was hit again. The research showed
that stable juggling occurs if the robot hand is following a well
chosen trajectory, such that its upward motion is decelerating
when hitting the ball. The stable juggling motion required no
knowledge of the actual position of the ball. We feel that the
motion of the hand and ball is analogous to that of the swing
leg and stance leg, respectively. Also analogous is the work
on a simple point-mass running model [16]. It was shown that
the stability of the model was significantly improved by the
implementation of a retraction phase in the swing leg motion.
It has been suggested [13] that this effect also appears in
walking.

In this paper we investigate the stabilizing influence of the
swing leg retraction speed just prior to heel strike impact. We
use a Poincaré map analysis of a simple point-mass model
(Section II). The results are shown in Section III, including a
peculiar asymmetric gait that is more stable than any of the
symmetric solutions. Section IV reports that the results are
also valid for a model with a more realistic mass distribution.
The discussion and conclusion are presented in Sections V and
VI.

II. SIMULATION MODEL AND PROCEDURE

The research in this paper is performed with an inverted
pendulum model consisting of two straight and massless legs
(no body) and a single point mass at the hip joint, see Fig. 1.
Straight legged (‘compass gait’) models are widely used as an
approximation for dynamic walking [7], [6], [9], [8], [5].
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Fig. 1. Our inverse pendulum model, closely related to the ‘Simplest Walking
Model’ of [5].

A. Stance leg
The stance leg is modeled as a simple inverted pendulum

of length 1 (m) and mass 1 (kg) (Fig. 1). It undergoes
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gravitational acceleration of 1 (m/s2) at an angle of γ following
the common approach to model a downhill slope in passive
dynamic walking. It has one degree of freedom denoted by θ,
see Fig. 1. The foot is a point and there is no torque between
the foot and the floor. The equation of motion for the stance
leg is:

θ̈ = sin(θ − γ) (1)

which is integrated forward using a 4th order Runge-Kutta
integration routine with a time step of 0.001 (s).

B. Swing leg

The swing leg is modeled as having negligible mass. Its
motion does not affect the hip motion, except at the end of
the step where it determines the initial conditions for the next
step. A possible swing leg motion is depicted in Fig. 2 with
a dashed line. As is standard with compass gait walkers, we
ignore the brief but inevitable foot scuffing at midstance.
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Fig. 2. The figure shows an example trajectory and it shows the stable
region (hatched area) for retraction speeds. Only the swing leg trajectory
around heel strike is important; the swing leg by itself has no dynamic effect
on the walking motion other than through foot placement.

The swing leg motion at the end of the step is a function
of time which we construct in two stages. First we choose
at which relative swing leg angle φ (See Fig. 1) heel strike
should take place, φlc. This is used to find a limit cycle (an
equilibrium gait), which provides the appropriate step time,
Tlc. Second, we choose a retraction speed φ̇. The swing leg
angle φ is then created as a linear function of time going
through the point {Tlc, φlc} with slope φ̇.

C. Transition

The simulation transitions from one step to the next when
heel strike is detected, which is the case when φ = −2θ. An
additional requirement is that the foot must make a downward

motion, resulting in an upper limit for the forward swing leg
velocity φ̇ < −2θ̇ (note that θ̇ is always negative in normal
walking, and note that swing leg retraction happens when
φ̇ < 0). In our simulation, we use a third order polynomial
to interpolate between two simulation data points in order to
accurately find the exact time and location of heel strike.

The transition results in an instantaneous change in the
velocity of the point mass at the hip, see Fig. 3. All of the
velocity in the direction along the new stance leg is lost in
collision, the orthogonal velocity component is retained. This
results in the following transition equation:

θ̇+ = θ̇− cosφ (2)

in which θ̇− indicates the rotational velocity of the old stance
leg, and θ̇+ that of the new stance leg. At this instant, θ and φ
flip sign (due to relabeling of the stance and swing leg). Note
that in Eq. 2 φ could equally well be replaced with 2θ.
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φ

.

.

Fig. 3. At heel strike the velocity of the point mass is redirected. All velocity
along the length of the new stance leg is lost, so that θ̇+ = θ̇− cos φ.

The instant of transition is used as the start of a new step
for the swing leg controller; in the case that a disturbance
would make step n last longer than usual, then the start of the
swing leg trajectory for step n + 1 is postponed accordingly.
Thus, although the swing leg motion is a time-based trajectory
independent of the state of the stance leg, it does depend on
foot contact information for the start of the trajectory.

D. Finding limit cycles

The model exhibits a limit cycle if the initial conditions of
step n+1 are exactly equal to those of step n. For this model,
the only independent initial conditions are the stance leg angle
(θ) and its velocity (θ̇). The motion of the swing leg is fully
trajectory controlled; we assume that it accurately follows the
desired trajectory.

The first step of finding a limit cycle is to guess initial
conditions that are near a hypothesized limit cycle, either
through experience or by starting from a known limit cycle for
similar parameter values. This provides initial guess {θ0, θ̇0}.
Then a Newton-Raphson gradient-based search algorithm is
applied on the difference between {θ0, θ̇0} and the initial
conditions of the next step, which we obtain through forward
simulation. The search algorithm terminates when the norm of
the difference is smaller than 1e−9. The search algorithm uses
a numerically obtained gradient J which is also used for the
stability analysis as described in the next paragraph. Note that
this procedure can find unstable as well as stable limit cycles.
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E. Poincaré stability analysis

The stability of the gait is analyzed with the Poincaré
mapping method, which is a linearized stability analysis of the
equilibrium gait. The Poincaré mapping method perturbs the
two independent initial conditions and monitors the effect on
the initial conditions for the subsequent step. Assuming linear
behavior, the relation between the original perturbations at step
n and the resulting perturbations at step n + 1 is captured in
the Jacobian matrix J, as in:[

∆θn+1

∆θ̇n+1

]
= J

[
∆θn

∆θ̇n

]
(3)

If the magnitudes of both of the eigenvalues of J are smaller
than 1, then errors decay step after step and the gait is stable.
The eigenvalues could have imaginary parts, as was the case
for the passive model [5], but in the model with trajectory
control they have no imaginary parts.

F. Nominal gait

We have chosen the steady passive gait with a slope of γ =
0.004 rad as a basis of reference for walking motions. For the
passive model, γ is the only parameter, and for γ = 0.004 there
exists only one unstable equilibrium gait (the ’short period
solution’) and one stable equilibrium gait (the ’long period
solution’). We use the latter as our reference gait. The initial
conditions and the step time of that gait are listed in Table I.

TABLE I
INITIAL CONDITIONS AND STEP TIME FOR STEADY WALKING OF THE

PASSIVE WALKING MODEL AT A SLOPE OF γ = 0.004 RAD. NOTE THAT

THE INITIAL VELOCITY FOR THE SWING LEG φ̇ IS IRRELEVANT FOR OUR

STUDY, BECAUSE THE SWING LEG MOTION IS FULLY TRAJECTORY

CONTROLLED.

θ 0.1534 rad
φ = −2θ 0.3068 rad

θ̇ -0.1561 rad/s
φ̇ 0.0073 rad/s

step time 3.853 s

III. RESULTS

A. Nominal limit cycle

For the given gait of Table I on a given slope of γ = 0.004
rad, the only parameter that we can vary is the retraction speed
φ̇; how fast is the swing leg moving rearward (or forward,
depending on the sign) just prior to heel strike. This parameter
has no influence on the nominal gait, but it does change the
behavior under small disturbances as captured by the Poincaré
stability analysis. Note that the swing leg will follow a fixed
time-based trajectory independent of the disturbances on the
initial conditions.

The stability results are shown in Fig. 4; the eigenvalues
of J on the vertical axis versus the retraction speed φ̇ at the
horizontal axis. A positive value for φ̇ indicates that the swing
leg keeps moving forward, a value of zero means that the
swing leg is being held at the heel strike value φ = 0.3068
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Fig. 4. The graph shows the range of stable retraction speeds. The stability
is indicated with eigenvalues of J on the vertical axis. The walking motion is
stable if the eigenvalues are between -1 and 1. The horizontal axis contains
the retraction speed φ̇. A positive value for φ̇ indicates that the swing leg
keeps moving forward, a value of zero means that the swing leg is being held
at the heel strike value φ = 0.3068 and so the foot comes down vertically.
A negative value for φ̇ indicates the presence of a retraction phase. Stable
gaits exist for retraction speeds between -0.18 and +0.009 rad/s. In words, this
graph shows that relative hip angle should be decreasing around the instant
that heel strike is expected.

and so the foot comes down vertically. A negative value for
φ̇ indicates the presence of a retraction phase.

Fig. 4 shows that stable gaits emerge for retraction speeds
of −0.18 < φ̇ < 0.009, and that the fastest convergence will
be obtained with φ̇ = −0.09 since the maximum absolute
eigenvalue is minimal at that point. In other words, swing leg
retraction is not necessary for stable walking, but errors will
definitely decay faster if the swing leg motion does include a
retraction phase. Also, even though some forward swing leg
motion (φ̇ > 0) is allowable, this would make the walker
operate very close to instability characterized by a rapidly
growing eigenvalue.

An interesting data point is φ̇ = 0. One of the eigenvalues
there is zero (λ1 = 0); any errors in the initial condition θ will
be completely eliminated within one step, because it is certain
that the step will end with φ = 0.3068 as the swing leg will be
held at that value until heel strike occurs. The other eigenvalue
can also be calculated manually. Although the derivation is a
little more involved, the result simply reads λ2 = cos2 φ. A
system with φ̇ = 0 is dynamically equivalent to the ‘Rimless
Wheel’ [10], [2].

B. The influence of step length

We repeat the stability analysis of the previous subsection
still using the same slope γ = 0.004 but varying the step length
of the gait. For example, we chose a much faster and shorter
step starting with θ0 = −0.1317. The limit cycle belonging
to that value starts with θ̇0 = −0.17 while the step time is
2s (this is what we tuned for). The resultant eigenvalues are
shown in Fig. 5. Clearly there is a much larger range of stable
retraction speeds, at the cost of slightly slower convergence.
The optimal retraction speed is φ̇ = −0.71 which produces
eigenvalues of 0.8, i.e. errors decrease 20% per step.
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Fig. 5. A faster walking motion (T = 2 s) leads to a much larger range of
stable retraction speeds.

Fig. 6 provides an overview of the effect of step length on
stable range of retraction speeds and the optimal retraction
speed and accompanying eigenvalues. The stable range de-
creases for larger step lengths until it is zero for φ = 0.3155.
Above that value no limit cycles exist, because the energy
supply from gravity cannot match the large impact losses. Near
this value, the walker is operating dangerously close to a state
in which it does not have sufficient forward energy to pass
the apex at midstance, resulting in a fall backward. The main
conclusion from this graph is that it is wise to operate well
away from a fall backward, i.e. walk fast!
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Fig. 6. Effect of step length on the range of stable retraction speeds for a
floor slope of γ = 0.004. The gray area shows that shorter steps are better.
The graph also shows the retraction speed with the smallest eigenvalues.

C. The influence of the slope angle

The influence of the slope angle is similar to the that of the
step length. A steeper slope provides more energy input and
thus the resultant gait is faster, an effect similar to decreasing
the step length. Fig. 7 shows how the range of stable retraction
speeds depends on the slope angle, for the nominal step length
φ = 0.3068.

D. Asymmetric gait is more stable

The results in the previous sections show that the retraction
speed can change the eigenvalues, but it doesn’t ever seem to
obtain eigenvalues of all zeros. The explanation is simple; the
system uses one control input (the swing leg angle φ at heel
strike) with which it must stabilize two states (stance leg angle
θ and its velocity θ̇). Although this mismatch cannot result
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Fig. 7. Effect of floor slope on the range of stable retraction speeds for a
step length of φ = 0.3068. The gray area shows that steeper slopes (and thus
faster steps) are better. The graph also shows the retraction speed with the
smallest eigenvalues.

in ‘deadbeat control’ (all eigenvalues zero) within a single
step, it should be possible to find a deadbeat controller for a
succession of two steps. Here we present such a controller for
our nominal situation of γ = 0.004 and φ = 0.3068.

The previous solutions were all symmetric, i.e. the trajectory
of the swing leg was the same each step. We found that a
purposefully induced asymmetric gait can result in eigenvalues
of all zeros. The swing leg trajectories (one for leg 1 and
another for leg 2) are shown in Fig. 8. Leg 1 always goes
to φ = 0.3068 and does not have a retraction phase (i.e. the
foot comes straight down). Leg 2 always follows a trajectory
with a retraction speed of φ̇ = −0.125245. If one calculates
the eigenvalues over a series of steps of Leg 1 - Leg 2 -
Leg 1 (or more), all eigenvalues are zero. This means that any
disturbance will be completely eliminated after three steps of
this asymmetric gait.
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Fig. 8. An asymmetric gait can lead to two-step deadbeat control, i.e. to
two eigenvalues of zero.

Preliminary research suggests that this ‘deadbeat’ solution
even pertains to large errors, although that requires a non-
constant retraction speed. We intend to investigate such large-
error solutions in the future. Note that in steady gait, the
motion of the swing legs is asymmetric (one retracts and
the other does not) but the step length and step time are
still symmetric. Also note that due to the asymmetry, the
eigenvalues cannot be divided up into ‘one-step’ eigenvalues.
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IV. AUTOMATED OPTIMIZATION ON A MORE REALISTIC
MASS DISTRIBUTION ALSO RESULTS IN SWING LEG

RETRACTION

The theoretical results in the previous section are based on
a point mass model for walking. One of the main assumptions
there is that the mass of the swing leg is negligible. Obviously,
in real walking systems this is not true. The reaction forces
and torques from a non-massless swing leg will influence the
walking motion. In our experience, the main effect is energy
input. Driving the swing leg forward also pumps energy into
the gait. A benefit of this effect is that a downhill slope
is no longer required, but the question is whether it breaks
the stabilizing effect of swing leg retraction. Or, even if it
does still help stability, whether the stability gain outweighs
the added energetic cost for accelerating the swing leg. We
study these questions using a model with a more realistic
mass distribution, based on a prototype we are currently
experimenting with [1] (Fig 9). The swing leg trajectory is
optimized both for stability and for efficiency.

c

l

g
w

m, I

Fig. 9. Our current experimental biped and a straight-legged model with
mass distribution based on the experimental robot, see Table II.

TABLE II
PARAMETER VALUES FOR A MODEL WITH A MORE REALISTIC MASS

DISTRIBUTION IN THE LEGS.

gravity g 9.81 m/s2

floor slope γ 0 rad
leg length l 0.416 m
leg mass m 3 kg
vertical position CoM c 0.027 m
horizontal position CoM w 0 m
moment of inertia I 0.07 kgm2

The model (Fig. 9) has the same topology as our initial
model (Fig. 1). However, instead of a single point mass at
the hip, the model now has a distributed mass over the legs,
see Table II. The swing leg follows the desired trajectory with
reasonable accuracy using a PD controller on the hip torque:

T = k(φ − φdes(t)) + dφ̇ (4)

with gain values k = 1500 and d = 10. The swing leg
trajectory is parameterized with two knot points defining
the start and the end of the retraction phase (Fig. 10). The
trajectory before the first knot point is a third order spline
which starts with the actual swing leg angle and velocity just
after heel strike. The trajectory between the two knot points
is a straight line. This parametrization provides the optimizer

with ample freedom to vary the retraction speed, the nominal
step length, and the duration of the retraction phase.
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Fig. 10. The desired trajectory for the swing leg is parameterized with two
knot points (four parameters).

The optimization procedure is set up as follows. The model
is started with manually tuned initial conditions, after which a
forward dynamic simulation is run for 20 simulated seconds.
The resulting motion is then rated for average velocity and
efficiency:

cost = Σ20s(wT T 2 + wv(ẋ − ẋdes)2 + wv ẏ2) (5)

with the weight for the torque penalty wT = 0.1, the weight
for the velocity penalty wv = 1, and the desired forward
velocity ẋdes = 0.3, summed over a trial interval of 20 s.
During the motion, random noise with uniform distribution is
added to the hip torque. In this way, the model is indirectly
rated for robustness; if the noise makes the walker fall, then
the resultant average walking velocity is low and so the penalty
for not achieving ẋdes is high.

A simulated annealing procedure optimized the cost func-
tion of Eq. (5) by adjusting the four knot point parameters
for the swing leg trajectory. Fig. 11 shows that for a wide
range of noise levels and initialization values, the optimization
procedure consistently settles into gaits a retraction phase.
These results fully concur with the theoretical results for the
model with massless legs. Therefore, we conclude that the
analysis is valid and the conclusions hold: walk fast and use
a mild retraction speed.

V. DISCUSSION

This work was limited to a small error analysis. Our future
work consists of analyzing the effect of the swing leg motion
when under large disturbances, i.e. an analysis of the basin
of attraction must be added to the present linearized stability
analysis [18]. We also intend to investigate the effects of an
increased model complexity by adding knees, feet, and an
upper body.

Observations of the gait of our previously developed
passive-based walking robots [17] show that they all walk with
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Fig. 11. Retraction speed φ̇ as a function of the level of random torque
disturbances. A negative value for φ̇ indicates the presence of a retraction
phase. The results are obtained with an optimization algorithm which was
initialized with trajectories with a retraction phase for some runs and without
one for others. Irrespective of the initialization and the level of disturbances,
the optimization always settles into a trajectory with a retraction phase, i.e. φ̇
is always negative just prior to foot contact.

a retraction phase in the swing leg motion. For illustration,
Fig 12 shows the motion of the swing foot with respect to the
floor, as measured with a motion capture system on our most
recent prototype Denise [3]. The measurements (an average of
over 150 steps) show that there exists a clear retraction phase
just prior to heel strike.

-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1
-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0
0.1

M
ar

ke
r p

o
si

ti
o

n
 fo

r m
o

ti
o

n
 c

ap
tu

re

time (s)

fo
o

t 
p

o
st

io
n

 in
 s

ag
it

ta
l p

la
n

e 
(m

)

heel strike
in all data

{

swing leg
retraction

Fig. 12. Left: our prototype Denise. Right: the graph shows the clear
existence of a retraction phase. The graphs shows a measurement of the motion
of Denise’s heel with respect to the floor. We measured over 150 steps from
several trials. The data is time-synchronized using heel strike at the end as
the reference, and the final position after heel strike is defined as 0 meters.
Then we calculated the mean and standard deviation, which are shown in the
graph.

VI. CONCLUSION

In this paper we research the effect of swing leg retraction
on gait stability. The conclusions are straightforward:

1) Walk fast; this decreases the sensitivity of the gait to
the swing leg motion just prior to heel contact.

2) Use mild swing leg retraction; by moving the swing
leg rearward just prior to heel contact, one avoids the
highly unstable effects that occur when the swing leg is
still moving forward at heel contact.
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