
Optical Skin For Robots:
Tactile Sensing And Whole Body Vision

Summary
Optical imaging will be developed for high resolution tactile sensing. The combination of embedded cam-

eras and soft transparent skin supports measuring contact forces by tracking skin deformation, and tracking
nearby objects and surfaces (a ”proximity” sense). The outer layer of the skin is inexpensive and easily re-
placeable when it wears or is damaged, because there is no wiring or sensors in it. Our approach minimizes
wiring, a major source of failure in robots, because the wiring leaving the sensor is already high-bandwidth
networking (USB or Ethernet). The wiring, solder joints, and other connections in the sensing system don’t
have to repeatedly deform or face cyclic or variable stresses, major sources of sensor failure. The materials that
do deform or are stressed (the outer layer of the skin) can be optimized for mechanical robustness. We will
evaluate our work by co-developing an ”optical skin” for hands and a synergistic soft hand. Performance on
everyday manipulation tasks such as pouring and cutting will be assessed.

Intellectual Merit
A transformative idea is to separate deformation in the skin and its measurement, by developing remote or

non-contact tactile sensing. Another transformative idea is to aggressively distribute high resolution imaging
over the entire robot body. This reduces occlusion, a major issue in perception for manipulation. Given the
low cost of imaging sensors, there is no longer a need to restrict optical sensing to infrared range finders (single
pixel depth cameras), line cameras, or low resolution area cameras. A transformation that we hope to lead
in robot perception based on skin and other sensors is rich sensing: the fusion of multimodal sensing at a
distance, contact-based position, movement, and force sensing, vibration sensing, and volumetric perception of
the interior of manipulated soft objects [based on future work on adding ultrasound transducers to the skin].

Broader Impacts
One theory as to why robots are so clumsy is that they have little or no tactile sensing. Endowing robots with

superhuman sensing may allow them to be more useful, and cheaper to program or train. We expect to make
programming robots to do tasks involving contact much cheaper, and make robots more useful, particularly for
care robots supporting everyday life activities. The proposed system is critical for safety of robots that are near
or touch humans, and for improved robot performance in many manipulation tasks. Possible applications of this
approach include household robots that interact with humans, aware furniture and car interiors, aware clothes,
aware tools, and aware floors, walls, and ceilings. Optical skin-based sensing is a practical, manufacturable, and
maintainable approach to sensing for touching and helping people, and can be applied beyond robotics to better
seats and other furniture surfaces that touch humans, and more intelligent tools and control surfaces that humans
touch. A major outreach initiative led by Atkeson is the creation of a physical and virtual Robot Museum. The
impact of Atkeson’s work will be increased by a new Disney TV show based on the characters from the Disney
movie Big Hero 6, including the inflatable medical robot Baymax inspired by Atkeson’s work on inflatable
robots. Atkeson has been successful in graduating a lot of students who are now active participants in the robot
revolution.

1



Figure 1: Left: Whole Body Vision in Japanese (Hyakume) and Greek (Argus Panoptes) mythology. Each figure
has 100 eyes spread all over their body. Right: Example design of our optical multimodal-sensing skin and an
installation example on a robotic gripper.

Optical Skin For Robots:
Tactile Sensing And Whole Body Vision

We propose developing optical sensing and compliant skin for hands for 1) high resolution tactile and
force/torque sensing and 2) widespread proximity sensing and tracking of nearby objects and the environment.
The SuperTouch system will use active multi-spectrum and multi-modal perception to recognize objects and
materials, make 3D models of nearby objects and obstacles, detect, localize, and track contact areas and forces
before (prediction) and during grasping and other forms of contact, measure and control forces, monitor object
and hand deformation, tearing, and other damage to manipulated objects, and predict, detect, and measure slip.

Motivation

Robots currently avoid contact, rather than use it to make tasks easier. In the DARPA Robotics Challenge (DRC)
Finals, no robots used railings, walls, door frames, or obstacles to guide or support the robot body [10]. More
research in control algorithms is needed, but a major problem for most DRC teams was the lack of tactile and
proximity sensing over their entire robot body. There were many sensors in the head, but often the robots could
not see contacts. We added wrist and knee cameras to our Atlas robot to watch the hands and feet. Even this
sensing was not enough, and the bulky cameras got in the way.

Robots need skin with appropriate mechanical properties, rather than just using hard shells. We need robot
skin that is compliant rather than stiff, and has appropriate viscosity, friction, hysteresis, and other mechanical
properties. Skin often needs to be applied to doubly curved surfaces and with various thicknesses and stiffnesses.
This makes it difficult to use flexible circuit boards and other stiff flexible sheets, because they don’t stretch to
conform to a doubly curved surface. We are also interested in soft sensors for inflatable robots (Figure 5).

A major motivation for this work is our experience with currently available tactile sensors and robot hands,
and considering the life history of robot skin. Skin is repeatedly subject to deformation, wear, and other damage.
Materials harden, soften, deform (sag), or become brittle with age or exposure to sunlight. Fluids (gas or liquid)
diffuse, leak, separate, and evaporate. This is increased if the fluid containment is repeatedly deforming. At least
the outer layer of skin needs to be easy and inexpensive to refill, repair, or replace. Humans replace their skin
outer layer approximately monthly. In robots, materials that do deform (the outer layer of the skin), should be
able to be optimized for repeated deformation as well as desired mechanical properties, rather than for sensing.

It is important to minimize the maximum stress and resulting deformation and the stress and deformation
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Figure 2: FingerVision: Prototype of the optical skin on the fingers of the Baxter robot. Left: the sensing skin
and the fingers. Middle: cutting an apple. Right: a camera view during cutting where the marker movements
are rendered.

cycling of wires, electrical components, flexible circuit boards, and solder joints. Even wiring designed to
stretch and deform (for example coiled wiring embedded in elastomers) fatigues and fails relatively quickly.
This suggests favoring sensing designs that do not put electronic components or wires in the part of the skin that
deforms.

In general we want to minimize the number of components and the amount of wiring in terms of increasing
the system probability of failure as well as costs associated with these elements. This suggests favoring designs
that have few components. One could argue that the imaging chips we propose to use have millions of compo-
nents, but overall failure rates have been brought down to acceptable levels, so we can treat a camera as a single
component.

Implementing compliance is difficult for tactile sensors with rigid components such as rigid planar printed
circuit boards and micro-electro-mechanical systems with planar substrates, so we want to avoid these in the
deformable region. Flexible PCBs can be bent only in one direction at a time unless cut, and are not stretchable.
Their mechanical robustness to repeated deformation is limited. Flexible PCBs are more robust if adhered to a
shaped rigid substrate.

Most tactile sensors, and especially tactile sensor arrays, only measure normal force. Tangential forces are
especially important for predicting and avoiding slip.

Our goal is to complement existing tactile sensor approaches as much as possible. Our proposed approach,
which is limited to frequencies defined by frame rates, complements and combines with high frequency vi-
bration and texture sensing provided by embedded inertial measurement units (IMUs: accelerometers, gyros,
magnetometers, and temperature sensors), microphones, and other vibration sensors. We will also explore the
use of hairs and whiskers to extend tactile sensing’s range [42]. We note we do not have to instrument the hairs
and whiskers, as they can be optically tracked at a distance. This makes hairs and whiskers inexpensive to use.
We note that optical mice use sensors with frame rates in the tens of thousands, but we have not found a way to
transfer these frames out of the chips (such as the ADNS-9800) at more than 100fps, which is about what we
get from our other cameras. Total image shifts for each frame can be transferred at much higher rates from these
specialized cameras that compute optic flow.

The robot hands we have worked with (Figure 7) have had fat fingers with hard surfaces and rigid palms.
We will explore soft hands with internal skeletons and flexible palms that are designed with sensing in mind,
rather than treating sensing as an afterthought in hand design, and assuming thin sensor pads can just be added
to a bulky shell.

The most recent workshop on tactile sensing (yesterday), at the 2016 IEEE-RAS International Conference
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Figure 3: Kinematic prototype of a finger skeleton with cameras.

on Humanoid Robotics, identified the following issues in tactile sensing: “1) Available tactile sensors are still far
from matching the capabilities of the sense of touch in humans; 2) Tactile data processing algorithms and data-
driven learning technology are still immature; 3) A general and robust robot manipulation control framework
is still missing.” [62]. This proposal addresses issue 1, and enables work on issue 2. Other work in our lab
supported from other sources addresses issue 3, so we will be able to address these issues in an integrated way.

Scholarpedia’s article on tactile sensing says: “Optical sensors are attractive due to their potential for high-
spatial resolution, robustness to electrical interference, light weight, and their potential to resolve the wiring
complexity problem.” and “Tactile sensing systems are still relatively undeveloped compared to the sophisti-
cated technology accomplished in vision. The relatively slow development attained thus far is possibly related
to the inherent complexity of the sense of touch. Another limiting factor is that, by their very nature, tactile
sensors require direct contact to be made surfaces and objects, and are therefore subject to wear and risk of
damage than some other sensor types.” [58].

The German lab DLR states: “Requirements [for tactile sensing] include robustness regarding wear and
tear, easy low-cost mass production and a space-saving, fast read-out mechanism. The skin should be soft and
exhibit mechanical properties comparable to that of human skin.” [19]

We do note that the field of tactile sensing has been promising, but not delivering, for decades. Rob Howe’s
web page states: “Thirty years of benchtop research have failed to deliver tactile sensing suites that are ro-
bust and inexpensive enough to provide grasping information at a practical cost/benefit ratio.” [28]. The 2016
Springer Handbook of Robotics states: “Tactile sensing always seems to be a few years away from widespread
utility.” [17].

Finally, here is an interesting quote: “One reason for the slow development of tactile sensing technology as
compared to vision is that there is no tactile analog to the ... CCD or ... CMOS optical array.” [17]. Perhaps it
makes sense to just appropriate CCD and CMOS optical arrays from the vision folks and adopt them for tactile
sensing as well.

Related Work

Figure 4 shows some examples of tactile sensor design paradigms. Recent reviews of tactile sensing are pro-
vided by [17] and [18]. Recent European projects include TACMAN: Tactile Manipulation and Roboskin. The
literature is huge and many prototype sensors have been built. It is not possible given the page limits to survey
non-optical tactile sensing, so we restrict our related work survey to optically-based tactile sensing. Few tactile
sensors are actually widely used, and they are restricted to very simple designs. Capacitive sensing and other
contact tracking methods for track pads and touch screens are a success, but not directly applicable to robot
skin. The use of simple optical sensors (range finders, for example), switch contact detection, load cells, force
sensitive resistors (FSRs) and capacitive and resistive array sensors probably dwarf all other types of industrial
(and robot) tactile sensors.

Here are the goals that lead us to focus on optically-based tactile sensing:

• We want tangential forces as well as normal forces, because slip is important. This criterion eliminates
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Figure 4: Some examples of current tactile sensor design paradigms. L-R: [NAO] Plates or pads instrumented
with switches or capacitive sensors such as those used in touch screens. [Futek] Single or multi-axis load
cells at fingertips or at every possible contact point. [StanfordHaptics] Resistive strain gages, fiber optic strain
sensors, or other strain sensors embedded in structural elements such as finger links. [Toyota] Circuit and
MEMS sensor arrays. [NTU] Discrete elements printed or embedded in an elastomer which measure local
properties, or relative positions, connected by printed or embedded wires. [TUM] Rigid printed circuit board
(PCB) tiles. [Tekskan] [Gifu] Circuit elements on flexible PCBs, which can measure resistance, capacitance,
or inductance changes. Currently force sensitive resistors (FSR) are the most popular circuit elements. [iCub]
Arrays of flexible PCBs. [BioTac] Bags of fluid (gas or liquid). In addition to pressure, electrical or magnetic
field measurements can measure deformation. [Takktile] Elastomer with underlying discrete pressure sensors
mounted on a rigid PCB. [Bielefeld] Soft sensor arrays. [Bielefeld] Fabric based sensing. [GelSight] Optical
measurement of elastomer deformation (similar to proposed approach). [Lumelsky] Distributed infrared range
sensors. Paradigms not illustrated include MEMS approaches, approaches which embed materials or wiring in
an elastomer and measure bulk resistance, capacitance, dielectric properties, or inductance, conductive liquid,
thin metal film, piezoresistive, piezoelectric, and microfluidics plus capacitance measurement.
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Figure 5: Our Baxter robot, Baxter cutting a tomato, and an inflatable robot.

most potential tactile sensing technologies.

• We want high resolution. “In comparison to animals, with hundreds or thousands of mechanorecepters
per square centimeter of skin, even the most sophisticated robots are impoverished.” [17]. This criterion
also eliminates most potental tactile sensing technologies.

• We want immunity to electromagnetic interference. This favors optical approaches over capacitive and
magnetic approaches.

• We want to minimize the cost and embedded components in the portion of the skin that undergoes de-
formation or stress due to contact. This goal is met by optical systems and electric and magnetic field
systems, as well as some exotic approaches that effectively use sonar or ultrasound to do tactile sensing.

• We would like a proximity sense. Again, this goal is met by optical systems and electric and magnetic
field systems, Interestingly, optical systems provide a proximity sense when there is no occluding contact.
Sonar and ultrasound approaches provide a proximity sense where there is a contact, and the lack of
contact is occluding.

• We want to minimize wiring and component count. Since small cameras and their high speed networking
are highly developed, it is easy for camera-based systems to meet this criteria.

The idea of Whole-Body Vision is thousands of years old (Figure 1). We want to go beyond palm, wrist,
crotch, and knee cameras to cover the entire robot with cameras. Palm and wrist cameras are in common use
and are commercially available (examples include [67, 68]). A typical home-brew wrist camera is shown in
Figure 5. Using a large number of cameras has been pursued in the development of VR cameras, where tens
of cameras are mounted on the same rigid body. We want to put more cameras on multiple moving parts of a
robot.

The idea of using imaging sensors for tactile sensing is decades old. An initial attempt was measuring the
frustration of total internal reflection within a waveguide on a sensor surface caused by contact [13, 57, 101, 34].
The research trend has shifted to measuring displacement of markers placed on the sensor surface with computer
vision [39, 83, 16, 29, 35, 36, 6, 49]. The resolution of the measurement is determined by the camera and the
marker density. Recently high resolution sensors have been proposed (e.g. [51, 49]). Another idea is markerless
localization of a registered object (e.g. [51]). The localization accuracy is ideally equal to the camera resolution.
Much of the above work uses a transparent elastic material between the sensor surface and the base. The dynamic
range of the force measurement can be controlled by changing the hardness of the elastic material (softer is more
sensitive; cf. [65]). Many have proposed the combination of structured light, markers, and multiple imagers to
estimate deformation in transparent skin [74, 64, 61, 94, 30, 40, 41, 82, 93, 72, 27, 71, 1, 33, 45, 14, 37, 50, 100,
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Figure 6: A 3x3 camera array using cell phone cameras. The cell phone image sensors used do not perform
image compression, so substantial additional computer hardware was added for image compression and net-
working. This is unnecessary for the larger camera used in FingerVision I. shown on the left and bottom of the
two images for size comparison, since it has onboard image compression.

65]. Saga et. al. added hairs to their optically sensed skin [69]. Our research is close to these approaches. An
important difference is the total transparency of our skin including the outer surface, which gives us vision of
external surfaces as well. Previous work used an opaque top layer on the skin to block external light as it would
affect marker tracking. We will solve the marker tracking problem under natural external scenes using computer
vision in order to make use of totally transparent skin.

Embedding optical range finders (single pixel depth cameras) in the skin of a robot to provide whole body
distance sensing was proposed more than 40 years ago and continues to be developed [38, 84]. Another sensor
with fully transparent skin is proposed in [66] where infrared range finding sensors are used instead of a camera.
The idea is to measure distances between the sensors and an object, and estimate the deformation of the trans-
parent skin from the distance. Vertical contact forces are estimated from the deformation. If there is no contact
with an object, this sensor simply gives the distance to a close object. We believe imaging can be used instead
of just range finding for great benefit and not much added cost. Although this sensor and ours have different
sensing modalities and ranges, we can share ideas; e.g. we could embed distance sensors around the cameras.

Space limitations prevent us from covering all the relevant background in visual and tactile perception;
reasoning about contact; trajectory, force, and contact control; reinforcement learning; discriminant or predicate
based policies; matching learned sensory templates; deep learning, and robot learning in general, Rather than
give a series of superficial reviews, we focus here on signature learning, detection, and verification. We note the
increasing popularity of “kitchen sink” or “black box” machine learning approaches to contact and object tactile
recognition and tracking [47]. One popular machine learning approach is neural networks (deep learning) [63].

The data mining community has developed several varieties of algorithms for mining discriminative key
signatures from various types of multimodal data. Shapelet discovery [99] finds discriminative subsequences
of time-series data, but has been generalized to other forms of data like classifying plant species based on
leaf outline shape. It can also learn from multimodal data by learning decision trees, combining subsequences
from multiple modes of data into a single classifier. Chiu et al. [15] detect repeated time series “motifs”
with a probabilistic anytime algorithm that utilizes random projections. SAX [52] is an alternate approach
to classifying time series data by using a discretized symbolic representation of the data that is conducive to
dimensionality reduction. More recently, spatio-temporal hierarchical matching pursuit [56] has been used to to
learn time-varying features from tactile data to classify grasp stability and to perform object recognition from
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Figure 7: Hands Atkeson has worked with. Note the prevalence of hard surfaces and rigid palms. L-R:
Utah/MIT, Barrett, IRobot, Robotiq, and Sandia hands.

touch alone. McManus et al. [59] introduce an algorithm to detect scene signatures in image data that help to
recognize specific physical locations under many different weather and lighting conditions.

Preliminary Work

To develop our ideas, we created FingerVision: a tactile and proximity sensor for parallel jaw robot grip-
pers [96]. This video of the system is a good introduction to our work [95]. Figures 2 and 5 show a prototype
of FingerVision I and its installation on our Baxter robot fingers. We demonstrated the usefulness of the optical
skin in cutting food. Figure 6 shows a prototype of a 3x3 camera array using cell phone cameras, where we
tested networking and processing nine compressed video streams.

Proposed Work

Key issues in the proposed work include: 1) Developing a skin prototype that can be used to develop perception
algorithms and measure computation and networking usage. This prototype will put approximately 100 cameras
on the shell of our Baxter robot. 2) Developing a hand with skin to evaluate the proposed system on tasks, and
to assess the mechanical robustness and lifetime issues of the proposed system. 3) Exploring how to use multi-
spectral, multi-modal and active sensing to improve tactile and proximity perception, especially focused on
human detection and localization at the human skin level, activity recognition, and contact management. 4)
Developing tactile and proximity perception algorithms for this system. 5) Developing a better low profile
camera and lens system suitable for the skin.

Proposed Work: Whole-Body Vision Prototype I

We propose building a prototype of the SuperTouch system with a hundred optical sensors such as visible
light (SONY IMX219 8-megapixel sensor, for example) and near and far-infrared (thermal) image sensors
(Figure 11), camera modules and board cameras, GigE CAMERAS, and RGBD imagers. This prototype would
have a gigabit Ethernet network and embedded processing (perhaps using NVIDIA Tegra processors) to compute
optic flow on single camera streams and stereo matching on image streams from pairs of cameras.

Based on our previous work with FingerVision and the network shown in Figure 6, we will develop a whole-
body vision system for our Baxter robot. This system will be used to develop perception algorithms and measure
computation and networking usage.

We estimate it will involve approximately a hundred cameras on the shell of our Baxter robot. This is about
an 11x replication of our 9 camera test setup, so we are confident we can build the hardware. In fact, it will
make an excellent undergraduate project for our REU student. We estimate the cost at less than $100 per video
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Figure 8: Hinged palms. L-R: Shadow and Elu2 hands.

stream (including camera, cables, and a share of aggregating computers and post-aggregation network cables
and switches), so the cost is comparable to hiring a summer undergraduate student. Initially, we will route the
video streams to an existing local computer cluster for processing.

Proposed Work: Co-development of Hand and Sensing

Our goal in this section is developing a hand with skin to evaluate the proposed system on tasks, and to assess
the mechanical robustness and lifetime issues of the proposed system. Figure 3 shows a kinematic prototype of
a skeleton for a finger with cameras embedded in the skeleton. We will also explore embedding cameras in soft
skin material. The finger is not yet actuated. Tendons will be used to flex the finger joints, and will be routed to
the side of the cameras. Flexure joints will extend the finger. Initially Dynamax servos will be used to actuate
the tendons.

We will take sensing into account when designing hands (sensing seems to be an afterthought in most hand
designs). Figure 7 shows hands Atkeson has worked with. These hands are characterized by hard surfaces, rigid
palms, inadequate sensing, and frequent mechanical failure.

We will explore skeletal hands, where an internal skeleton is covered with soft material. A key issue we will
explore is non-rigid palms. Some hands have been designed with hinged but otherwise rigid palms (Figure 8).
We will consider hinged palms designs, as well as continuum designs where the palm can bend in many ways
and does not have a small set of fixed joints. We will also consider hand designs that extend the fingers into the
palm, and cover the “metatarsal bones” with fleshy material (Figure 9). Figure 10 shows a kinematic prototype
of a skeleton for a hand. The key point is that the palm can conform to grasped objects due to the use of
metatarsal bone structure. We will use similar actuation for the full hand as what we plan to do for the finger
(tendons to flex, flexures to extend, and remote servos to pull on the tendons).

Proposed Work: Multi-spectral, Multi-modal, and Active Sensing

Previous skin and tactile sensing projects typically focused on one or only a few types of sensors. We will
deploy many types of sensors. in addition to using visible light optical sensors to measure skin deformation.
Electrical properties of the skin including resistance, capacitance, and inductance can be measured. Printed
antennas and inductive coils similar to what are used in wireless RFID anti-shoplifting devices may also be
usefully placed on the skin surface or embedded in the skin to measure static and dynamic electric fields, as
well as magnetometers or Hall effect sensors to measure magnetic fields. Radar chips are being developed for
monitoring respiration and hand gestures at a distance [25]. Pressure sensors can be used to measure skin forces.
Given the low cost and small size of far infrared (thermal) imaging sensors, there is no longer a need to restrict
sensing to just visible light, or just near infrared. For robots that work with people or processes involving
changing temperature (e.g. cooking) imaging in the infrared spectrum is useful (Figure 11), as well as skin
temperature sensors. Small time of flight depth cameras are now available (Figure 12). Ultrasound transducers
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Figure 9: Hands with metatarsal “bones”. L-R: Sheffield, Lara, Miyazaki Lab, OCU, and Todorov hands.
.

can be built into robot skin to image objects and human tissue that are in contact to avoid damage, injury, and
pain. Accelerometers, gyros, IMUs, piezoelectric sensors, and microphones are useful to detect vibrations,
localize contacts, and recognize texture and material properties [75, 32]. Accelerometers are also useful to
measure orientation relative to vertical (given by the direction of the gravity vector). High speed imaging
used in optical mice (essentially using very high frame rate cameras with low angle of incidence illumination
(Avago ADNS9800, for example)) can detect horizontal skin, object, and environment movement. Hairs or
whiskers glued to piezoelectric sensors or optically tracked provide mechanical sensing at a (short) distance.
It may also be possible to embed mechanical elements in the skin that click or rasp when deformed, and use
microphones to track skin deformation. We will explore deliberately creating air and liquid (sweat) flows (both
inwards and outwards) for better sensing (measuring variables such as pressure, conductivity, and temperature)
and controlling adhesion. We will explore humidifying the air for better airflow sensing, contact management,
adhesion control, and ultrasound sensing.

We will use joint angle measurements, augmented by link angular velocities, linear accelerations measured
by MEMS gyros and accelerometers, and Whole Body Vision to estimate where the robot parts are. This state
estimation is improved by and improves skin-based state estimation of robot, object, and environment configu-
ration.

Another goal is to explore multimodal optical perception as well as the extensive use of active structured
light. We will need to at least add LED-based illumination for when outside light is inadequate or occluded.
Internal illumination can be used to enhance texture perception. Structured light sources can be used to improve
the localization of markers embedded in the skin and nearby surfaces. In some sense infrared range finders and
Time of Flight (TOF) imaging depth sensors use structured light, as does the first version of the Kinect. We
can use similar structured light projection to improve surface reconstruction and tracking measurement. It is
possible to even use small DLP projectors embedded in the skin to vary the structured light pattern according to
viewing conditions [46].

Proposed Work: Algorithm Development

The key features to be demonstrated by this prototype are: 1) surface reconstruction of nearby surfaces, 2)
contact prediction, 3) contact area tracking, 4) normal and tangential force estimation over each contact area,
and 5) attention-based control of processing to allocate processing resources efficiently.

In the proposed research we will focus on finding out how far we can go with publicly available vision
software such as OpenCV and other software. For example, SLAM software for multiple cameras is available
from local CMU colleagues as well as other groups such as the TUM Computer Vision Group. We will integrate
existing software modules rather than write new low level vision algorithms. Future research will focus on
developing new algorithms for optically-based tactile and proximity sensing.

We will explore a range of perceptual approaches, including object tracking based on contact types, forces,
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Figure 10: Kinematic prototype of hand skeleton. The palm can conform to grasped objects due to the use of a
metatarsal bone structure.

and distances, feature based object recognition based on features such as texture, stiffness, damping, and plas-
ticity, feature based event recognition based on spatial and temporal multimodal features such as the frequency
content of vibration sensors, and multimodal signature based event recognition.

As an example of new opportunities that open up with a rich set of sensors, we will discuss event recognition
and physical interaction tracking based on “signatures.” We will use our rich set of sensors to identify signatures
of key events, such as insertion of a peg or screw in a hole. Our embedded cameras might be able to see the
peg and/or the hole. Scraping the peg across the surface may lead to an impact and resultant shock wave that
is picked up by vibration sensors when the peg is dragged across the edge of the hole. In previous research
in our group in collaboration with a postdoc, Scott Niekum, we have conducted a preliminary exploration of
using data mining techniques [99] to discover key signatures of success and failure from multimodal data from
sources such as microphones, wrist accelerometers, and RGB-D cameras. For example, the co-occurrence of a
clicking noise with an accelerometer spike may reliably indicate success, while either feature on its own might
be insufficient (an accelerometer spike could be caused from sliding off the table, or a click from missing the
hole and hitting the table). With these features alone, we have achieved a classification success rate of around
85%, but we suspect that this will greatly improve with more sensory modalities such as pressure and shear
force. This same logic applies to more dynamic tasks as well, such as pancake flipping or other manipulation
tasks during cooking, which rely on making control decisions based on friction, stickiness, and slippage.

How can a robot know when success has been achieved or if various types of failure have occurred? An
ongoing area of our research explores the use of data mining and deep learning techniques to learn how success
and failure manifest themselves across multiple perceptual modes such as visual, audio, and proprioceptive data.
The classification of multimodal time-series observations is complicated by several factors. First, any given
example of success or failure may appear substantially different than other similar outcomes due to the particular
configuration of the world or the actions of the robot. Second, a large fraction of the robot’s observations during
the execution of a task may contain no information about success or failure. Third, success or failure in a task
may not be able to be determined from execution data alone, requiring additional interaction with the system.

For these reasons, part of our work searches for key signatures of success and failure—discriminative fea-
tures mined from subsequences of data. This approach allows the robot to use relatively large amounts of data
in a semi-supervised fashion to characterize important subsignals, while ignoring irrelevant sections of data.
Rather than look only at execution data, we are also exploring teaching strategies through demonstrations that
allow the robot to actively gain data with greater discriminative value. Finally, we are also investigating unsu-
pervised learning techniques to identify different types of failures so that appropriate recovery strategies can be
learned for each failure mode.

Our SuperTouch system will generate a flood of information, and we will have to distribute computational
resources throughout the robot to collect and distill the flood, so that only parametric information and surprises
are forwarded to “higher” levels of processing.

One way to reduce the information flood is to have local processing at the camera compute parameters or
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Figure 11: A time series of far infrared (thermal) images from a camera looking through a skin at a finger
touching the skin. The skin is transparent in the far infrared spectrum, as well as for visible light. Due to the
large dynamic range of the sensor, each picture is scaled so the hottest value is yellow. Note that it is easy to
tell which finger actually touches the skin, that the skin is heated up by contact (very quickly), and there is an
afterimage as the skin cools off. The camera used was a Lepton LWIR module [24].

sufficient statistics of what is seen, and only forward parametric information such as optic flow parameters or
blob tracking results. With local processing we could do local computation of optic flow and stereo disparity
of adjacent cameras. Similar computations are done for camera stabilization and image compression, which
are available now on many imaging chips. We could locally compute changes to previously computed local
surfaces. We could build surface models of what a local set of cameras are seeing.

Another way to reduce the information flood is to not process each image stream fully all the time. We expect
attentional processes to determine what processing is applied to which image stream. Attentional processes can
select which video streams and which frame rates, frames, and/or regions of interest (ROIs) from each video
stream should be processed. We expect one type of attentional process to be applied using local processing at
the camera, to detect “salient” events, such as large spatial discontinuities in illumination or motion. Parametric
predictions will be supplied to local processing at the camera so that “surprises” can be detected.

We believe interaction and internal sensing on a complex active platform such as a robot must be model-
based, and that the models will have to be learned (data-driven). The model determines the expected sensory
readings, and what is perceived is derived from the difference between the expected and actual sensor readings.
A research challenge is to find ways to use inaccurate sensing and imperfect models to build improved models
and more accurate sensing. Another research question is how to most effectively utilize our sensing systems,
such as deciding what to look at with our SuperTouch system. We will pose this as an optimization problem,
taking into account the energy used to drive active sensing systems, the cost of resources used to process the
raw sensing data, and the anticipated utility of the information gain.

Early versions of this system would simply move all the video streams to a cluster of computers with
multiple GPUs. Later systems would put more computation nearer to the cameras, such as the low power
(10W) NVIDIA Tegra CPU+GPU systems. Our larger cameras have on-board MJPEG and sometimes H264
compression. Assuming a high quality video stream is 5Mbps, a single Gigabit Ethernet line can handle on
the order of 100 cameras, and a 10G Ethernet line can handle 1000 cameras. Another concept we can use is
compressing N related (similar) video streams together (ensemble compression) for further compression.

Proposed Work: A Better Low Profile Camera

A key road block to developing small cameras is developing low profile lenses. Commercially available lenses
are often too large or have a too narrow field of view. We propose to develop appropriate lenses for whole body
vision. Unfortunately, it is difficult to directly 3D print optically clear lenses on most 3D printers, because each
added layer or voxel creates a material interface with imperfections and potentially trapped air bubbles. One
approach is to mold lenses and use CNC machining or 3D printing to create the molds [76]. Lens designs can
also be commercially 3D printed using a special process that produces optically clear material [55]. Figure 12
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Figure 12: Left: A small time of flight camera. Middle: Front and back view of a lens for an optical mouse,
and faceted dome lenses (transparent to infrared). Right: Shisha embroidery, in which mirrors are sewn into
fabric. We propose sewing cameras into fabric. Low profile lenses are needed for this approach to whole body
vision.

shows some lenses we will use as starting points for our designs: the lenses used in optical mice, and faceted
dome lenses, in which each facet is a flat Fresnel lens. Faceted dome lenses are in some sense intermediate
between a single lens system and separate lenses for each pixel found in a compound eye. We will explore
compound eye designs as well, using different lenses for different portions of a single imaging chip. This turns
one high resolution imaging camera into many lower resolution cameras pointed in different directions.

Another approach we will explore is lens-less cameras. One example is FlatCam (co-developed by our
colleagues at CMU) which uses a mask rather than a lens [5]. We will also explore combining compound eye
designs, lenses, and masks. A mask can be thought of as many pinholes. Faceted dome cameras can be thought
of as 3D surfaces with many holes, with a lens in each hole.

Research Plan:

This research involves one postdoctoral fellow, in addition to the PI. The PI will supervise, guide, and provide
assistance as needed, as well as focus on theoretical and algorithm development and building device prototypes.

Year 1: The major emphasis of year 1 will be building a sensing skin for our Baxter robot, and perception
algorithm development. We will do preliminary work on designing the proposed hand and hand sensing system.
We will do exploratory development of new lens systems.

Year 2: Year 2 will focus on co-designing and building the hand and hand sensor system. Our design will
be informed by the results of the Baxter sensing skin developed in Year 1.

Year 3: Evaluation and refinement of our approaches and low profile camera development will be the major
themes of the third year. We will evaluate the approaches both from an experimental and a theoretical point of
view. We will evaluate and improve our hardware implementations, and identify and resolve new issues that
result. In the third year the goal is to demonstrate our sensing Baxter with our hands performing and learning a
wide range of tasks.

What Might Go Wrong?

There are several possible reasons this approach might turn out not to be useful. 1) The first challenge is space
and geometry. Can we fit cameras in useful places? Can we give them enough of a view of the skin, and through
the skin, to be useful? Wire routing can go behind the cameras, but tendon routing often cannot, due to moment
arm considerations. If camera coverage is incomplete, is it enough to be useful?

2) The second challenge is processing. Can we get enough processing power to do something useful? Given
that optic flow and stereo disparity can be currently calculated using camera stabilization and data compression
ASICs and FPGAs, we are confident the answer to this question is yes.
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3) The next challenge is power and cooling, which do not have to be solved immediately, but will have to
be solved to develop an autonomous system.

4) The last challenge is unique to optical systems. The robot skin will get dirty and dusty, and it may be
necessary for the robot to implement self-cleaning behaviors, or be cleaned regularly by humans.

Given these risks, the proposed research is still worth doing because we need to quantitatively find out
whether the above questions can be resolved favorably or not. We won’t have accurate estimates of space,
processing, power, and cooling needs until we build a prototype and try it out on example tasks. We don’t
believe accurate estimates can be made based on theory, back of the envelope calculations. It is less expensive
to build this system than to build an accurate simulator for the system, and the actual system will run in real
time. There is also the motivational issue. It will be extremely motivating to have a prototype system ready to
go.

Prior NSF Supported Work:

NSF Award IIS-1563807 (PI: Geyer, Atkeson co-PI), 8/1/16-7/31/20. $317,007 in year 1. RI: Medium: Com-
bining Optimal and Neuromuscular Controllers for Agile and Robust Humanoid Behavior, started Aug 1, 2016,
and has been active for three months. Because this award is so new, we report on a previous NSF award.

(a) NSF award: IIS-0964581 (PI: Hodgins, Atkeson co-PI); amount: $699,879; period: 7/1/10 - 6/30/14.
(b) Title: RI: Medium: Collaborative Research: Trajectory Libraries for Locomotion on Rough Terrain.
(c) Summary of Results: This grant has supported work on a variety of approaches to controlling humanoid
robots based on trajectory libraries.

Intellectual Merit: The primary goal of our work on Trajectory Libraries for Locomotion on Rough Ter-
rain was to develop control systems for humanoid robots that show human levels of competence, robustness
and flexibility in locomotion on human-scale rough terrain, and explore library approaches to generating be-
havior. Results include: 1) A hierarchical approach to online optimal control of behavior. Low level behavior
(accelerations, joint torques, and contact forces) is optimized on a very fast time scale (1ms) using quadratic
programming. Longer term behavior (center of mass trajectory, for example) is optimized for several seconds
using Differential Dynamic Programming (a 2nd order gradient based trajectory optimization technique). This
work received a “Best Oral Paper Award” at Humanoids 2013. 2) Multiple model policy optimization - algo-
rithms for training robust policies/controllers using multiple models. This approach forms the basis for new
algorithms to learn and optimize policies using model-based approaches, greatly speeding up reinforcement
learning and developing a new approach to robust learning. 3) Learning of optimized trajectories - simple learn-
ing approaches to concisely represent and accurately predict optimal trajectories. 4) Globally optimal control of
instantaneously coupled systems (ICS), which is designed by coordinating multiple lower-dimensional optimal
controllers. We augmented subsystems of the ICS with coordination variables, and then used value functions to
coordinate the augmented subsystems by managing tradeoffs of the coordination variables. 5) We discovered
that many features of optimized walking including costs can be fit using simple global function approxima-
tion, such as quadratic function approximation. 6) A paradigm for designing controllers for complex systems,
“informed priority control”, which coordinates multiple sub-policies. These tools enable us to prototype com-
plex control system designs faster. 7) State estimation for mobile and humanoid robots with “floating body”
dynamics.

We have made contributions to planning and control of human-like motion for humanoid characters and
robots. We have made contributions to the control of low impedance robots and similar systems. We have made
contributions to understanding human standing balance and walking. Our findings have contributed to progress
in planning algorithms, and also progress in nonlinear optimal control. More specifically we have contributed
to the planning and optimal control of high dimensional systems such as humanoid robots. Our work led to an
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Figure 13: DARPA Robotics Challenge.

excellent performance of our team in the DARPA Robotics Challenge, where we were the only robot to try all
tasks and not fall down or need to be rescued by humans (Figure 13).

Broader Impacts. We developed more useful robots and knowledge that may help with a significant social
problem, why people fall and injure themselves. We coordinated our outreach activities with the larger outreach
efforts of CMU’s NSF Engineering Research Center on Quality of Life Technology to scale up reach and ef-
fectiveness. Our technologies are being shared by being published, and papers are available electronically. The
technologies were demonstrated on entries in the DARPA Robotics Challenge. We created and taught relevant
courses, including an undergraduate course on humanoid robotics and a graduate course on optimization of be-
havior. We put the teaching materials on the web to widely disseminate the results. Our work is being used by
Disney Research and through this technology transfer will eventually be used in entertainment and education
applications, and will be available to and inspire the public. A graduate student participated on a Discovery
Channel TV series, “The Big Brain Theory: Pure Genius”. One purpose of the TV series was getting people
excited about engineering. A graduate student supported a group of all female high school students in the robot
FIRST competition. A robot character in a Disney movie was inspired by our work on soft robots (Baymax in
Big Hero 6) [8].

Development of Human Resources. The project involved five PhD graduate students and four postdocs.
We had weekly individual meetings, weekly lab meetings, and we individually mentored all participants. All
participants actively did research, made presentations to our group, gave conference presentations, and gave
lectures in courses. The students served as teaching assistants.
(d) Publications resulting from this NSF award: [98, 60, 2, 48, 97, 73, 81, 78, 80, 89, 102, 77, 70, 3, 103, 7, 44,
86, 91, 31, 53, 4, 88, 79, 85, 89, 87, 43, 20]. This award led to further work supported by DARPA: [21, 22, 23,
90, 92, 12, 11, 54, 9].
(e) Other research products: We have made our motion data available in the CMU motion capture database [26].
(f) Renewed support. This proposal is not for renewed support.

Broader Impacts [of the Proposed Work]:

One theory as to why robots are so clumsy is that they have little or no tactile sensing. Endowing robots with
superhuman sensing may allow them to be more useful, and cheaper to program or train. We expect to make
programming robots to do tasks involving contact much cheaper. The proposed system is critical for safety
of robots that are near or touch humans, and for improved robot performance in many manipulation tasks.
Possible applications of this approach include household robots that interact with humans, aware furniture and
car interiors, aware clothes, aware tools, and aware floors, walls, and ceilings. Optical skin-based sensing is a
practical, manufacturable, and maintainable approach to sensing for touching and helping people, and can be
applied beyond robotics to better seats and other furniture surfaces that touch humans, and more intelligent tools
and control surfaces that humans touch.

Education and Outreach. A major outreach initiative led by Atkeson is the creation of a physical and
virtual Robot Museum. So far we have created exhibits on juggling robots, robot actuation (gears vs. direct
drive), mobile robots, soft robots, Steve Jacobsen and Sarcos, robots in literature, legged robots, computer
graphics (Ivan Sutherland), and AI (Newell and Simon). Our next major initiatives are 1) to develop cell phone
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apps that trigger off augmented reality (AR) tags and robot pictures in halls to provide a self-guided tour of
the Robotics Institute, and 2) use virtual reality (VR) to provide access to our collection from anywhere in the
world. We want anyone to be able to design, build, debug, evaluate, and repair a historical robot in virtual
reality. The impact of Atkeson’s work will be increased by a new Disney TV show based on the characters
from the Disney movie Big Hero 6, including the inflatable medical robot Baymax inspired by Atkeson’s work
on inflatable robots. We have coordinated our outreach activities with the larger outreach efforts of CMU’s
Robotics Institute to scale up reach and effectiveness. Our technologies are being shared by being published,
and papers and software are available electronically.

Development of Human Resources. This project will fund a series of postdoctoral fellows. See the Post-
doc Mentoring statement for more information. We expect graduate students funded from other sources and
undergraduates to also participate.

Participation of Underrepresented Groups. We will make use of ongoing efforts in the Robotics Institute
and CMU-wide. These efforts include supporting minority visits to CMU, recruiting at various conferences and
educational institutions, and providing minority fellowships. As the Robotics Institute PhD admissions chair in
2016, Atkeson led a process which resulted in 31% of acceptances going to female applicants. As a member
of the Robotics Institute hiring committee in 2016, Atkeson participated in a process that led to 10 out of 18
interviewees being female. Atkeson is assisting efforts at CMU to raise money for fellowships for students who
will help us in our efforts to serve diverse populations and communities, including our own.

Dissemination Plan. For a more complete description of our dissemination plan, see our Data Management
Plan. We will maintain a public website to freely share our simulations and control code, and to document
research progress with video material. We will present our work at conferences and publish it in journals, and
will use these vehicles to advertise our work to potential collaborators in science and industry.

Technology Transfer. Our research results and algorithms are being used by Disney Research and through
this technology transfer path will eventually be used in entertainment and education applications, and will be
available to and inspire the public. Two recent postdocs work at Disney Research. Three recent students work at
Boston Dynamics transferring our work to industrial applications, one recent student and recent postdoc work
on self-driving cars at Uber, one recent student works on self-driving cars at Apple, and one recent student works
on humanoid robotics at the Toyota Research Institute. An older former student is the CTO of the Amazon drone
effort. Several older former students work at Google. We are thrilled that we and our students are part of the
robotics revolution.

Curriculum Development Activities:

We will develop course material on robot learning and reasoning, which will directly be influenced by the
planned activities of this proposal and freely available on the web. The PIs currently teach several courses
that will benefit from this material. For example, 16-745: Dynamic Optimization and 16-711: Kinematics,
Dynamics, and Control, directly address the research areas in which this proposal is embedded. We also teach
a course designed to attract undergraduates into the field, 16-264: Humanoids. All of these courses emphasize
learning from interaction by working with real robots.
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