
Celine Berger and Eric Telmer
Humanoids Final Write-up
May 2013

For our final project, we set out to develop a humanoid robot that would be able to
perform object manipulation tasks, specifically to connect a hose to a spigot and open the spigot
as outlined in the DARPA Virtual Robotics Challenge. The hose task consists of three parts -
putting the hose to the faucet, rotating the hose to connect it, and then opening the spigot to
enable fluid flow. As we had no prior knowledge or experience with any robotic simulators, we
decided to take on the challenge of learning how Robot Operating System (ROS) works and use
it for the challenge task.
 To begin learning how to work with ROS, we researched on how it worked overall. ROS
is a framework for robot software development; it provides a structured communications layer
above the host operating systems of a heterogeneous computer cluster. It provides standard
operating system services such as hardware abstraction, low-level device control,
implementation of commonly used functionality, message-passing between processes, and
package management. It has an emphasis on large-scale integrative robotics research, which
makes it useful for the wide variety of tasks in the DARPA challenge. ROS is peer-to-peer,
tools-based, multi-lingual, and free and open-source. We thought the system’s multilingual
capability would serve in our favor, as both team members have varying degrees of knowledge
of either C++ or Python, both of which are supported. While having no background in ROS
seemed detrimental in completing this task, having basic programming knowledge would help us
understand the workings of the system.
 After background research on ROS, we then delved into working our way through the
tutorial, going step by step. The first section we approached was the ROS filesystem. The basic
overview of this section includes the Filesystem tools - rospack, roscd, roscd log, rosls, and tab
completion. These commands are built-in to manipulate packages and manifests. Rospack gets
information from packages. Roscd, part of the rosbash suite, allows the (cd) directory to be
changed directly to a package or stack. Roscd log takes us to the folder where ROS stores log
files. Rosls like roscd is part of the rosbach suite. It allows us to ls directly into a package by
name rather than by absolute path. Tab completion is what it sounds like – pressing the TAB
key allows the command line to be filled out automatically.
 After learning how to navigate ROS, we learned how to create and build a package.
Part of setting up a package is ensuring it has the proper dependencies. Dependencies are other
packages that any one package needs to work. To build a package, we ran a build command that
depends on CMakeLists.txt.
 We then began to learn about ROS commandline tools - roscore, rosnode and rosrun.
Nodes are executables that use ROS to communicate with each other. Messages are a datatype
used to subscribe or publish a topic - multiple nodes can subscribe to a topic that they know that
other nodes subscribe to so that they are able to communicate with each other. Messages are the

tools for this communication. When a node wants to subscribe to a service, it communicates
with the Master that acts as the overall manager and tracks and names services and topics. We
used roscore to initialize a Master; this must be done before attempting to run any nodes. We
used rosrun to start a node out of a package:

rosrun <package_name> <node_name>
Each topic has a defined message type, which can be found using rostopic type <topic>. So
every message that is published to the topic has to be of the same data structure. To publish to a
topic, we use rostopic pub:
 rostopic pub <topic> <msg_type> <args>
For example, a message type of velocity:
 float32 linear
 float32 angular
A service is a function that you send a request using rosservice type <service> to figure out the
datatype of both requests and responses. To call a service, we use rosservice call <service>
<args>. A request consists of the arguments that you provide a function, the response is what it
returns. The ROS parameter server is a space where global variables can be stored.

With roslaunch, we can launch packages. A launch file contains instructions on how to
run multiple nodes and link them together. Using the launch file and launch command as read by
roslaunch runs these nodes and maps inputs and outputs.
 Using this basic knowledge of ROS, we attempted to understand how to use the
object_manipulator package to grasp and then turn a valve. We were planning on using the PR2
simulator in conjunction with the object_manipulator package. We had difficulty in getting on
getting the object_manipulator package to work with PR2. The following is an overview of the
steps we would need to take:
● Have it perform a grasp movement, and record standard values for the fields of the

pickup message (PickupGoal.msg) that we would use later.
● We would send this same message later, but modify the fields in order to perform the

turning of the spigot.

The object_manipulator provides two SimpleActionServers:
/object_manipulator_pickup: requests that an object be picked up.

○ action definition:
■ goal: PickupGoal.msg
■ result: PickupResult.msg
■ feedback: no feedback provided

/object_manipulator_place: requests that a previously picked up object be placed somewhere in
the environment

● action definition:
○ goal: PlaceGoal.msg

○ result: PlaceResult.msg
○ feedback: no feedback provided

Our plan was to use the PickupGoal.msg to force the hand to grasp and then turn the identified
valve. We were not focusing on how the valve is identified.

A PickupGoal.msg has the following definition:

string arm_name
object_manipulation_msgs/GraspableObject target
object_manipulation_msgs/Grasp[] desired_grasps
object_manipulation_msgs/GripperTranslation lift
string collision_object_name
string collision_support_surface_name
bool allow_gripper_support_collision
bool use_reactive_execution
bool use_reactive_lift
bool only_perform_feasibility_test
bool ignore_collisions
arm_navigation_msgs/Constraints path_constraints

arm_navigation_msgs/OrderedCollisionOperations
 additional_collision_operations

arm_navigation_msgs/LinkPadding[] additional_link_padding
object_manipulation_msgs/GraspableObject[] movable_obstacles
float32 max_contact_force

In order to force the robot to not attempt to lift the valve up, we would have had to edit the “lift”
message. It has the following definition:

geometry_msgs/Vector3Stamped direction
float32 desired_distance
float32 min_distance

We would set all of these to 0.

In order to trick the robot into turning the valve we would continuously generate
PickupGoal.msg with zero lift and new desired_grasps each time.
desired_grasps has the following definition:

sensor_msgs/JointState pre_grasp_posture
sensor_msgs/JointState grasp_posture
geometry_msgs/Pose grasp_pose
float64 success_probability
bool cluster_rep
float32 desired_approach_distance
float32 min_approach_distance
object_manipulation_msgs/GraspableObject[] moved_obstacles

So each new message would have pre_grasp_posture equal to the previous messages
grasp_posture. Each iteration, we would change the grasp_posture and grasp_pose. The
desired_approach_distance and min_approach_distance would remain at zero.

grasp_posture:
 string[] name

float64[] position ;in rad
float64[] velocity ;in rad/s
float64[] effort ;in N

grasp_pose:
 Point position

Quaternion orientation

point:
 float64 x

float64 y
float64 z

Quaternion:

float64 x
float64 y
float64 z
float64 w

We would set velocity and effort to the same value each time. Point would also remain the same
as we don't want the hand moving, just turning.
This is how we would change position and orientation:

Position = prev_position + velocity;
orientation = prev_orientation rotated by vel, using a rotation matrix.

If we received a PickupResult Message that shows failure, that means that we have rotated the
hand as much as possible, in this situation we will un-grasp, retreat the hand , rotate it back to its
initial position and the repeat until the valve is open.

By continuously generating Pickup messages with zero lift, and with the grasp slowly rotating
we could achieve our goal of slowly turning a valve.
 While we couldn’t figure out how to actually get this to work, we did effectively get a
basic overview of ROS.

File: object_manipulation_msgs/Grasp.msg

Message Definition
sensor_msgs/JointState pre_grasp_posture

sensor_msgs/JointState grasp_posture

geometry_msgs/Pose grasp_pose

float64 success_probability

bool cluster_rep

float32 desired_approach_distance

float32 min_approach_distance

object_manipulation_msgs/GraspableObject[] moved_obstacles

