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 Abstract - This paper describes mechanisms used by 
humans to stand on moving platforms, such as a bus or 
ship, and to combine body orientation and motion 
information from multiple sensors including vision, 
vestibular, and proprioception. A simple mechanism, 
sensory re-weighting, has been proposed to explain how 
human subjects learn to reduce the effects of a moving 
support platform on balance. Our goal is to replicate this 
robust balance behavior in bipedal robots. We present 
results exploring sensory re-weighting in humans, 
simulation, and in a robot implementation. 
 
 Index Terms - Balance control, posture, sensory re-weighting 
 

I.  INTRODUCTION 

 Humans utilize a variety of sensory systems to maintain 
balance, primary among them being the visual, vestibular and 
proprioceptive systems. Several studies have demonstrated 
that human standing posture is affected by perturbations to 
these sensory systems [1-6], suggesting that feedback control, 
based on perceived body motion, contributes to postural 
stability. There is redundancy across these sensory systems 
and the organization of these feedback control mechanisms is 
not fully known. Also, there is some question as to whether 
feedback alone is sufficient for human postural control [7,8], 
although recent studies have shown that a postural control 
strategy based solely on sensory feedback can account for 
experimental findings involving a variety of proprioceptive 
and visual perturbations to postural control [9,10]. 

A key finding of human postural control experiments 
has been that the integration of sensory information appears to 
be dynamically regulated to adapt to changing environmental 
conditions and the available sensory information, a process 
sometimes referred to as “sensory re-weighting” [2,9-15]. For 
example, during eyes-closed stance on a fixed, level surface, 
the primary sensory source for information about body 
orientation in space is proprioceptive, but under conditions 
where the platform moves, the primary source of sensory 
information shifts from proprioceptive to graviceptive/ 
vestibular [9].  

Current biped robots move slower than humans and 
are much less stable [16-21]. The control algorithms are 
typically not designed to handle large perturbations or 

ambiguous sensory information, two components often seen in 
human balance experiments and daily activity. Instead, the 
floor is assumed to be level, stiff, and not in motion. 
Independent and decoupled simple linear controllers for each 
joint (joint-level PD control) with only proprioceptive 
feedback form the core of robot standing balance control, 
where perturbations small enough that decoupled linear 
control is adequate. Some robots use force control to 
implement a more compliant ankle [19,22,23] which is useful 
for stepping on uneven terrain, but not for standing vertically. 
There is only one response strategy to choose from, typically 
using ankle torques to adjust the center of pressure (the ankle 
strategy). One exception to this are the Honda robots, which 
can take a step in response to a large perturbation [19]. More 
advanced schemes have been proposed but not yet 
implemented [24-26]. 

We note a major difference between current robots 
and humans in how balance is maintained. In robotics, the 
emphasis has been on controlling the location of the center of 
pressure based on proprioception, with little use of vestibular 
signals and no use of vision. In humans, vestibular and visual 
signals are also important [9]. The multiple sensory sources 
allow for more complex sensorimotor strategies not seen in 
biped robots, and arguably contribute to robust human balance 
function across a variety of environments and perturbations. 

II.  HUMAN POSTURAL CONTROL AND SENSORY RE-WEIGHTING 

  Human postural control has been studied for over 
fifty years, with conceptual and computational models being 
developed. These models have led to advances in the 
diagnosis and management of balance disorders. A variety of 
models have been proposed and continue to be developed 
(e.g., [3,9,11,27-33]). Many models are developed in 
accordance with specific experimental conditions; while no 
single model explains all aspects of human postural control, 
the model [9] we consider in detail here has been shown to 
accurately fit experimental data in a variety of conditions, 
both steady-state [9] and transient [10]. Moreover, the model 
provides a conceptually simple, yet experimentally supported, 
concept of sensory adaptation / re-weighting. 
 The model (Figure 1) consists of a linearized (i.e., small 
angle) single-link inverted pendulum representation of body 
dynamics. Upright stance is maintained by a corrective torque 
applied about the ankle joint, generated by a proportional-
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integral-derivative (PID) controller, with fixed gain 
parameters KP, KI and KD. Note that the model utilizes both 
position and velocity information to stabilize the inverted 
pendulum, consistent with control theory.  
  The parameters KP and KD represent the active 
stiffness and damping, respectively, of the postural control 
system. They are termed “active” because they generate 
corrective torque in response to an external perturbation, in 
contrast to passive stiffness and damping of the muscles and 
tendons during quiet standing. The contributions of the 
passive stiffness and damping to torque generation have been 
found to be negligible during perturbations (a factor of ten 
smaller than the active torque generation) and can be dropped 
from the model [9,30]. The parameter td in the model 
represents the effective time delay of the system, which 
includes combined delays due to sensory transduction, neural 
transmission, nervous system processing, muscle activation, 
and force development. 
 If all of the sensory systems are modelled as having no 
dynamics over the bandwidth of body sway movement (i.e., 
taken as unity), then  

E (t) = W v (VS (t) − BS (t)) + W p (SS(t) − BS (t)) − W g (BS (t)) (1) 

For healthy subjects with intact sensory organs and 
perturbations limited in magnitude and bandwidth to those 
often used in experimental studies of human postural control 
(e.g., [9,10]), this “no dynamics” assumption for the sensory 
systems is reasonable, and simplifies the sensory integration 
strategy, which is modelled via the sensory weights Wv, Wg 
and Wp. Unlike the fixed PID gains of the controller, the 
sensory weights can change with environmental conditions 
(the “sensory re-weighting” strategy). These sensory weights 
represent the relative contribution of each sensory channel to 
postural control.  

 For the model, the body sway (BS) in response to support 
surface (SS) or visual scene (VS) motion is given in the 
Laplace domain by 

BS(s) = H(s)[WpSS(s) + WvVS(s)]    (2a) 

where s is the Laplace variable and 

H(s) =
(KDs2 + K ps + KI )e−std

Js3 − mghs + W(KDs2 + K ps + KI )e−std
 (2b) 

is the unity-gain transfer function of the postural control 
feedback model.  

A key concept of the model and the sensory re-
weighting hypothesis is the effective overall sensory weight, 
W, of the system, which is the sum of the sensory weights of 
those channels that contribute accurate sensory information 
about body sway (BS). For example, the effective overall 
sensory weight is W=Wp+Wg+Wv during eyes-open quiet 
standing on a fixed platform. But, for eyes-closed stance, the 
visual system does not contribute information about body 
sway, so the effective overall sensory weight in this case is 
W=Wp+Wg. For stance on a sway-referenced platform, on 
which the support surface rotates in one-to-one proportion to 
body sway (SS=BS in Figure 1), the proprioceptive channel 
does not contribute accurate information about body sway, so 
in this case the effective overall sensory weight is W=Wg+Wv. 
Thus, the sensory weights that contribute to the effective 
overall sensory weight are different under different 
environmental conditions (i.e., under different manipulations 
of the sensory inputs). An important point to appreciate is that 
as the value of W changes, the dynamics of body sway will 
change. In particular, during transient conditions the system 
can be pushed towards instability if sensory re-weighting is 
inadequate, causing W to be too large or too small, as 
discussed further below.  

 
Fig. 1: Feedback model of postural control. The body is modelled as a linearized inverted pendulum. The sensory pathways include variable sensory 
weights (Wg, Wv, Wp) that can change as environmental factors change (the “sensory re-weighting” hypothesis). BS, VS and SS are angles, with respect 
to earth-vertical, of the body, visual scene and support surface, respectively, as shown in the stick-figures. VB and BF are the relative angles of the 
visual scene and the support surface with respect to the body. Corrective torque about the ankle, Ta, is generated by a proportional-integral-derivative 
(PID) controller with fixed gains KP, KD, KI, acting on the combined delayed sensory error signal E. Modified from [9] and [10]. 



Steady-state vs. transient conditions  
 The sensory re-weighting hypothesis holds that, under 
steady-state conditions, the effective overall sensory weight is 
unity, W=1 (this is a torque normalization constraint that 
results in non-oscillatory dynamics of body sway) [9]. For 
example, for stance with eyes closed on a fixed platform, 
W=Wp+Wg=1 during steady-state. However, during transient 
conditions, in particular following a sudden change in the 
available sensory information, W will differ from unity for a 
period of time until the sensory integration process adjusts the 
weights of the sensory systems to compensate for the transient 
change in sensory information [10]. For example, for the eyes-
closed stance condition, if the platform suddenly transitions 
from fixed to sway-referenced, then the effective overall 
sensory weight becomes W=Wg, and this is initially less than 
unity. If W is not unity, then either too much or too little 
corrective torque will be generated and oscillatory sway will 
occur at specific frequencies. This oscillatory sway persists 
until the sensory integration process re-establishes W=1. The 
tendency of a system to oscillate at a particular frequency is 
called “resonance” and is reflected by a peak in the system’s 
frequency response at that frequency; the sharper the peak, the 
more “resonant” is the system, meaning the stronger and more 
sustained are the oscillations. Increased resonance is 
characteristic of a system nearing instability. This effect of 
changes in the value of W on the body sway that develops is 
illustrated in the frequency response magnitude plots shown in 
Figure 2.  Note that the model predicts oscillatory body sway 
at specific frequencies if sensory re-weighting is inappropriate 
(W less than or greater than one).  

 
Fig. 2:  Frequency response plots for the postural control model in 
Figure 1, showing the effects of changes in the effective overall sensory 
weight, W. Dotted curve is for W=0.81, solid is for W=1, dotted-dashed 
is for W=1.2. PID control parameters were the same in all cases 
[KP=18.1 N-m/deg, KI= 2.2 N-m/deg-s, KD=6.1 N-m-s/deg], as were 
other physical parameters [g=9.8 m/s2, m=83 kg, h=0.9 m, J=81 kg-m2]. 
Note the changes in the frequency response as W changes, and in 
particular the development of resonances (peaks in the frequency 
response) at particular frequencies for W>1 and W<1 

 

III. EXPERIMENTAL RESULTS: SENSORY RE-WEIGHTING IN 
HEALTHY YOUNG ADULTS 

 Under experimental conditions where the sensory input to 
the postural control system was deliberately altered, transient 
periods of low or high frequency oscillations in the body sway 
of healthy young adults were observed [10], consistent with 
the oscillations predicted by the frequency response of the 
model (Figure 2). Shown in Figure 3 (left) are body sway 
measurements and the corresponding time-varying spectrum 
(or time-frequency distribution) obtained during eyes-closed 
stance on a platform that transitioned from fixed, to sway 
referenced for 60 seconds (labelled SR in Figure 3), and then 
back to fixed. (See [10] for details of the experimental 
protocol, methodology and data analysis.) During the initial 
period of eyes-closed stance on the fixed platform, the 
effective overall sensory weight is W=Wp+Wg, and under the 
sensory re-weighting hypothesis, once steady-state has been 
reached we have Wp+Wg=1. Following the transition to the 
sway-referenced platform (starting at 60 seconds in the 
figure), the proprioceptive channel no longer provides 
accurate information about body sway.  Hence the effective 
overall sensory weight becomes W=Wg which will be less 
than unity immediately after the transition to sway-
referencing. This decrease in the value of W will cause a 
change in the frequency characteristics of body sway as 
predicted by the frequency response curve in Figure 2 (dashed 
curve) and seen experimentally in the time-varying spectrum 
of Figure 3 (left; note the band of energy in the TFD plot 
around 0.1 Hz that develops after t=60 s). As the body adjusts 
to the sway-referenced condition over time, sensory re-
weighting brings the effective sensory weight back to unity, 
i.e., the graviceptive weight Wg increases to near unity. Upon 
the transition back to a fixed platform (at t=120 sec), the 
effective sensory weight becomes W=Wp+Wg, but now the 
graviceptive weight is higher than it was during the initial 
fixed platform condition (t < 60 s), so that now W>1. 
According to the model, this should result in oscillatory sway 
near 1 Hz (Figure 2, dot-dashed curve), which was observed 
experimentally (see the time-varying spectrum in  Figure 3 
(left) and in particular the band of energy that develops 
around 1 Hz after t=120 s). A simulation from the model of 
these experimental conditions and postulated sensory re-
weighting is shown in Figure 3 (right). The good match 
between model predictions and experimental results inspires 
some confidence that the model captures important attributes 
of sensorimotor integration in postural control. 



 
Fig 3: Time series and corresponding time-varying spectra (or time-frequency distributions (TFD), bottom plots) of postural sway from a subject (LEFT) 
and from the model (RIGHT). The support surface angle (SS) is sway-referenced (SR) during the period 60-120 s. After rapidly returning to a fixed 
support surface within 1 s (denoted by the double vertical dotted lines at 120 s), body sway oscillations at ~1 Hz develop (orange-yellow band in the 
TFD around 1 Hz for t>120s), indicative of inadequate sensory re-weighting. (Boxed areas in the TFD correspond to time-frequency regions of interest 
for which energy ratios (ER) of high-frequency (0.7-1.3 Hz) to low-frequency (0.1-0.7 Hz) energy were analysed; numbers above the box reflect the 
ER values.) Adapted from [10]. 

IV. EXPERIMENTAL ROBOTIC CONTROL UTILIZING MANUAL 
SENSORY RE-WEIGHTING  

We have implemented a preliminary sensory re-weighting 
control strategy similar to that described in [9,10] in a biped 
robot. This preliminary implementation used the robot sensors 
directly, rather than attempting to simulate biological signals. 
To test the model, the robot was placed on a standard clinical 
balance testing platform (Figure 4), and controller gains were 
set to maintain stability, with proprioceptive (ankle angle) and 
graviceptive (inertial) sensory weights initially set to 0.6 and 
0.4, respectively (Figure 4 right). The proprioceptive and 
graviceptive gains are consistent with reports in the literature 
that during quiet standing with eyes closed, proprioception 
seems to be the dominant source of sensory information for 

standing balance in humans. 
The platform is initially fixed, and at a certain point (10 

seconds in Figure 4) begins sway referencing: rotating in 
direct 1:1 proportion to body angle about an axis collinear 
with the ankle joint of the robot. This behaviour has the effect 
of eliminating reliable ankle proprioception, because the ankle 
angle remains at approximately 90 degrees, independent of 
body sway. A feedback control strategy that utilizes primarily 
ankle proprioception would result in the robot falling shortly 
after the platform transitions to the sway-referenced condition, 
as indeed occurred when re-weighting was not used (Figure 
4). We note that it is not unusual for human subjects to also 
lose their balance the first time they experience a sway-
referenced platform with eyes closed. 

    
Fig. 4: Left: An experimental subject standing on a clinical balance platform (Equitest) in a visual “cave”. Middle: Our bipedal robot standing on an 
identical balance platform. Right: Preliminary results on robot balancing during sway referencing, which tilts the support platform to keep the ankle 
angle at 90o. The top graph plots body angle in two trials, and the vertical dashed line indicates the onset of sway-referencing. The first trial (dashed 
red line) is with fixed feedback gains, and the robot quickly falls. The second trial (solid blue line) is with sensory re-weighting where the weight on 
the now misleading ankle sensor is reduced. The bottom graph plots the manually specified sensor weightings for proprioception (Wp) and graviception 
(Wg) during sensory re-weighting.  When sensory re-weighting is not used the weights are held constant at their initial values (0.6, 0.4). 



To maintain balance, the source of sensory 
information must be rapidly switched from ankle 
proprioception to the graviceptive sensors, which provides a 
measure of body angle with respect to earth vertical. We 
manually implemented sensory re-weighting in the robot 
model, so that at the transition of the platform from fixed to 
sway-referenced, the graviceptive gain increased and the 
proprioceptive ankle gain decreased. This strategy resulted in 
stable stance for the robot on the sway-referenced platform 
(Figure 4). Thus, we have demonstrated that sensory re-
weighting is a feasible control solution that can be 
implemented on a physical system with its real world noise 
and unmodelled dynamics. 

V. BALANCE CONTROL IN AN OPTIMIZATION CONTEXT 

In this section we put sensory re-weighting in an 
optimal filtering and control context, to lay the groundwork 
for future automatic sensory re-weighting. Figure 5 is a block 
diagram of a linear quadratic Gaussian (LQG) model for 
standing balance in a humanoid robot. For simplicity, the 
robot dynamics are modelled as a single link inverted 
pendulum, where the states (angle and angular velocity) of the 
inverted pendulum are defined with respect to vertical. To 
maintain an upright position a controlling torque (uc) is 
applied at the ankle joint. The torque is generated by state 
feedback  , where K is the state feedback gain 
matrix and x  is the state estimate. The state feedback gain is 
designed to match the natural frequency (ω

xuc ˆK−=
ˆ

n=2) and damping 
ratio (ζ=1) found in human experiments [9]. The robot’s mass 
multiplied by the height of its center of mass is mlcm=34.29 
Kg-m, and its moment of inertia about the ankle is J=52.39 
Kg-m2. The position and velocity gains are given by: 

gmlJK cmnP += 2ω       (3a) 

JK nD ζω2=        (3b) 

resulting in . [ ]4.2253.551K =
 

 
 
Fig. 5: Linear quadratic Gaussian model for standing balance, where 
vector elements are represented by bold letters and lines. The robot 
dynamics are modeled as a single-link inverted pendulum. The model 
includes two sensory channels, namely the proprioceptive (ankle) and 
graviceptive (vestibular), where both channels are assumed to sense 
position and velocity. The ankle torque uc is generated by state feedback. 
State estimates are obtained from a Kalman filter. 

 
State estimates are obtained from a Kalman filter, 

where the inputs are the noisy sensory channels as well as the 
ankle torque (Figure 5). The model includes two sensory 
channels: the proprioceptive (ankle) and graviceptive 
(vestibular) channels. It is assumed that each sensory channel 
senses both position and velocity of the robot and that the 
channels have no dynamics over the bandwidth of body sway 
movement. To simulate spontaneous sway, we have included 
process noise (w) with variance Qw=.002. To perturb the 
proprioceptive sensory system we have included an external 
disturbance us which moves the foot. Since we model the 
ankle as a pure torque source, this perturbation does not affect 
the body directly, but only affects the proprioceptive 
measurement of joint angle and joint angular velocity. 
 
To design the Kalman filter, the covariance on the sensor 
noise is:  

RL1
=

0.14 0 0 0
0 0.14 0 0
0 0 65 0
0 0 0 0.21

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

     (4) 

⎥ 

 
where the noise covariance for the graviceptive channel is as 
reported in [11]. This leads to Kalman filter gains of 
 

L1 =
0.0043 0.0110 0.0000 0.0073
0.0110 0.0278 0.0000 0.0185

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥   (5) 

 
We choose the ratio of the velocity elements of R to get a ratio 
of 60/40 in the proprioceptive vs. graviceptive elements of L1, 
which roughly matches human sensor weightings [9]. We 
have found that scaling R as a whole has little effect on the 
Kalman filter gains, probably due to the fact that the 
controlled system is unstable. To handle proprioceptive 
perturbations, we design a second Kalman filter with sensor 
noise covariance and gains: 
 

 RL2
=

0.49 0 0 0
0 0.49 0 0
0 0 65 0
0 0 0 0.21

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

    (6) 

⎥ 

 

L2 =
0.0023 0.0057 0.0000 0.0134
0.0057 0.0145 0.0000 0.0339

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥   (7) 

 
In this case the estimate of the strength of proprioceptive 
sensor noise was increased, so that the ratio of proprioceptive 
to graviceptive velocity elements in L is roughly 30/70, 
matching human sensor weightings during ankle 
perturbations.  



We now present a simulation for the model described 
above. The external disturbance (platform perturbation) 
applied to the ankle has a total duration of 181 seconds and 
consists of two cycles of a pseudorandom ternary sequence 
(PRTS: random sequence of 0,-n,+n) preceded and followed 
by 30 seconds of no disturbance (Figure 6). Each cycle of the 
PRTS is 60.5 seconds with a 2-degree peak-to-peak 
amplitude. The body sway angle resulting from the external 
disturbance to the model is plotted in Figure 7, where the 
vertical black dashed line indicates onset of sensory re-
weighting (switching Kalman filter gains from L1 to L2). As 
evident from the graph, after about 70 seconds into the 
perturbation, where sensory re-weighting has occurred, the 
model is able to lower the amount of body sway and rely more 
on the less noisy channels available.  

Figure 8 shows this experiment applied to the robot. 
The gains had to be changed slightly from the simulation to 
compensate for additional damping in the actuation and other 
unmodelled dynamics K = [700,150]. We see that Figures 7 
and 8 show similar performance improvements due to sensory 
re-weighting. 

VI. DISCUSSION 

We have described our work in modelling human balance 
control, and preliminary work applying sensory re-weighting 
to robots. Our long term goal is to develop computational 
theories of how the weights in sensory re-weighting are 
chosen. Models of this process are conspicuously absent from 
work on human balance control, and are necessary for robot 
balance control. 

One lesson from human balance control is that sensory re-
weighting is a simple mechanism to handle a wide variety of 
perturbations: standing on a moving bus, watching a moving 
scene, or handling the effects of self motion on inertial 
sensing. Different sensory channels are more or less sensitive 
to different types of perturbations, and thus different types of 
perturbations can be compensated for by weighting the 
various sensory channels. An accurate model of the 
disturbance, sensors, or dynamics of the system is not needed. 
For example, it is not necessary to accurately estimate the 
platform angle in order to stand during ankle perturbations. 

Sensory re-weighting provides a way to combine many 
sensory systems. Humans use proprioception, inertial sensing, 
and vision to stand robustly. Robots typically rely on only one 
or two sensory systems. Another function of sensory re-
weighting is to handle inconsistent or malfunctioning sensors. 
An important step towards robust robot behaviour is 
developing mechanisms to handle erroneous, inconsistent, or 
malfunctioning sensors. 
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Fig. 6: External disturbance applied to the ankle in the simulation.  

 
Fig. 7: Model response to a 2o peak-to-peak PRTS for no sensory re-
weighting (dashed red trace) versus sensory re-weighting (solid blue 
trace). The vertical dashed line indicates onset of sensory re-weighting.  

 
Fig. 8: Robot response to the same 2o peak-to-peak PRTS with sensory 
re-weighting. The vertical dashed line indicates onset of sensory re-
weighting.  
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