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This article summarizes our framework for learning biped locomotion using dynamical
movement primitives based on nonlinear oscillators. Our ultimate goal is to establish
a design principle of a controller in order to achieve natural human-like locomotion.
We suggest dynamical movement primitives as a central pattern generator (CPG) of
a biped robot, an approach we have previously proposed for learning and encoding
complex human movements. Demonstrated trajectories are learned through movement
primitives by locally weighted regression, and the frequency of the learned trajectories
is adjusted automatically by a frequency adaptation algorithm based on phase resetting
and entrainment of coupled oscillators. Numerical simulations and experimental imple-
mentation on a physical robot demonstrate the effectiveness of the proposed locomotion
controller. Furthermore, we demonstrate that phase resetting contributes to robustness
against external perturbations and environmental changes by numerical simulations and
experiments.

Keywords: Biped locomotion, Learning from demonstration, Dynamical movement prim-
itives, Phase resetting, Frequency Adaptation

1. Introduction

In this paper, we present an approach to learning biped locomotion from demon-
stration and its adaptation through coupling between the pattern generator and
the mechanical system. Motivated by human’s capability of learning and imitating
demonstrated movements of a teacher, imitation learning has been explored as an ef-
ficient method for motor learning in robots to accomplish desired movements1,2,3. In
our previous work, we proposed dynamical movement primitives to encode complex
discrete and rhythmic multi-joint movements through imitation learning4. Dynam-
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ical movement primitives are formulated as a set of autonomous nonlinear differ-
ential equations with well-defined attractor dynamics. Demonstrated trajectories
are learned using locally weighted regression, and the output of dynamical move-
ment primitives serves as kinematic movement plans, e.g., desired trajectories, for
a robot.

This paper presents the idea of using the rhythmic movement primitives based on
phase oscillators4 as a central pattern generator (CPG) to learn biped locomotion
from demonstration. Recently, there has been a growing interest in biologically-
inspired control approaches for rhythmic motion generation using neural oscilla-
tors. As a CPG, a neural oscillator model proposed by Matsuoka5 is widely used
for robotic applications such as biped locomotion6,7,8,9, quadruped locomotion10,
juggling11, drumming12, and playing with a slinky toy 13. Neural oscillators have
desirable properties such as adaptation to the environment through entrainment.
However, it is difficult to design interconnection and feedback pathways of neural
oscillators, and much effort is often required to manually tune the parameters of
the oscillators in order to achieve the desired behavior.

Compared with neural oscillators, one of the appealing properties of phase oscil-
lators is that the desired phase relationship among oscillators can be specified in a
straightforward manner. In 14, a comprehensive formulation of phase coordination
of coupled phase oscillators is proposed. Applications of coupled phase oscillators
have been explored in the gait control of multi-legged robots15,16 and the control of
a biped robot17. In addition to using phase oscillators, our movement primitive has
various desirable properties which are beneficial for biped locomotion. For example,
it can learn a demonstrated trajectory rapidly, and it is easy to re-scale the learned
rhythmic movement in terms of amplitude, frequency and offset of the patterns4.
Furthermore, our movement primitives has the potential capability of improving
learned movements through reinforcement learning18.

In the application of rhythmic movement primitives to biped locomotion, we
introduce coupling terms to the movement primitives to achieve the desired phase
relationship among limbs following the formulation proposed in 14. We also propose
an adaptation algorithm for the frequency of walking based on phase resetting19

and entrainment between the phase oscillator and mechanical system using feedback
from the environment. Phase resetting is introduced to our dynamical movement
primitives motivated from a mathematical point of view as well as a biological per-
spective in order to achieve synchronization of the rhythm of oscillators with the
timing of heel strike in biped locomotion. From a mathematical point of view, the
phase resetting algorithm can be interpreted as a discretized version of the synchro-
nization mechanism of coupled phase oscillators. From a biological point of view,
phenomena of phase resetting or phase shift are observed in many biological oscilla-
tors resulting from external perturbations, e.g., circadian pacemakers, biochemical
oscillators and human finger tapping neural networks as mentioned in 19. Phase
resetting is related to the stability properties of neural rhythms, which can be ana-
lyzed by examining the phase dependent responses against perturbations. A recent
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Fig. 1. Left: Physical system. Right: Five-link model of the robot.

work in 20 studied functional roles of phase resetting for gait stability against exter-
nal perturbations in biped locomotion. They investigated the behavior of a biped
simulation model against external perturbations, where the phase of the prescribed
joint trajectories obtained by Fourier fitting of humans’ gait data are shifted in
response to impulsive forces applied during walking. Their numerical simulations
suggest that phase resetting helps maintain stability of periodic movements in biped
locomotion in the presence of external perturbations.

In this paper, we demonstrate the effectiveness of the proposed control strat-
egy by numerical simulations and experimental implementation. Furthermore, we
evaluate robustness of walking with the proposed algorithm against external per-
turbations and environmental changes by numerical simulations and experiments.

2. Experimental Setup

We use a planar 5-link biped robot developed in 21 (see Fig. 1). The height of the
robot is 0.4 m and the weight is about 3.4 kg. For numerical simulations, we use
the following model: The length of each link of the leg is 0.2 m. The mass of the
body is 2.0 kg, the thigh is 0.64 kg and the shank is 0.05 kg.

The motion of the robot is constrained within the sagittal plane by a tether
boom. The hip joints are directly actuated by direct drive motors, and the knee
joints are driven by direct drive motors through a wire transmission mechanism
with the reduction ratio of 2.0. These transmission mechanisms with low reduction
ratio provide high back drivability at the joints. Foot contact with the ground is
detected by foot switches. The robot is an underactuated system having rounded
soles with no ankles. The robot is controlled with a real-time operating system,
RT-Linux. The sampling frequency of the controller is 1 kHz.

3. Biped Locomotion Control with Dynamical Movement
Primitives

In this section, we outline our control framework for biped locomotion using dy-
namical movement primitives depicted in Fig. 2.
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Fig. 2. Proposed control architecture for biped locomotion with dynamical movement primitives.

3.1. Rhythmic Dynamical Movement Primitives

Rhythmic dynamical movement primitives encode periodic behavioral patterns as
an output of a set of nonlinear dynamical systems composed of a canonical dynam-
ical system with a phase oscillator and a transformation dynamical system with a
nonlinear function approximator. We briefly review the formulation of the rhythmic
movement primitives we proposed in 4.

Consider the following limit cycle oscillator characterized in terms of an am-
plitude r and a phase φ as a canonical dynamical system which generates basic
rhythmic patterns:

φ̇ = ω (1)

τ ṙ = −µ(r − r0) (2)

where ω is the frequency of the oscillator, τ is a temporal scaling factor defined by
τ = 1/ω, r0 determines the desired (relative) amplitude, and µ is a positive constant.
When there are multiple oscillators, we will introduce coupling terms among the
oscillators (see Section 3.2.1). This rhythmic canonical system is designed to provide
an amplitude signal ṽ = [r cosφ, r sin φ]T and phase variable mod(φ, 2π) to the
following second order transformation dynamical system (z, y), where the output y

is used as the desired trajectory for the robot:

τ ż = αz(βz(ym − y) − z) (3)

τ ẏ = z + f(ṽ, φ) (4)

where α and β are time constants, ym is an offset of the output trajectory. f is a
nonlinear function approximator using local linear models22 of the form:

f(ṽ, φ) =
∑N

k=1 ΨkwT
k ṽ∑N

k=1 Ψk

(5)
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where wk is the parameter vector of the k-th local model. Each local model is
weighted by a Gaussian kernel function

Ψk = exp(−hk(mod(φ, 2π) − ck)2) (6)

where ck is the center of the k-th linear model, and hk characterizes its width. A final
prediction is calculated by the weighted average of the predictions of the individual
models. The parameters wk are determined by locally weighted learning22 from a
demonstrated trajectory ydemo. Given a sampled data point (ftarget, ṽ) at t where

ftarget = τ ẏdemo − zdemo (7)

and

τ żdemo = αz(βz(ym − ydemo) − zdemo),

the learning problem is formulated to find the parameters wk in (5) using incre-
mental locally weighted regression technique22 in which wi is updated by

wt+1
k = wt

k + ΨkPt+1
k ṽek (8)

where

Pt+1
k =

1
λ

(
Pt

k − Pt
kṽṽT Pt

k
λ

Ψk
+ ṽT Pt

kṽ

)

ek = ftarget − wT
k ṽ

and λ ∈ [0, 1] is a forgetting factor. As illustrated in 4, the amplitude, frequency
and offset of the learned rhythmic patterns can be easily modified by scaling the
parameters r0, ω(= 1/τ) and ym individually.

3.2. Rhythmic Dynamical Movement Primitives as a CPG

We use the rhythmic dynamical movement primitives described above as a CPG for
biped locomotion. Fig. 2 illustrates the proposed control architecture in this paper.
Each joint is equipped with a movement primitive which generates the desired joint
trajectory. The output of the movement primitive y is used as the desired trajectory
θdes for each joint. We define the index and the corresponding name of the joint as
Left hip (i = 1, L HIP), and Left knee (i = 2, L KNEE), Right hip (i = 3, R HIP),
and Right knee (i = 4, R KNEE). An additional oscillator (φref ) is allocated to
provide a reference phase signal to the limb oscillators, which is adjusted by the
ground contact information at the instance of heel strike.

Section 3.2.1 introduces coupling to the oscillators of the movement primitives
to achieve the desired phase relationship between the limbs. Section 3.2.2 outlines
the phase resetting and frequency adaptation algorithms of the learned periodic
movements through the interaction among the coupled oscillators, robot and envi-
ronment.
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3.2.1. Inter- and Intra-limb Phase Coordination

Coupling among the oscillators is introduced to regulate the desired phase relation-
ship between the limbs of the robot. This is motivated from a biological point of
view where it has been hypothesized that coupling among neural oscillators plays
an important role in coordinating the desired phase relationship of limb movements
in locomotion and gait transition23.

Consider the following coupling terms for the oscillator i:

φ̇i = ωi + κ

N∑
i=1

Cij sin(φj − φi) (9)

where κ is a positive constant gain, and Cij is an element of the n×n matrix C which
characterizes the coupling with other oscillators. This form of coupling appears
in various studies of coupled oscillators and their application, e.g., 17,14,15,16,24,25.
Specifically, we employ the formulation in 14 to coordinate the desired phase re-
lationship. We design the desired phase difference among the canonical oscillators
such that the links of each leg move in phase (with zero phase difference), and the
left and right legs move out of phase (with π phase difference) by defining the phase
of the oscillator as φi = 0 at the instance of heel strike of the corresponding leg.
More specifically, we require φ1−φ2 = 0, φ3−φ4 = 0, φ1−φ3 = π, and φ2−φ4 = π.
Thus, the connection matrix C is chosen to be

C =

⎡
⎢⎢⎣

0 1 −1 −1
1 0 −1 −1
−1 −1 0 1
−1 −1 1 0

⎤
⎥⎥⎦ . (10)

3.2.2. Phase Resetting and Frequency Adaptation of CPG

The phase resetting and frequency adaptation algorithms are motivated by the
synchronization mechanism of the coupled oscillators to adjust the frequency of the
learned periodic motions by the robot through the interaction among the CPG,
robot and environment. In our original formualtion in 26, phase resetting was di-
rectly introduced to all the limb oscillators. Instead, in our current setting, we first
introduce phase resetting to the reference oscillator. Then, additional continuous
coupling is introduced to the limb oscillators to achieve the desired relative phase
to the reference oscillator in order to avoid discontinuity to the desired joint trajec-
tories.

Consider the following phase resetting and frequency update law to the reference
oscillator at the instance of heel contact:

φ̇ref = ω̂n
ref + δ(t − theel strike)(φrobot

heel strike − φref ) (11)

ω̂n+1
ref = ω̂n

ref + K(ωn
measured − ω̂n

ref ) (12)
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where δ is the Dirac’s delta function, n is the number of steps, and φrobot
heel strike is the

phase of the mechanical oscillator (robot) at heel strike defined as φrobot
heel strike = 0

at the heel strike of the left leg, and φrobot
heel strike = π at the heel strike of the right

leg. ωn
measured is the measured frequency of locomotion defined by

ωn
measured =

π

T n
measured

(13)

where T n
measured is the stepping period of locomotion (half period with respect to

the oscillator). At the same time, natural frequencies of all the limb oscillators ωi

are updated at the instance of heel contact such that ωi = ω̂n+1
ref , and additional

coupling is introduced to the limb oscillators with φref to achieve the desired relative
phase φ1 = φ2 = φref and φ3 = φ4 = φref + π.

4. Numerical Simulations

4.1. Learning from Demonstrated Trajectory

As a demonstrated trajectory, we use the motion capture data of human walking in
27 (29-year-old male, 173cm, 83.5kg, right hip and knee). We identified the period
and frequency of this pattern by the power spectrum estimation with FFT and
autocorrelation as T = 1.17 sec and f = 1/T = 0.855 Hz respectively. The dynamics
of the robot are derived using SD/FASTa and integrated using the Runge-Kutta
algorithm at 1ms step size. The ground contact force is calculated using a linear
spring-damper model. A low-gain PD controller is used at each joint to track the
desired trajectory which is the output of the movement primitive.

A walking pattern from the demonstrated trajectory is learned with the dynam-
ical primitives. We manually designed the desired trajectory for the initial step of
locomotion from a standing position at rest, and the proposed CPG controller is
activated at heel contact of the first step. The amplitude parameter of the dynam-
ical primitives is set to r0 = 0.7, and the offset ym = 0.375 is introduced to the
knee joints. For the scaling of the natural frequency of the oscillator, the adaptation
law described in Section 3.2.2 is used with the initial frequency of ω = 4.83 rad/s
(period of oscillation is 1.3 sec). These parameters are determined empirically from
trial and error.

Figure 3 illustrates the desired and actual joint trajectories for the left leg, and
the timing of heel strike after a stable pattern was learned by the phase resetting
algorithm. Figure 4 shows the torque command for the left leg, which indicates that
the knee joint swings passively since it requires almost no torque (see t = 15.1 ∼ 15.3
sec). Figure 5 depicts one step of walking. Figure 6 (left) shows the adaptation of the
period of locomotion and Fig. 6 (right) shows the learning curve of the frequency of
the CPG with different coupling constants K = 0.2, 0.5 and 0.8 in (12). The stepping
period approached 0.387 sec, and the resultant CPG frequency was ω = 8.12 rad/s,

ahttp://www.sdfast.com
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Fig. 3. Joint trajectories for the left leg and heel strike timing for four periods (8 steps) of walking
(simulation).
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Fig. 4. Torque command to the left hip and knee joints for four periods (8 steps) of walking
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Fig. 5. Snapshots of walking simulation for one step at 15 frames/sec (1 frame ≈ 66 msec)

which roughly corresponds to the natural frequency of the swing leg modelled as a
simplified linear pendulum, using the proposed adaptation law.

4.2. Robustness Against External Perturbations

In this section, we numerically evaluate robustness of walking with the proposed
algorithm against external perturbations by pushing the robot forward and back-
ward with external forces during walking. Forces are applied for a duration of 0.1
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Fig. 7. Numerical evaluation of the robustness of walking against external perturbations. In the
simulations, the robot is pushed forward and backward by perturbation forces for a duration of
0.1 sec at difference timing during a single step. The plot shows the magnitude of the maximum
external forces which the robot tolerated. This plot demonstrates that the robot could cope with
much larger disturbances with phase resetting compared to the case without phase resetting.

sec at different timing during a single step (at an interval of 0.1 rad from 0 to 2π

of the phase of the reference oscillator). We judge that the robot could tolerate the
perturbation if the robot continues to walk over 30 steps after the disturbance is
applied. Figure 7 shows the magnitude of the maximum external forces which the
robot tolerated. When a forward perturbing force is applied, the robot could cope
with up to 9.1 N (max) at φ = 1.1 rad, and 2.2 N (min) at φ = 2.7 rad of the
perturbing forces. When a backward perturbing force is applied, the robot could
cope with up to −2.4 N (max) at φ = 4.9 rad and −1.0 N (min) at φ = 0.4 and
φ = 0.5 rad of the perturbing forces. In contrast, without phase resetting, the robot
only could cope with much smaller disturbances, as indicated by the plot in Fig. 7,
for example, the robot only tolerated up to 3.9 N of the forward perturbing force
applied at φ = 1.1. On average, with phase resetting, the robot tolerated up to
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Fig. 8. Examples of the response against forward and backward perturbations. Left: the robot is
pushed forward by a perturbation force of 6.0 N for a duration of 0.1 sec at φ = 0.5. Right: the
robot is pushed backward by a perturbation force of -2.0 N for a duration of 0.1 sec at φ = 2.0. (a)
with phase resetting, the robot is able to reject the disturbance and continue to walk. (b) without
phase resetting, the robot falls over after the perturbation is applied.

4.83 N and −1.58 N of the forward and backward perturbing forces respectively.
However, without phase resetting, the robot tolerated only up to 1.79 N and −0.88
N of the forward and backward perturbing forces respectively.

Figure 8 (left) depicts an example of the response against forward perturbations.
The robot is pushed forward by a perturbation force of 6.0 N for a duration of 0.1 sec
at φ = 0.5. Figure 8 (right) depicts an example of the response against backward
perturbations. The robot is pushed backward by a perturbation force of −2.0 N
for a duration of 0.1 sec at φ = 2.0. The results in Fig. 8 (a) show that with
phase resetting, the robot is able to reject the disturbance and continue to walk. In
contrast, the results in Fig. 8 (b) show that without phase resetting, the robot falls
over shortly after the perturbation is applied. The simulation results demonstrate
the effectiveness of phase resetting to achieve robust walking against disturbance.

5. Experimental Evaluations

We implemented the proposed control framework on our biped robot described in
Section 2. In the experiments our initial attempt to achieve biped locomotion using
the human demonstrated trajectory was not successful. This was largely due to
mechanical limitation of the experimental system and discrepancy in the ground
contact condition between simulations and experiments. Thus, we used another
target trajectory which was experimentally obtained from an actual trajectory of
successful robot locomotion using a state machine controller. The state machine
controller is designed to coordinate the leg movements with the physical state of
the legged system based on the idea presented in 28. To initiate locomotion in the
experiments, we first suspended the robot with the legs swinging in the air, and then
placed the robot on the ground manually. Thus, the initial condition of each run
was not consistent, and occasionally the robot could not start walking or fell over
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Fig. 9. Snapshots of a walking experiment on a flat surface (carpet) for a single step at 15 frames/sec
(1 frame ≈ 66 msec)

Fig. 10. Snapshots of a walking experiment over surfaces with different friction properties.

after a couple of steps when the timing was not appropriate. In this experiment, the
initial frequency of the oscillator was set to ω = 5.71 rad/s (period of oscillation is
1.1 sec), and the adaptation gain in (12) was decreased according to an annealing
procedure K = K0

n , where K0 = 0.05 and n is the number of steps, as it is needed
in most gradient descent procedure. We introduced an offset α for phase resetting

φ̇ref = ω̂n + δ(t − theel strike)(φrobot
heel strike − φref + α) (14)

to adjust the timing of foot contact, where α is chosen to be α = 0.8 rad. These
parameters are determined empirically. Note that phase resetting with an offset ef-
fectively changes the period of oscillation. Figure 9 presents snapshots of a walking
experiment on a flat surface (carpet). Stepping period for a typical walking experi-
ment was around 0.37 sec as a result of frequency adaptation, and walking velocity
was about 0.51 m/s (1.87 km/h).

Robustness of the proposed algorithm is evaluated by testing walking over sur-
faces with different friction properties such as carpet, cork sheet (3 mm thick) and
a metal plate (2 mm thick). Figure 10 shows an experimental result of walking over
these different surfaces. In Fig. 11, the metal plate was placed so that the inclina-
tion of the slope slightly changes like a seesaw when the robot walks over it (the
height of the center is 7 mm). Figures 12–14 show the desired and actual joint tra-
jectories, the torque command, the timing of heel strike, and the stepping period of
this walking experiment over a see-saw like metal plate respectively. The stepping
period is disturbed when walking over the see-saw like plate (around 15th step, see
Fig. 14), however, it is recovered after passing it. The robot could deal with these
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Fig. 11. Snapshots of a walking experiment over surfaces with different friction properties and a
seesaw-like metal plate with a slight change in the slope. Also see the plots in Figs. 12–14 for joint
trajectories, torque commands and stepping period for this experimental run, respectively.
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Fig. 12. Joint trajectories for the left leg and heel strike timing of the walking experiment over
different surfaces with a see-saw like metal plate depicted in Fig. 11. These plots illustrate the
joint trajectories of walking from 11th to 23rd steps in the corresponding plot in Fig. 14.
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Fig. 13. Torque command to the left hip and knee joints of the walking experiment over different
surfaces with a see-saw like metal plate depicted in Fig. 11.

environmental changes as the experimental results in Figs. 10 and 11 demonstrate.
Note that even if we use the learned trajectory from the actual robot walking
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pattern, the robot could not walk by just replaying it as a desired trajectory. Phase
resetting using foot contact information was necessary. This implies that appro-
priate on-line adjustment of the phase of the CPG by sensory feedback from the
environment is essential to achieve successful locomotion. In addition, empirically
we found that the proposed controller achieved much more robust walking compared
to the state machine based controller which we originally designed.

6. Conclusion

In this paper, we presented a method for learning biped locomotion from demon-
stration and its frequency adaptation using dynamical movement primitives. In the
dynamical movement primitives, kinematic movement plans are described in a set of
nonlinear differential equations with well-defined attractor dynamics, and demon-
strated trajectories are learned using locally weighted regression. Specifically, we use
rhythmic dynamical movement primitives based on coupled phase oscillators as a
CPG, and introduced a frequency adaptation algorithm through interactions among
the CPG, mechanical system and the environment motivated by the synchroniza-
tion of coupled oscllators. Frequency adaptation of a CPG is beneficial when the
desired frequency of the coupled system is not exactly known in advance. Numerical
simulations and experimental result demonstrate the effectiveness of the proposed
control algorithm to achieve steady state walking roughly at the natural frequency
of the coupled system. Furthermore, we empirically evaluated robustness of walk-
ing with the proposed algorithm against external perturbations and environmental
changes. The numerical and experimental results demonstrate the effectiveness of
phase resetting contributes to achieve robustness of walking against disturbances.

Future work will address initiation and termination of walking, and on-line bal-
ance compensation. We will also consider collection of human’s walking data under
various behavioral conditions. In our current study, we used a simple phase reset-
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ting mechanism in which the phase of the CPG is forced to be reset to a specific
value at the instance of heel strike regardless of the current phase of the CPG. In
the future, we are interested in the generalization of the idea of phase resetting to
determine phase dependent reaction against external perturbations such as recovery
from stumbling by designing an appropriate phase resetting curve19. Formal math-
ematical analysis will be required to understand the principle of periodic stability
of a limit cycle solution to the dynamics of a combined oscillator and mechanical
system.
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