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Abstract—In this paper, we report on our research for
learning biped locomotion from human demonstration. Our
ultimate goal is to establish a design principle of a controller
in order to achieve natural human-like locomotion. We
suggest dynamical movement primitives as a CPG of a biped
robot, an approach we have previously proposed for learning
and encoding complex human movements. Demonstrated
trajectories are learned through the movement primitives by
locally weighted regression, and the frequency of the learned
trajectories is adjusted automatically by a novel frequency
adaptation algorithm based on phase resetting and entrain-
ment of oscillators. Numerical simulations demonstrate the
effectiveness of the proposed locomotion controller.

I. INTRODUCTION

There has been a growing interest in biped locomotion
with the recent development of humanoid robots. Many
of existing successful walking algorithms use the zero
moment point (ZMP) criterion [21] for motion genera-
tion with off-line planning [9], [20] and on-line balance
compensation [5], [8], [23]. These ZMP methods have
been shown to be effective to guarantee point-wise sta-
bility of biped locomotion. However, they require precise
modelling of robot dynamics and high-gain trajectory
tracking control, and the generated patterns result in a
typical “bent-knee” posture to avoid singularities. From
the viewpoint of energy efficiency, such walking patterns
are not desirable since torque must be continuously ap-
plied to the knee joint to maintain a bent-knee posture.
The previous ZMP approaches have primarily focused on
stability during walking rather than natural human-like
motion which exploits passive dynamics of the body.

In contrast to off-line trajectory planning, biologically-
inspired control approaches based on central pattern gen-
erators (CPGs)! with neural oscillators have been drawing
much attention for rhythmic motion generation. As a CPG,
a neural oscillator proposed by Matsuoka [12] is widely
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1The term CPG is widely used, but a distributed pattern generator
(DPG) may be more appropriate, since, in many robotic applications, a
distributed architecture which consists of coupled oscillators is generally
used for pattern generators. In this paper, we shall use the classic
term CPG although we consider much more a DPG-like distributed
architecture.
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Fig. 1. Proposed control strategy: CPG with dynamical movement
primitives and the robot.

used, which models the firing rate of two mutually inhibit-
ing neurons described in a set of differential equations.
This model is used in robotic applications to achieve des-
ignated tasks involving rhythmic motion which requires
interactions between the system and the environment.
Examples include biped locomotion [4], [19], quadruped
locomotion [3], juggling [13], drumming [11], and playing
with a slinky toy [22]. Neural oscillators have desirable
properties such as adaptation to the environment through
entrainment. However, it is difficult to design robust
controllers with coupled oscillators, and to manually tune
all open parameters to achieve a desired behavior.

In this paper, we suggest an approach to learning biped
locomotion from human demonstration and its adapta-
tion through coupling between the pattern generator and
the mechanical system. Motivated by human’s capability
of learning and imitating a demonstrated movement by
others, imitation learning has been explored as an effi-
cient method for motor learning in robots to accomplish
the desired movement [16], [17]. Previously, ljspeert,
Nakanishi and Schaal have proposed a method to en-
code complex discrete and rhythmic multijoint movements
through imitation learning as movement primitives [6],
[7]. Kinematic movement plans are described in a set of
nonlinear differential equations with well-defined attractor
dynamics, and demonstrated trajectories are learned using
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Fig. 2. Robot controller with dynamical movement primitives.

locally weighted regression. In this paper, we present the
idea of using rhythmic movement primitives [7] as a CPG
to achieve natural human-like walking in biped robots.
Figure 1 depicts a conceptual architecture of the proposed
control system. The dynamical movement primitive [7] has
various desirable properties which are beneficial for biped
locomotion—for example, it can learn a demonstrated
trajectory rapidly, and it is easy to re-scale the learned
rhythmic movement in terms of amplitude, frequency and
offset of the patterns. In this work, we also propose
an adaptation algorithm for the frequency of walking
based on phase resetting [10] and entrainment between
the phase oscillator and mechanical system using feedback
from the environment. We present numerical simulations
to demonstrate the effectiveness of the proposed control
strategy.

Il. LEARNING BIPED LOCOMOTION FROM HUMAN
DEMONSTRATION

A. Rhythmic Dynamical Movement Primitives

We briefly review the rhythmic dynamical movement
primitives proposed in [7], which we will use as a CPG
for biped locomotion in this paper. Consider the following
limit cycle oscillator characterized in terms of an ampli-
tude r and a phase ¢ as a canonical dynamical system
which generates basic rhythmic patterns:

t$=1 @)
Tf = —p(r—rop) )
where 7 is a temporal scaling factor, r, determines the

desired (relative) amplitude, and u is a positive constant.
Note that the phase dynamics (1) can be written as

p=o (3)

where o & 1/7 is the natural frequency. This rhythmic
canonical system is designed to provide an amplitude
signal ¥ = [rcos ¢,rsing]" and phase variable mod(¢,27)
to the the following second order dynamical system (z,y),

where the output y is used as the desired trajectory for the
robot.

12 = 0 (B2 (Yym —Y) — 2) (4)
y=z+1(7,9) ®)

where o and 3 are time constants, yn is an offset of the
output trajectory. f is a nonlinear function approximator
using locally linear models [15] of the form

. SNy w v
f(v7¢) = kj[;]ilfyk
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where w, is the parameter vector of the k-th local model
which will be determined by locally weighted learning
[15] from a demonstrated trajectory y ..., (see Section Il-
C.2). Each local model is weighted by a Gaussian kernel
function

(6)

¥, = exp(—h,(mod(¢,2r) —c,)?) @)

where ¢, is the center of the k-th linear model, and h
characterizes its width. A final prediction is calculated by
the weighted average of the predictions of the individual
models. As demonstrated in [7], the amplitude, frequency
and offset of the learned rhythmic patterns can be easily
modified by scaling the parameters r,, w(=1/7) and yn
individually.

B. Rhythmic Dynamical Movement Primitives as a CPG

We use the rhythmic dynamical movement primitives
introduced above as a CPG. Figure 2 illustrates the
proposed control architecture in this paper. Each joint is
equipped with a movement primitive which generates the
desired joint trajectory 6,... We define the index and the
corresponding name of the joint as Left hip (i=1, L HIP),
and Left knee (i=2, L_.KNEE), Right hip (i=3, R HIP), and
Right knee (i=4, R_LKNEE). In this setting, each degree of
freedom (DOF) has its own oscillator, however, different
allocation of oscillators can be considered, e.g., a unique
oscillator for the whole CPG or one oscillator for each
leg. We will address this design issue in our future work.
A low-gain PD controller is used for each joint to track
the desired trajectory which is the output of the movement
primitive, and ground contact information is fed back to
the CPG in order to reset the phase and adjust the natural
frequency of the oscillators. At heel contact, the phase of
all the oscillators is reset to ¢ =0 for the stance leg and
to ¢ = & for the swing leg respectively at the same time.
Thus, the phase difference between the oscillators for the
left leg and the right leg is kept & rad. The update law for
the frequency adaptation of locomotion will be discussed
in Section I11-B in detail.
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Fig. 3. Extracted one period of joint trajectory data of human walking
presented in [2] as used for learning in this paper (R_HIP and R KNEE).
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Fig. 4. Learning result of human’s walking trajectories using dynamical
movement primitives. The learned trajectories (output of the dynamical
primitives) nearly coincide the demonstrated trajectories.

C. Learning from Human Demonstration

1) Human’s Walking Pattern: As a demonstrated tra-
jectory, we use the recorded joint data of human walking
in the book [2] (29-year-old male, 173cm, 83.5kg, right
hip and knee). In the future, we plan to measure human
walking under various conditions by ourselves using our
motion capture equipment. Figure 3 shows the extracted
trajectory data of the right hip and knee joints for one
period of locomotion from [2]. In the next section, we
will use these joint trajectories as human demonstration
for the learning of biped locomotion. We identified the
period and frequency of this patten by the power spectrum
estimation with FFT and autocorrelation as T = 1.17 sec
and f =1/T =0.855 Hz respectively.

2) Learning with Locally Weighted Regression: We
briefly explain how we find the parameters w, in (6) by
locally weighted learning [15] for a given demonstrated
trajectory Yyemo- Given a sampled data point (fiarger, V) at
t where

ftarget = ydemo - B (ym - ydemo) (8)

the learning problem is formulated to find the parameters
w, in (6) using incremental locally weighted regression

link 3

link 2 link 4

link 1

link 5

Fig. 5. Top: Five-link model of the robot. Bottom: physical system
whose dynamics are simulated in the numerical studies.

TABLE |
PHYSICAL PARAMETERS OF THE ROBOT MODEL
link1  link2  link3  link4  link5

mass [kg] 0.05 043 1.0 0.43 0.05
length [m] 0.2 0.2 0.01 0.2 0.2
inertia 175 429 433 429 175

(x10~* [kg-m])

technique [15] in which w; is updated by

t+1 ot t+1g
W, =w, +P Ve, 9
where
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and A € [0,1] is a forgetting factor. We chose this locally
weighted regression framework as it can automatically find
the correct number of necessary basis function, and can
tune the h, parameters of each Gaussian kernel function
(7) to achieve higher function approximation accuracy.
Moreover, it learns the parameters w, of every local model
k totally independent of all other local models, which
minimizes interference between local models. Figure 4
shows the learning result of the demonstrated trajectories
using the rhythmic dynamical primitives. In the book [2],
only the trajectory data of the right leg are provided.
Thus, we generate the desired trajectory for the left leg
by shifting the phase of the oscillator of the right leg by
.



TABLE Il
PARAMETERS USED IN THE SIMULATIONS

Parameter Description Value used
Iy (relative) amplitude 0.7 for all joints
Dynamical primitives o natural frequency updated by (19)
Ym offset Hip: ym = 0.0 and Knee: y, = 0.35
. Kp position gain Hip: Kp = 8.0 and Knee: K, =6.0
PD gains Ko velocity gain 0.05 for all joints
. ¢, = ¢, =0,0, = ¢, = & at left leg heel strike
Phase resetting 9 phase ¢, = ¢, = 1,0, = ¢, =0 at right leg heel strike

I1l. FREQUENCY ADAPTATION OF LOCOMOTION VIA
ENTRAINMENT OF PHASE OSCILLATOR
A. Synchronization of Coupled Phase Oscillators
1) Entrainment with Phase Coupling: This section
reviews basic properties of coupled oscillators [18]. Con-
sider the following dynamics of two coupled oscillators
as depicted in Figure 6

‘Pl o1 + K (¢, — ¢p) (10)
‘Pz @, + Ky (¢ — ) (11)

where o, ®, > 0 are natural frequencies of the oscillators,
and K;,K, are positive coupling constants. Define the
phase difference y as v = ¢, — ¢;, and consider its

dynamics
V= (0, — o) — (Ky + Ky (12)
Then, we see that there is a stable fixed point at
* (1)2 — 0)1
=2 1 13
V=R K, (13)

As a result, these oscillators run at the same frequency
(called coupled frequency) given by
Koo, + K, 0

K| +K,
with phase difference y*.

2) Synchronization with Frequency Adaptation: In the
development above, the oscillators run with the phase
difference v = ¢, — ¢, = Rt +K2 given o; and w, when
they are entrained. Suppose o, = m,, then the phase
difference of these oscillators will be zero. Thus, when
o, = const. is given, we introduce a coupling dynamics
of the natural frequency for @, in (16) in addition to
the phase coupling in order to achieve synchronization
of these oscillators with zero phase difference.

91 () = o, (t) + Ky (6(t) — 6, (1)) (15)
@y (1) = —K(w, — oy (1)) (16)
95(1) = @, + Ky(9 (1) — 9, (1)) (17)
where K is a positive constant. It is straightforward to see

that o, — w, asymptotically. Thus, the phase difference
will be zero as y = ¢, —¢; — 0.

*
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Fig. 6. A coupled phase oscillator system

B. Frequency Adaptation of Locomotion

As depicted in Figure 1, we see that the proposed
control system can be regarded as a coupling of the
CPG and the mechanical oscillator (robot), which can
be modelled analogous to the coupled oscillator system
above. Thus, it is natural to introduce such an adaptation
mechanism to our dynamical primitives in order to achieve
frequency adaptation of the learned periodic motions by
the robot itself through the interaction among the CPG,
robot and environment.

Consider the following update law of the phase and
frequency of the oscillator in the dynamical movement
primitives at the instance of heel strike

d.) =@ n + 6( - theel strike)(qjl’ﬁgglogtrike - ¢) (18)
M = =" + K( Omeasured — &)n) (19)

where 6 is the Dirac’s delta function, n is the number
of steps, and ¢/t . is the phase of the mechanical

oscillator (robot) at heel strike defined as ¢f%0%, ;.. = 0 at
the heel strike of the leg with the corresponding oscillator,

and ¢/t .. = m at the heel strike of the other leg.

n S , ,
Ofcasureq 1S the measured frequency of locomotion defined

by

w

wr?weasured ~ Tn il (20)
measured
where T1  req IS the time for one step of locomotion
(half period with respect to the oscillator). Note that (18)
introduces phase resetting to the oscillator at heel strike,
and (19) is the discretized version of (16).



IV. NUMERICAL SIMULATIONS

In this paper, we present numerical simulations to illus-
trate the effectiveness of the proposed control algorithm.

A. Robot Model

In the numerical simulations, we use the model of
the planar 5-link biped robot [14] depicted in Figure 5.
The height of the robot is 40cm and the weight is about
3kg. Kinematic and dynamic parameters of the simulated
robot are chosen to match those of the physical system
(see Table I). We assume that the motion of the robot
is constrained on the sagittal plane. The dynamics of the
robot are derived using SD/FAST? and integrated using
the Runge-Kutta algorithm at 1ms step size. The ground
contact force is calculated using a linear spring-damper
model.

B. Simulation Results

It is necessary to properly scale the learned trajectories
from human demonstration since they cannot be directly
applied for the robot model with different dimensions. In
the following simulations, the parameters of the dynamical
movement primitives and gains of the PD controller are
determined empirically as listed in Table Il to achieve sta-
ble walking. We manually designed the desired trajectory
for the initial step from the standing position, and the CPG
controller is activated at heel contact of the first step. For
the scaling of the natural frequency of the oscillator, the
adaptation law proposed in Section 111-B is used. Figures
7 and 8 shows the desired and actual joint trajectories® for
t =0~ 10 sec. Figure 9 illustrates the desired and actual
joint trajectories, and the timing of heel strke for the left
leg. Figure 10 shows the torque command for the left leg,
which indicates that the knee joint swings passively since
it requires almost no torque (see t = 14.8 ~ 15.0 sec).

C. Frequency Adaptation of Locomotion

We present simulation results of the frequency adapta-
tion algorithm proposed in Section 111-B. The frequency
of the all the oscillators are updated by (18) and (19)
at heel contant. Figure 12 (left) depicts the duration for
one step and Figure 12 (right) shows the learning curve
of the frequency of the CPG with different coupling
constants K = 0.2,0.5 and 0.8 in (19) when the initial
value is set to w, = 4.78 rad/s (period of oscillation is 1.5
sec). The simulation results demonstrate that robust self-
adaptation of the frequency of locomotion is achieved by
the proposed algorithm through entrainment. The resul-
tant frequency was « = 8.120 rad/s. This result may be
interpreted as follows: Given the walking frequency of the

2http://www.sdfast.com

3Note that the sign of the trajectories for the hip joints (L HIP, R. HIP)
is opposite to the human demonstration due to the definition of coordinate
system.
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Fig. 7. Joint trajectories of the robot simulation (left leg)
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Fig. 8. Joint trajectories of the robot simulation (right leg)

human, @y,,man the leg length of the human, I, ... , and
the leg length of the robot, I, ., as depicted in Figure 13,
it may be natural to think of the scaling law

- |
Orobot = Phyman |mﬂ (21)
human

which is derived from the ratio of the natural frequency of
the simplified linear pendulum. In this paper, I, ... can
be considered as I, ., = 1.76 x 0.49 = 0.86m since the
height of the human subject is 1.76m and it is anatomically
known that the leg length is about 49% of the body height
[1]. Thus, using the scaling law (21), we can estimate the
frequency of locomotion of the robot with I .. = 0.4m
as

robo

o Frequency: @, = 7.87 rad/s

« Time for one step: 0.399 sec
As a result of the simulation of frequency adaptation, we
obtained

« Frequency: @y, = 8.120 rad/s

« Time for one step: 0.387 sec.
The difference in the frequencies above is roughly 3%.
Thus, simple analysis may suggest that the proposed
frequency adaptation algorithm achieves the natural fre-
quency of the coupled system through entrainment, i.e., a
simple form of resonance tuning.
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Fig. 11. Snapshots of walking for one step at 15 frames/sec (1 frame ~ 66msec)
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Fig. 9. Joint trajectories for the left leg and heel strike timing of the
simulation for two period (4 steps) of walking.
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Fig. 10. Torque command to the left hip and knee joints for two
period (4 steps) of walking.

V. SUMMARY

In this paper, we proposed a method for learning biped
locomotion from human demonstration and its frequency
adaptation using the dynamical movement primitives. In
the dynamical movement primitives, kinematic movement
plans are described in a set of nonlinear differential equa-
tions with well-defined attractor dynamics, and demon-
strated trajectories are learned using locally weighted
regression. Specifically, we use rhythmic dynamical move-
ment primitives as a CPG, and introduced a frequency
adaptation algorithm through interactions among the CPG,
mechanical system and environment. Numerical simula-
tions illustrate the effectiveness of the proposed control
algorithm: within a few seconds of walking, the simulation
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Fig. 12. Frequency adaptation of walking via entrainment.

0 robot

Fig. 13. A simplified pendulum model of the leg with different link
length

discovered an energy efficient walking frequency, roughly
at the natural frequency of the combined robot-oscillator-
environment system.

Future work will address intra- and interlimb co-
ordintaion by introducing coupling among oscillators, and
recovery from external perturbations. We also consider
experimental implementation of the proposed algorithm
on our biped robot, and collection of human’s walking
data under various behavioral conditions. In the long run,
we are hopeful that this approach may provide insight into
a theoretically sound design principle of biped locomotion
control to achieve human-like natural walking.
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