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ABSTRACT

We developed a control policy design method for robust low torque biped walking by using
differential dynamic programming with a minimax criterion. As an example, we applied our
method to a simulated five link biped robot. The results show lower joint torques from the
optimal control policy compared to a hand-tuned PD servo controller. Results also show that the
simulated biped robot can successfully walk with unknown disturbances that cause controllers
generated by standard differential dynamic programming and the hand-tuned PD servo to fail.
Future work will implement these controllers on a robot we are currently developing.

Recent humanoid robots using Zero Moment Point (ZMP) control strategies have demon-
strated impressive biped walking [7, 11, 8]. However, robots using ZMP control are often
neither robust nor energy efficient and can generate large joint torques. McGeer [9] demon-
strated that passive dynamic walking was possible. His robots walked down a slight incline
without applying any torques at the joints. Recently, several studies have explored how to gen-
erate energy efficient biped walking [1, 10]. Many studies using optimization methods [4, 2]
focus on finding optimal biped walk trajectories, but do not provide control laws to cope with
disturbances. Our strategy is to use differential dynamic programming [3, 6], an optimization
method, to find both a low torque biped walk and a policy or control law to handle deviations
from the nominal trajectory. We use a minimax reward to insure the policy is robust.

1 BIPED ROBOT MODEL

In this paper, we use a simulated five link biped robot (Fig. 1) to explore our approach. Kine-
matic and dynamic parameters of the simulated robot are chosen to match those of a biped
robot we are currently developing (Fig. 2) and which we will use to further explore our ap-
proach. Height and total weight of the robot are about 0.4 [m] and 2.0 [kg] respectively. Table
1 shows the parameters of the robot model.

Table 1: Physical parameters of the robot model
link1 link2 link3 link4 link5

mass [kg] 0.05 0.43 1.0 0.43 0.05
length [m] 0.2 0.2 0.01 0.2 0.2

inertia [kg·m ×10−4] 1.75 4.29 4.33 4.29 1.75
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Figure 1: Five link robot model

Figure 2: Real robot

We can represent the forward dynamics of the biped robot as

ẋ = f(x) + b(x)u, (1)

where x = {θ1, . . . , θ5, θ̇1, . . . , θ̇5} denotes the input state vector, u = {τ1, . . . , τ4} denotes the
control command (each torque τi is applied to joint i (Fig. 1)). In the minimax optimization
case, we explicitly represent the existence of the disturbance as

ẋ = f(x) + b(x)u + bw(x)w, (2)

where w = {w0, w1, w2, w3, w4} denotes the disturbance (w0 is applied to ankle, and wi (i =
1 . . . 4) is applied to joint i (Fig. 1)).

2 OPTIMIZATION CRITERION AND METHOD

We use the following objective function, which is designed to reward energy efficiency and
enforce periodicity of the trajectory:

Jopt =
N−1
∑

i=0

L(xi,ui) + Φ(x0,xN) (3)

which is applied for half the walking cycle, from one heelstrike to the next heelstrike. This
criterion sums the squared deviations from a nominal trajectory, the squared control magnitudes,
and the squared deviations from a desired velocity of the center of mass:

L(xi,ui) = (xi − x
d
i )

T Q(xi − x
d
i ) + ui

T Rui + (vi(xi) − vd
i )

T S(vi(xi) − vd
i ), (4)
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where xi is a state vector at the i-th time step, x
d
i is the nominal state vector at the i-th time

step (taken from a trajectory generated by a hand-designed walking controller), vi denotes the
velocity of the center of mass at the i-th time step, vd

i denotes the desired velocity of the center
of mass at the i-th time step, the term (xi − x

d
i )

T Q(xi − x
d
i ) encourages the robot to follow

the nominal trajectory, the term ui
T Rui discourages using large control outputs, and the term

(vi(xi) − vd
i )

T S(vi(xi) − vd
i ) encourages the robot to achieve the desired velocity.

In addition, penalties on the initial (x0) and final (xN ) states are applied:

Φ(x0,xN) = F (x0) + ΦN (x0,xN). (5)

The term F (x0) penalizes an initial state where the foot is not on the ground:

F (x0) = Fh
T (x0)P0Fh(x0), (6)

where Fh(x0) denotes height of the swing foot at the initial state x0. The term ΦN (x0,xN) is
used to help generate periodic trajectories:

ΦN (x0,xN) = (xN − H(x0))
T PN (xN − H(x0)), (7)

where xN denotes the terminal state, x0 denotes the initial state, and the term (xN −H(x0))
TPN

(xN − H(x0)) is a measure of terminal control accuracy. A function H() represents the coor-
dinate change caused by the exchange of a support leg and a swing leg, and the velocity change
caused by a swing foot touching the ground (Appendix B).

Dynamic programming provides a methodology to develop planners and controllers for non-
linear systems. However, general dynamic programming is computationally intractable. We use
differential dynamic programming (DDP) which is a second order local trajectory optimization
method to generate locally optimal plans and local models of the value function [3, 6]. This
method also gives us a local policy or feedback controller to correct errors from the planned
trajectory.

We introduce a robust DDP method realized by adding a minimax term to the criterion
(Appendix A). We use a modified objective function:

Jminmax = Jopt −
N−1
∑

i=0

wi
T Gwi, (8)

where wi denotes a disturbance vector at the i-th time step, and the term wi
T Gwi rewards

coping with large disturbances. This explicit representation of the disturbance w provides the
robustness for the controller.

2.1 Neighboring Extremal Method

Differential dynamic programming finds a locally optimal trajectory x
opt
i and the corresponding

control trajectory u
opt
i . When we apply our control algorithm to a real robot, we usually need a

feedback controller to cope with unknown disturbances or modeling errors. Fortunately, DDP
provides us a local policy along the optimized trajectory:

u
opt(xi, i) = u

opt
i + Ki(xi − x

opt
i ), (9)

where Ki is a time dependent gain matrix given by taking the derivative of the optimal policy
with respect to the state [3, 6].
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3 RESULTS

We compare the optimized controller with a hand-tuned PD servo controller, which also is the
source of the initial and nominal trajectories in the optimization process. We set the parameters
for the optimization process as Q = 0.25I10, R = 3.0I4, S = 0.3I1, desired velocity vd =
0.4[m/s] in equation (4), P0 = 1000000.0I1 in equation (6), and PN = diag{10000.0, 10000.0,
10000.0, 10000.0, 10000.0, 10.0, 10.0, 10.0, 5.0, 2.5} in equation (7), where IN denotes N

dimensional identity matrix. Each parameter is set to acquire the best results in terms of both
the robustness and the energy efficiency.

Results in table 2 show that the controller generated by the optimization process did halve
the cost of the trajectory, as compared to that of the original hand-tuned PD servo controller.
Note that we defined the control cost as

∑N−1

i=0 ||ui||
2, where ui is the control output (torque)

vector at i-th time step.

Table 2: One step control cost (average over 100 steps)
DDP PD servo

control cost [(N · m)2] 11.7 24.8

To test robustness, we assume that there is unknown viscous friction at each joint:

τ d
j = −µj θ̇j (j = 1, . . . , 4), (10)

where µj denotes the viscous friction coefficient at joint j, and an unknown disturbing torque
at the ankle:

τ d
ankle = τc, (11)

where τc denotes a constant disturbing torque. We considered three disturbance conditions as
1) viscous friction 2) constant ankle torque 3) friction and ankle torque.

We used two levels of disturbances in the simulation, with the higher level being about 3
times larger than the base level (Table 3).

Table 3: Parameters of the disturbance
µ2,µ3 (hip joints) µ1,µ4 (knee joints) τc (ankle)

base 0.01 0.04 −0.003
large 0.03 0.15 −0.01

All methods could handle the base level disturbances. Both the standard and the minimax
DDP generated much less control cost than the hand-tuned PD servo controller (Table 4). How-
ever, because the minimax DDP is more conservative in taking advantage of the plant dynamics
it has a slightly higher control cost than the standard DDP. We also found that the friction dis-
turbance increased the control cost, as would be expected.

Note that we used same parameters as we used in previous experiment for both the standard
DDP and the minimax DDP (i.e. Q,R,S,vd,P0,PN ). For the minimax DDP, we set the parameter
for the disturbance reward in equation (8) as G = diag{5.0, 20.0, 20.0, 20.0, 20.0} (G with
smaller elements generates more conservative but robust trajectories).
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Only the minimax DDP control design could cope with the higher level of disturbances
with the friction disturbance. Figure 3 shows trajectories for the three different methods with
the friction and the ankle torque disturbances. Both the robot with the standard DDP and the
hand-tuned PD servo controller fell down before achieving 50 steps. The bottom of figure 3
shows successful 50 steps of the robot with the minimax DDP. Table 5 shows the number of
steps before the robot fell down. We terminated a trial when the robot achieved 100 steps. We
found that the failed trials were mainly caused by the friction disturbance.

Table 4: One step control cost [(N · m)2] with the base setting (averaged over 100 steps)
standard DDP minimax DDP PD servo

1)friction 14.3 15.8 26.3
2)ankle torque 11.7 12.7 25.0
3)friction & ankle torque 14.4 16.5 26.5

Hand-tuned PD servo

Standard DDP

Minimax DDP

Figure 3: Biped walk trajectories with the three different methods

Table 5: Number of steps with large disturbances
standard DDP minimax DDP PD servo

1)friction 25 100 47
2)ankle torque 100 100 100
3)friction & ankle torque 16 100 33

4 DISCUSSION

In this study, we developed an optimization method to generate biped walking trajectories by
using Differential Dynamic Programming (DDP). Both standard DDP and minimax DDP gen-
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erated low torque biped trajectories. We showed that minimax DDP had more robustness than
the controller provided by standard DDP and the hand-tuned PD servo. DDP provides a feed-
back controller which is important in coping with unknown disturbances and modeling errors.
However, as shown in equation (9), the feedback controller depended on time, and development
of a time independent feedback controller is a future goal.

APPENDIX

A Calculation of The Minimax DDP

Here, we show the update rule of minimax DDP. Minimax DDP can be derived as an extension
of standard DDP [3, 6]. The difference is that the proposed method has an additional distur-
bance variable w to explicitly represent the existence of disturbances. This representation of
the disturbance provides the robustness for optimized trajectories and policies.

The total return R by using control output ui and disturbance wi at the state xi is given by

R(xi,ui,wi) = L(xi,ui,wi) +
N−1
∑

j=i+1

L(xj,uj,wj) + Φ(x0,xN)

= L(xi,ui,wi) + V (xi+1), (12)

where the value function V is defined as

V (xi) = min
ui

max
wi

N−1
∑

j=i

L(xj,uj,wj) + Φ(x0,xN), (13)

and the reward L is defined as

L(xi,ui,wi) = (xi−x
d
i )

T Q(xi−x
d
i )+ui

T Rui−wi
T Gwi+(vi(xi)−vd

i )
T S(vi(xi)−vd

i ). (14)

Meaning of each parameter in equation (14) is described in section 2.
Then, we expand the return R to second order in terms of δu, δw and δx about the nominal

solution:

R(xi,ui,wi) = Z(i) + Zx(i)δxi + Zu(i)δui + Zw(i)δwi

+[δxT
i δuT

i δwT
i ]







Zxx(i) Zxu(i) Zxw(i)
Zux(i) Zuu(i) Zuw(i)
Zwx(i) Zwu(i) Zww(i)













δxi

δui

δwi





 , (15)

where Z(i) = L(xi,ui,wi) + V (xi+1). Here, δui and δwi must be chosen to minimize and
maximize the return R(xi,ui,wi) respectively, i.e.,

δui = Z−1

uu (i)[Zux(i)δxi + Zuw(i)δwi + Zu(i)]

δwi = Z−1

ww(i)[Zwx(i)δxi + Zwu(i)δui + Zw(i)]. (16)

By solving (16), we can derive both δui and δwi. After updating the control output ui and the
disturbance wi with derived δui and δwi, the value function V (xi), first order derivative Vx(xi),
and second order derivative Vxx(xi) are given as

V (xi) = V (xi+1) − Zu(i)Z
−1

uu (i)Zu(i) − Zw(i)Z−1

ww(i)Zw(i)

Vx(xi) = Zx(i) − Zu(i)Z
−1

uu (i)Zux(i) − Zw(i)Z−1

ww(i)Zwx(i)

Vxx(xi) = Zxx(i) − Zxu(i)Z
−1

uu (i)Zux(i) − Zxw(i)Z−1

ww(i)Zwx(i). (17)
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B Ground Contact Model

The function H() in equation (7) includes the mapping (velocity change) caused by the ground
contact. To derive the first derivative of the value function Vx(xN) and the second derivative
Vxx(xN ), where xN denotes the terminal state, the function H() should be analytical. Then, we
used an analytical ground contact model[5]:

θ̇
+

− θ̇
−

= M−1(θ)D(θ)f∆t, (18)

where θ denotes joint angles of the robot, θ̇
− denotes angular velocities before ground con-

tact, θ̇
+ denotes angular velocities after ground contact, M denotes inertia matrix, D denotes

Jacobian matrix which converts the ground contact force f to the torque at each joint, and ∆t

denotes time step of the simulation.

REFERENCES

[1] F. Asano, M. Yamakita, and K. Furuta. Virtual passive dynamic walking and energy-based
control laws. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2000.

[2] C. Chevallerau and Y. Aoustin. Optimal running trajectories for a biped. In 2nd Interna-
tional Conference on Climbing and Walking Robots, pages 559–570, 1999.

[3] P. Dyer and S. R. McReynolds. The Computation and Theory of Optimal Control. Aca-
demic Press, New York, NY, 1970.

[4] M. Hardt, J. Helton, and K. Kreuts-Delgado. Optimal biped walking with a complete
dynamical model. In Proceedings of the 38th IEEE Conference on Decision and Control,
pages 2999–3004, 1999.

[5] Y. Hurmuzlu and D. B. Marghitu. Rigid body collisions of planar kinematic chains with
multiple contact points. International Journal of Robotics Research, 13(1):82–92, 1994.

[6] D. H. Jacobson and D. Q. Mayne. Differential Dynamic Programming. Elsevier, New
York, NY, 1970.

[7] S. Kagami, K. Nishiwaki, J. J. Kuffner, Y. Kuniyoshi, M. Inaba, and H. Inoue. Design and
implementation of software research platform for humanoid robotics:H7. In International
Conference on Humanoid Robots, pages 253–258, 2001.

[8] Y. Kuroki, T. Ishida, J. Yamaguchi, M. Fujita, and T. Doi. A small biped entertainment
robot. In International Conference on Humanoid Robots, pages 181–186, 2001.

[9] T. McGeer. Passive dynamic walking. International Journal of Robotics Research,
9(2):62–82, 1990.

[10] S. Miyakoshi, G. Cheng, and Y. Kuniyoshi. Transferring human biped walking function
to a machine -towards the realization of a biped bike-. In 4th International Conference on
Climbing and Walking Robots, pages 763–770, 2001.

[11] K. Yokoi, F. Kanehiro, K. Kaneko, K. Fujiwara, S. Kajita, and H. Hirukawa. A honda
humanoid robot controlled by aist software. In International Conference on Humanoid
Robots, pages 259–264, 2001.

7


