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PROJECT SUMMARY
Overview:
NRI: INT: Never-ending Multimodal Collaborative Learning 
PI: Katerina Fragkiadaki, Carnegie Mellon University 
 
The proposed work explores and develops algorithms for collaborative and continual perceptual, model, 
affordance, policy, and reward learning with the assistance of human teachers that employ natural 
language descriptions paired with visual or kinesthetic demonstrations to teach robotic agents new skills 
or help them improve and generalize existing ones. The agents jointly learn to ground natural language 
and acquire new skills by bootstrapping already acquired skills and natural language comprehension, 
guided by gesticulations and verbal feedback from teachers. 
The proposed state and goal representations, forward models, policies, and natural language grounding 
are all represented using 3D multimodal feature tensors, created by the perceptual front-end of the 
proposed system. The system is trained using self-supervision to produce geometrically consistent scene 
models based on view prediction and multimodal coincidence, as well as using supervised learning based 
on object/attribute and action labels from teachers' instructions. Through experience and interaction with 
human teachers the agents learn to transform their sensory streams into kinematically consistent and 
semantically accurate models, and learn to predict the results of their actions and interaction, as well as 
search over these predictions to find desirable courses of action. 
 
Keywords: Scalability, Customizability, Lowering Barriers, Learning, Perception, Natural Language 
 
Intellectual Merit:
One product of this work will be a rich knowledge base of forward models, generalized policies, 
objects/attribute/action and reward detectors, natural language parsers and visuotactile state 
representations that can be used by any robot. The second product will be algorithms to grow and 
specialize this knowledge base for new situations, tasks, and robots. The central transformative idea of the 
proposed research is to integrate sensations into 3D feature maps, where entities, objects and parts bind in 
time  and have consistent object-referenced representations independent of viewpoint, as opposed to 
appear and disappear based on the motion of the observer or other agents or objects. 
The proposed representation adds a new spatial dimension to previous feature-based representations, 
enabling learning robots to utilize spatial reasoning such as SLAM to improve multimodal deep learning. 
Agents learn to see, reason about temporal evolution, ground natural language, interpret, match and 
generalize 3D feature representations through continual collaborative learning, which guides them to 
attend to, focus on, and abstract important parts of the  sensory streams. In this way, robots learn to 
imagine what is behind occlusions and results of actions and natural language goals. They are able to 
converse and benefit from teachers' feedback through collaborative building of multimodal reasoning, and 
learn robot- and agent-independent representations of models, affordances, skills, and goals, that support 
knowledge transfer and knowledge adaptation across heterogeneous robots. 
 
Broader Impacts:
The proposed research will reduce the cost of programming robots and other technology, such as personal 
assistants. Non-experts will be able to program and personalize robots similarly to how we program 
fellow humans and especially children: by communicating in natural language (e.g., "stop fidgeting") and 
demonstrating visually the desired way to do things (e.g., "open it like this"), as opposed to being 
programmed by writing code or through millions of positive and negative examples. Robots will be able 
to acquire new concepts and skills adapting to individual users' needs through interaction with end-users, 
as opposed to maintaining a fixed set of functionalities predetermined at the factory. 
The simplicity and directness of grounded natural language interfaces will help robots better serve older 
adults and people with disabilities. This is just one example of the proposed technology's potential for 
social good.  This research is tightly coupled to the educational program of the PIs, which currently 
includes a course on language grounding on vision and control, and another on architectures for never-
ending learning, with the goal of teaching students that there is more to AI than learning from a  large 
number of positive and negative examples. 
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Figure 1: Collaborative never-ending multimodal learning: Humans and robots interact either through

live coaching and demonstrations or through offline narrated demonstrations. Self-experimentation and

teachers’ guidance are distilled into a multitude of diverse object/affordance/attribute/action detectors, re-

ward detectors, goal imaginations and models. Our agents represent their state using 3D feature tensors

of visual, tactile and audio features, integrated in time and trained through self-supervision, by predicting

results of actions and interactions, or supervised by the language of human teachers. Look-ahead using

learned models and affordance detectors accelerate learning and demonstration understanding.

1 Motivation

Humans are social animals and learn from one another through imitation and instruction in a life-long

manner. Childhood human learning is a collaborative effort. Children are motivated to learn by innate

curiosity [35] and the pleasure of discovering the causes behind events they perceive [36]. Parents and

siblings provide a great deal of specialized, shaped, and staged (curricular) input to children and behave

in ways that increase stimulation and guidance. Parents and teachers frequently adjust their children’s
and students’ behaviors by asking them to say please, lower their voice, sit properly, etc., while at the

same time gesticulating to help children understand what they mean [77]. In contrast to how humans learn,

existing paradigms for programming or learning robotic behaviors are typically non-interactive: updating

or extending the robot’s learned policies or cost functions during deployment might even require the robot

to be withdrawn from operation. Training often happens once in the lifetime of our robotic agents, and

robotic behaviors cannot be easily customized/personalized to the preferences of a particular user, particular

context, or particular environment.

Our proposal puts forward a plan for large-scale collaborative learning of affordances, world models,

behavioral policies, visuo-tactile representations, and natural language parsing and grounding on heteroge-

neous robots that are deployed in human environments and continuously learn to adjust and enrich their

skill libraries and models (simulators) of the world guided by their internal curiosity and teacher’s guidance.

Robots can share knowledge much more effectively than humans, which is a major difference between

human and robot learning we will exploit. We will address questions of how to most effectively share

knowledge across heterogeneous robots from a wide variety of human teachers and learning experiences,

including both simulated and actual robot behavior. We will enlist human teachers through fun videogame-

like web and virtual reality interfaces, and utilize teachers present in the robot’s workspace such as in a

hallway. Robots will also be able to seek out clarification or more instruction by requesting web-based

or in-person teaching, and communicate with the teacher by replaying what happened. The teachers will
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use paired natural language (NL), visual input, and, optionally, kinesthetic input (touching and guiding the

robot’s end-effectors in virtual or actual reality), to demonstrate affordances of objects and tools as well as

skills. We call these narrated demonstrations (NDs): visual demonstrations synchronized with natural

language descriptions.

We address the emphasis and thrusts of the NRI program in the following ways: We address scalability
by exploring how several heterogeneous robots can learn and pool knowledge from many human teachers.

We address customizability by enabling robots to learn about the preferences of individual humans as well

as aggregating knowledge from many teachers. We address lowering barriers to entry by creating low-

cost open-source robot designs and engaging tasks for those robots, that are easy for schools and museums

to replicate, use, adapt, and augment. Our longer-term vision for this integrative project is to construct

a permanent rich knowledge base that pools knowledge from many heterogeneous robot learners, as well

as creating the means to add to that knowledge base. We will address understanding societal impact by

informally exploring our system’s impact at CMU, and on undergraduates enrolled in our new AI major.

Intellectual merit: We are not the first to realize the importance of affordance and model learning

for developing intelligent agents, the significance of imitation and natural language for shaping behaviors,

the necessity for knowledge sharing and adaptive robotic learning. Numerous works exist in the literature

on learning dynamics and/or policies [38, 88, 70, 39, 14], learning multimodal sensing [18, 50, 37, 3, 23],

learning instruction to action mapping [7, 57, 58, 21, 56], learning behaviors from demonstration [44, 6, 71,

100, 64, 81, 63], and multi-robot learning [55, 41, 66, 20]. This proposal innovates in the following ways,

which integrate our previous work into one system:

1) Multimodal mapping to 3D feature maps: The central transformative idea of the proposed research

is to integrate visual, tactile, auditory, and linguistic input into 3D feature maps, where entities, objects

and parts bind in time and have consistent object-referenced representations independent of viewpoint, as op-

posed to appear and disappear based on the motion of the observer or other agents or objects. The proposed

representation adds a new spatial dimension to previous feature-based representations, enabling learning

robots to utilize spatial reasoning such as SLAM to improve multimodal deep learning. Agents learn to see,

hear, and feel, reason about temporal evolution, ground natural language, interpret, match and generalize

3D feature representations through continual collaborative learning, which guides them to attend to, focus

on, and abstract important parts of the sensory streams. In this way, robots learn to imagine what is behind

occlusions and results of actions and natural language goals, are able to converse and benefit from teachers’

feedback through collaborative building of multimodal reasoning, and learn robot- and agent-independent

representations of models, affordances, skills, and goals, supporting powerful knowledge transfer across

heterogeneous robots.

2) Closed-loop natural language teaching: Our system will support tight realtime interaction between

teachers and robots and and teachers’ feedback will adjust to the competence of the learner. We expect

this closed-loop feedback to accelerate policy search over open-loop instructions / action sequence pairs of

previous works [4].

3) Large-scale collaborative learning across heterogeneous robots: Our system will support collab-

orative learning across heterogeneous robots and experiences, creating and using rich knowledge bases to

generate and learn new behaviors. We are integrating human teaching and robot learning across a variety of

robots and simulators, including a large number of low-cost robots, in contrast to the single human-single

robot-single task experiments done in current research. See the Facilities section for more detail on our

robots.

The team: We have assembled a team of experts from Machine Learning, Computer Vision, Robotics,

and Language Understanding. PI Katerina Fragkiadaki has worked extensively on fine-grained activity un-

derstanding and visual recognition from videos by combining semantics, geometry and unsupervised learn-

ing. Co-PI Chris Atkeson has worked extensively on robot learning, manipulation, and locomotion, as well
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1.1 1.2 1.3 1.4 1.5

2.1 2.2 2.3 2.4

3.1 3.2

4.1 4.2

(a) Dependency graph

Year Research task

1 1.1 Low-cost robot development
1 1.2 Visuotactile GRNNs
1 1.3 Visual GRNNs in dynamic scenes
1 1.4 Collecting narrated demonstrations
1 1.5 Weakly supervised learning of NL semantic parser
2 2.1 Visuotactile GRNNs in dynamic scenes - model learning
2 2.2 Grounding noun phrases / referential expressions to 3D object detectors
2 2.3 Grounding NL to immediate actions
2 2.4 Grounding NL to goal imaginations
3 3.1 Open-loop NL guided visual imitation
3 3.2 Multi-robot / heterogeneous robot knowledge sharing
4 4.1 Closed-loop NL guided visual imitation
4 4.2 Continual learning / look-ahead exploration
3-4 EHT Evaluations of human-robot interaction
2-3 EHT 3D versus 2D evaluation of language grounding and model learning
2-4 EHT Task completion progress over time for the three testbeds
3-4 EHT Learning from ND versus learning from demonstrations

(b) Year - Research task

Figure 2: Timeline for the project. A dependency graph for the research tasks is shown on the left. EHT

stands for evaluation-hypothesis testing. For clarity, the evaluation tasks are not shown in the dependency

graph, they depend on all tasks completed thus far.

as robot design. Co-PI Wenzhen Yuan is an expert on tactile perception, both in hardware development and

algorithms for understanding tactile feedback. Co-PI Tom Mitchell has extensive experience in machine

learning and natural language. For example, he has recently developed methods that enable users to teach

their mobile phone devices new procedures, using a combination of natural language instruction and demon-

strations. Our proposal integrates Fragkiadaki’s work on active vision and mobile perception [84, 27, 26],

object-centric visual imitation [76], and learning from narrated demonstrations [85], Atkeson’s work on

robot learning [1, 10, 8, 9, 61, 62, 73, 72], learning from demonstration [12, 11, 16, 15], and tactile and

auditory sensing [89, 90, 91, 92, 93], Yuan’s work on tactile sensors and tactile feature learning [94, 97, 87],

Mitchell’s work on explanation based learning [60, 80], “never-ending” language learning [25, 59], natural

language semantic parsing [49], as well as learning instructable agents [13, 52]. In what follows we describe

in detail the “glue” we will create to combine our previous work into an integrated large-scale robot-human

learning ecosystem.

2 Geometry-aware recurrent networks for embodied multimodal percep-
tion

This section describes our state representations which build upon Fragkiadaki’s past work on learning

to map visual features to 3D scene feature maps. The PI’s lab has recently introduced geometry-aware

recurrent networks (GRNNs ), a family of recurrent network models whose hidden state is a geometrically-
consistent (deep) feature map of the visual scene, and has 3 spatial dimensions paired with a feature

vector, in contrast to 2 spatial dimensions of popular LSTM or convLSTM models used in the literature [42,

75, 78, 99]. We visualize GRNNs in Figure 3. The state map is updated with each new video frame in an

egomotion-stabilized manner: features are transformed to cancel the (estimated) egomotion of the camera so
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Figure 3: GRNNs ’s hidden state is a multi-dimensional tensor with 3 spatial dimensions (X-Y-Z) and

multiple feature dimensions, akin to a 3D map of the scene, which for every (x, y, z) grid location holds a

feature vector F. The hidden state is updated with each new incoming visual frame from multiple views (left).

GRNNs are equipped with differentiable geometric operations that learn to un-project 2D deep features into

3D feature tensors, estimate egomotion between a frame and the 3D feature map, stabilize against egomotion

and before the state update by rotating and translating the incoming features, and project 3D feature tensors

to 2D feature maps given a selected camera viewpoint (right). In this way, they learn to go back and

forth between 2 dimensional (X-Y-F) sensory observations and 3 dimensional (X-Y-Z-F) spatial feature

representations.

that information from 2D pixels that correspond to the same 3D physical point end up nearby in the hidden

state map. Each grid feature in this 3D feature map represents information regarding a 3D physical location

in the world scene. GRNNs are inspired from Simultaneous Localization and Mapping (SLAM) methods

[82], but instead of point cloud maps, they build feature maps. Such features can represent a wide variety of

information that is related to the downstream task, as opposed to merely 3D occupancy.

The GRNN map learns a stable model of the scene and is not affected by instantaneous object occlusions

and dis-occlusions, or changes of the camera’s field of view. We show in Figure 4-right 3D object detections

obtained by training a 3D equivalent of MaskRCNN [40] (supervised by ground-truth 3D object boxes and

3D voxel occupancies) using the GRNN 3D feature map as input. Detected objects persist in time despite

camera motion. Occluded objects that are barely or not visible in the current frame exist in the map either

because they were visible in a different frame, or because our model learns to “imagine” them given a small

unoccluded portion. We will use this integrated 3D deep feature map as input to the policies, dynamic

models, object models, reward and affordance detectors, and any other function that uses sensory streams as

input.

A long-standing debate in perceptual psychology and AI is the possible utility and role of 3D models

in the form of grids, meshes, and point clouds typically found in CAD and other engineering design sys-

tems. Work in Gestalt psychology [47], 1950s artificial neural networks, and Gibsonian psychology [34]

was primarily feature-based and rejected engineering-like 3D models. Much work in computer vision has

focused on accurate 3D reconstruction of engineering-like models [82, 45] in terms of inferring depth maps,

point clouds, 3D voxel occupancies from video data. Pointing out that replicating the 3D world in one’s
head is not enough to actually make decisions, Brooks argued for featured-based representations [22],

as done by recent work in end-to-end deep learning [51] which automates learning of appropriate features.

Our proposed architectures reconcile the two sides of this debate, using feature grids of three spatial
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Figure 4: View prediction (left) and object detection (right) with GRNNs. GRNNs accurately predict

views of novel scenes while 2D models fail completely to generalize, here we show the results of the Tower

model of [31] (left). Furthermore, detecting and segmenting objects using the 3D feature map of GRNNs

results in object detections that persist across occlusions and disocclusions (right).

dimensions as their representation.
Proposed research: visuo-tactile 3D feature mapping: We will integrate visual and tactile sensory

input into our 3D feature mapping. Tactile sensors measure contact information, which usually only includes

the pressure distribution, but can also include shear force, vibration, and temperature. Compared to vision,

which obtains global information on a large scale, tactile sensing measures local information on the contact

surface, with higher precision. Co-PI Yuan has focused on the development of a high-resolution tactile

sensor called GelSight in prior work [94]. The GelSight sensor (see the Facilities section) contains a piece of

soft elastomer at the surface, and uses an embedded camera to capture the change of the reflection and marker

pattern of the elastomer surface. Co-PI Yuan has developed algorithms that use GelSight to estimate the

hardness of arbitrary objects [98], detect slip during object grasping [95, 30], predict thickness, smoothness,

fuzziness of clothing [96]. To integrate tactile measurements obtained from GelSight and other possible

tactile sensors we will also place cameras in the fingers and hands to implement a proximity sense (tactile

sensing at a distance). We will then integrate multi-modal observations into geometrically-consistent 3D

feature maps, by taking advantage of the known finger kinematics.

Proposed research: visuo-tactile 3D feature mapping in dynamic environments: We propose to

extend GRNNs to learn to model the visuo-tactile evolution of dynamic scenes, that is, scenes that con-

tain moving and potentially deforming objects and textures, in addition to the motion of the observer, as

a result of forces applied by the active agents. Our agent may or may not have measurements of these

forces, depending on whether she is perceiving the results of her own actions or of other agents/humans.

GRNNs suggest a what-where decomposition of a video scene into a content part (“what”), which is mostly

constant in time, and a motion part (“where”), the egomotion of the observer and motion and deformation of

the objects, which changes from frame to frame. We will allocate a separate 3D feature map to represent the

appearance for each of the K moving object, in addition to the feature map of the background world scene,

and a 3D motion field, a composition of a 3D rigid rotation and translation and non-rigid deformation, to

represent the motion of the kth moving object, in addition to the egomotion of the observer.

We will train visuo-tactile GRNNs in static and dynamic scenes using self-supervision to predict the

decomposition into object motions and additive feature changes, simulating (imagining) the 3D feature

map of future frames, and backpropagating the error, as we detail in the next section.
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3 Forward / inverse self-supervised structured model learning with GRNNs

Generalized policies and forward models of multiple temporal and spatial granularities capture procedural
knowledge that humans and robots acquire about the world [83] through experimentation, i.e., knowledge

regarding how the agent can use its cameras and end-effectors to achieve specific goals, e.g., object arrange-

ment or sensations such as the sound of a button press. Generalized policies are functions that take as input

a state and a goal representations and output (1) the action (or action distribution) that will bring the agent

closer to the input goal, and (2) a termination condition that is satisfied when the goal is reached. Forward

models are functions that take as input a state representation and an agent’s action or action sequence and

output the next state (or distribution over states) and the resulting observations. Embodied agents that move

and interact with the world have access to their egomotion and actions of their end-effectors, and to the

sensory (visual, auditory or tactile) outcomes of their actions. Training generalized policies and forward

models to predict actions and/or action outcomes are useful forms of representation learning, often termed

self-supervised learning, because the “labels” are provided by the embodied agent herself, as opposed to by

human annotators. The main research challenge is to build generalized policies and forward models
whose state representations strongly generalize across environment variations. Despite progress, such

generalization has not been seen in the literature [88, 70, 39, 14]. Some approaches use toy 2D worlds where

objects cannot occlude one another [88, 14], some do not model object appearance assuming the same object

will be encountered at test and training time [2, 32], and some model full frame feature encodings, without

trying to compute scene structure [79], and cannot easily generalize to novel situations. Our conjecture is

that the proposed multimodal 3D feature representation holds promise for such generalization.

Both the state and goal representations for our forward models and generalized policies will be 3D

multimodal feature tensors produced by GRNNs, of different spatial resolutions. PI Fragkiadaki’s lab has

trained forward models for visual GRNNs that predict the results of egomotion of the agent using a short

video frame sequence as input. Results are shown in Figure 4-left. Even when GRNNs are trained in scenes

that contain two objects and are tested on scenes with four objects, they effectively can “imagine” how

scenes with four objects look like from different viewpoints, that is, the visual forward model generalizes
effectively to truly novel scenes. In contrast, geometry-unaware 2D models fail to generalize (Figure 4-

left). Our conjecture is that exploiting 3D and object-centric priors, in place of plain 2D convolutional state

encoding of the majority used in previous research [79], we will be able to generalize better, as supported

by our preliminary results on predicting results of egomotion.

Proposed research: Learning structured visuo-tactile 3D forward models and generalized poli-
cies: We will train visuo-tactile GRNNs that given a current visuo-tactile streams and the action stream of

the agent they predict both visual and tactile feedback, extending our work on view prediction. Our ap-

proach will optimize over moving object and object part detections, object and camera motions, additive

feature changes and background scene appearance via a combination of gradient-based learning and rein-

forcement learning, using pretraining of object detectors in simulation, as well as curriculum learning from

rigid to non-rigid scenes, to assist with bad local minima. Since predicting raw tactile input or images may

be noisy, we will use instead a discriminative alternative: we will predict intermediate low-level feature

embeddings, and train them to better match (have smaller Euclidean distance to) the embeddings extracted

from the corresponding (future) sensory inputs than other non-corresponding sensory inputs (i.e., metric

learning). We will further use losses that exploit cross-modal temporal coincidence of visual, tactile
and auditory sensations: embeddings of temporally coincident visual, tactile and auditory inputs should

be placed close in the embedding space, while embeddings of non-temporally coincidental visual, tactile

and auditory sensations should be placed far from each other. Such cross-modal metric learning has been

explored in previous work by co-PI Yuan [87, 24]. Here, we propose utilizing it for training 3D feature

maps, as opposed to 1D embeddings. In both forward models and generalized policies we will use latent
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variable to handle stochasticity of actions and states, as we have done in our previous work with different

network architectures [33].

Mental practice: The proposed research will produce multimodal forward models and generalized

policies that, given visuo-tactile and auditory streams, will be able to infer the underlying 3D physical

reality, which objects move and how, robust to occlusions from the agent’s hands or other objects, as well

as simulate (imagine) such reality forward in time under different behaviors. By comparing the results of

our forward models against the goal representations, we will search over the right actions to choose, either

using gradient descent or evolutionary methods [32, 70].

4 Collaborative model learning via imitation and instruction

We described training of state representations by predicting sensory outcomes (forward models) or actions

that cause sensory transitions (generalized policies). What policies should our agent use to collect data to

fit such models? Curiosity-driven exploring agents [65, 54, 74] seek to increase their surprise and learn-

ing progress by focusing their interactions on the yet unknown parts of the state space. Curiosity-driven

exploration in the real world has the following severe limitations: a) It may take the curious agent a very
long time to figure out how to reach interesting states of the environment, e.g., to successfully operate an

elevator button. Sample efficiency is crucial for artificial agents because their end-effectors are much more

fragile and much less agile than that of humans: they wear and break, and they are slow. b) It is unsafe to

explore and acquire knowledge in a human environment with partially trained or untrained policies. c) The

knowledge acquired by our agent may not be easily controllable by humans since the agent does not know

the mapping of his/her state representations to natural language. d) The agents will not be able to learn
about human reward functions, e.g., that when gripping a glass of water, it is preferable to not touch the

inside of the glass.

Humans do not learn from scratch driven solely by their curiosity. They use imitation and natural

language (NL) to share each other’s procedural knowledge about the world. We thus propose collaborative

human-robot interactions for learning models, policies, and affordances, through open-loop and closed-

loop human teaching. Human teachers guide the robots through visual or kinesthetic demonstrations, and

they concurrently verbally describe objects, actions, goals, or mistakes. During closed-loop teaching, the

human can provide visual, kinesthetic, and verbal feedback while watching the robot perform a task. We use

the term narrated demonstrations (ND) to refer to visual or kinesthetic demonstrations paired with natural

language. Input from human teachers can assist model learning in the following three ways:

1) Causality and attention: NL and gesticulation of the teachers suggest the important objects or parts

of the scene to attend to, and clarify the intention of a particular demonstration. The attended objects and

parts become the nodes in our proposed graph neural network (GNN) reward detectors, which abstract away

from (forget) the rest of the scene. The less unnecessary information supplied to a classifier or regressor, the

better it generalizes in the future. Instead of relying on a large number of demonstrations to learn to attend

to the right features, teachers directly supervise such attention through gesticulation and NL.

2) NL grounding injects critical semantic information for state representation learning: The robot

learns to detect objects, attributes, actions, goal completion, and referential expressions in their multimodal

3D feature representations. NL supervision is critical when multimodal self-supervised learning does not

suffice to capture important states or state changes. For example, while a switch occupies a very small

number of pixels and its state (ON or OFF) is not easily detectable through self-supervised metric-learning

(as described in sections 2,3), natural language grounding of the description “now the switch is off” trains an

ON/OFF attribute classifier over 3D multimodal features extracted from the switch and makes them sensitive

to this state change.
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3) Accelerating safe exploration: Closed-loop teaching helps the agent discover the right actions to

carry our the task, while preventing her from unsafe operations, using basic NL grounding of actions,

e.g.,“Stop!”.

Proposed research: Collecting narrated kinesthetic and visual demonstrations: We will collect a

dataset of narrated visual and kinesthetic demonstrations in virtual and real environments. Human teachers

equipped with microphones will name objects in the scene, describe their relationships, indicate the activi-

ties being performed, explain the outcomes, and, gesticulate deliberately so as to guide the learner towards

the correct interpretation of the natural language description. Verbal narrations will be automatically tran-

scribed into textual descriptions using the Google speech recognition API [43]. Errors made during speech

recognition, which are rare, will be corrected by hand. The synchronization of the narration to the video,

along with present-tense descriptions, provide a natural alignment of the semantic content to the visual

stream. Consecutive demonstrations are easily temporally segmented by considering their alignment to nat-

ural language utterances. The scalability in terms of human effort of verbal narrations far surpasses that of

video post-transcription [68] or detailed scene graph annotations [48], considered in previous works.

The more instrumented the environment, the better the world state is observed and the easier the visual

recognition, natural language interpretation, and action inference for a particular demonstration. We can

use the extra information from an instrumented environment to train policies that only use a limited set

of sensors available in their operating environment, as well as capture richer narrations and gestures. For

example, in Virtual Reality the state of the world (objects, their pose, their attributes, etc.) is fully observed.

This allows easier grounding of natural language utterances to disentangled feature representations,

e.g., speed, pose, spatial location etc. of the objects in the environment. Our plan is to train natural language

grounding using narrated demonstrations in heavily instrumented environments first, and then proceed to

less instrumented ones. PI Fragkiadaki’s lab has already started such data collection, as we describe in the

Facilities section. We will use paraphrasing to augment the instructions using Amazon Mechanical Turk,

inspired by [17], in order to handle natural language variability.

Proposed research: From narrated demonstrations to neural-symbolic forward models and poli-
cies: Natural language semantic parsing and grounding: During open and closed loop teaching, teachers

utter natural language instructions and descriptions that have a rich set of functionalities, far beyond the

object category labelling of Imagenet and COCO annotations [29, 53]: Utterances may refer to entities in

the environment, e.g., “the black puppy”, “the red mug next to the bowl behind the orange”, describe the

state of the world or the results of the actions, a.k.a. post-conditions, e.g., “the window is open”, “the brown
mug is larger than the green one”, “the screen is brighter than before”, describe the actions that are taking

place (descriptions), or ought to take place (instructions), e.g., “I am taking the block out of the bucket”,

“press the button”, “lift it higher”, “move slower”, “look more to the left” or provide information directly

in terms of pre-conditions/actions/post-condition, e.g., “if there is smoke coming out of the oven, I switch it
off”.

How should we ground this rich natural language to facilitate policy and model learning? In our recent

work [85], depicted in Figure 5, we made the first attempt to use narrated video demonstrations of pick-

and-place activities to learn pick-and-place policies instructable by natural language. We used the NDs to

learn perceptual reward detectors to detect in images desired post-conditions (e.g., “the coca cola should

be inside the wooden box”) and used those to guide policy learning, replacing manually coded rewards. Our

main realization was the necessity for the reward detectors to operate in a 3D attributed space, in order to

be accurate but also to generalize across viewpoints, and to provide shaped—instead of binary—rewards

to the policy search method. Indeed, state of the art policy learning methods [5, 67] in simulation or in

the real world assume 3D object centroids of goal configurations. We thus propose right below grounding
post-conditions / goals / rewards to goal detectors in the space of our 3D multimodal feature tensors.

We will use Multiple Instance Learning and the temporal synchrony of narration and video to jointly
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learn (1) neural sequence models that parse NL utterances into structured attributed intention forms, as we

did with referential expressions in [85], and (2) to ground NL structured attributed intention forms to the

corresponding object, attribute, scene and action detectors, as follows:

1) We will ground noun phrases to modular detector programs that detect the corresponding refer-
ents in our 3D multimodal feature scene representations. We will update accordingly our modular detectors

with those inferred associations, or instantiate novel detectors when encountering novel categories. In

this way, our detector vocabulary will grow with experience. We will avoid catastrophic forgetting [46] by

progressively growing the capacity of our detectors, similar to progressive nets [69].

2) We will ground goal NL descriptions to goal sensory feature imaginations, namely, 3D feature

representations of the desired resulting state, as well as the corresponding objects and attributes associated

with it. This extends our NL reward learning work [85] to operate on a 3D multimodal feature space. We

will further train reward detectors, that given the current and goal state, will provide a measure of distance

to guide policy learning. Such reward detectors are graph neural networks on top of 3D object/part/point

detections on our 3D feature tensors.

3) We will ground actions to robot’s modular visuomotor programs assembled using perceptual mod-

ules, such as, detectors, and motor modules, i.e., policies, e.g., “look left” or “focus on the red object”. We

pretrain such language to motor program mapping using narrated demonstrations in virtual reality. Fol-

lowing our earlier work on instructable mobile agents [13], our semantic parser will begin with a primitive

lexicon and language capability that enables users to refer to each of the primitive robot sensors and effec-

tors, so that users can teach more complex visuo-motor procedures, sensing procedures and subgoal states

grounded in terms of these primitives, making them directly executable by the robot.

4) We will ground facts about the world state to updates of high level symbolic models of the envi-

ronment regarding object similarities, ownership relationships, person-place and object-place relationships,

etc.

Prior Work - Semantic parsing of mobile phone instructions: The research proposed here will build

our recent research into interactive instruction of mobile phone devices using natural language and demon-

strations. In that work, we view the mobile phone as a robot which contains both physical sensors and

effectors (e.g., microphones and sound alarms) as well as cyber sensors and effectors (e.g., calendar and

email readers and writers). In that work we have developed a prototype agent, LIA, that enables users to

teach their phones new procedures through natural language instruction [13]. For example, a user may say

to their phone “tell Katerina that I’m arriving soon.” The phone (LIA) then responds “I don’t understand,

do you want to teach me?” and the user may then say “Create a new email, put Katerina’s email address in

the recipients list. Then put “I’m arriving soon” in the subject field, and send it.” As a result of this training

episode, LIA learns two types of knowledge: first, it learns the detailed steps of the procedure which the user

had in mind, i.e., the motor program; second, it learns an improved natural language competence enabling

it to now parse commands such as “Tell X that Y” into semantic expressions grounded in the primitive

sensor-effect capabilities of the agent (the phone in this case).

Proposed work: neural-symbolic NL guided visual imitation: During real-time NDs, the student and

teacher share the same virtual or physical workspace and the student actively observes the teacher’s actions,

akin to a child - parent interaction. This setup (1) facilitates inference of the teacher’s actions because the

student-robot will choose its preferred camera viewpoint to observe the teacher’s actions over time, (2) can

take place during deployment in a human environment, outside the lab. We will build upon PI Fragkiadaki’s

recent work on object-centric visual imitation [76], as well as her work on active vision for recognition and

manipulation [26]. In [76], two graphs are instantiated, one for the student and one for the teacher, where

nodes represent objects or object parts and their attributes, and edges represent cross-node 3D spatial rela-

tionships. The nodes between imitator and teacher graphs are in one-to-one correspondence. The objective
of imitation is to match the edge and object attributes across the two graphs, and it is optimized with
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Figure 5: Learning instructable pick-and-place policies from narrated video demonstrations [85]: The

NL expression is parsed by a bidirectional LSTM to localize subject, objects and relationship subphrases,

and produce corresponding word vectors. Given the semantic parse and an RGB image, a reward detector

returns a detection score S based on how well the image matches the natural language utterance. The reward

detector is trained with weakly supervised metric learning (c). Given a video sequence, our reward detector

effectively detects changes of spatial configurations for the depicted objects (d). We use the learned reward

to train a manipulation policy to achieve the corresponding spatial configuration in simulation (e). Modular,

object-factorized neural architectures both for the reward detector and the policy network (ObjectPolicyNet),
generalize better than policy networks that use the whole RGB image as input (RGBPolicyNet) (f).

dynamic programming using a linear quadratic regulator (LQR), by learning local models online with ran-

dom exploration. All imitation methods that reply on 2D object detections are sensitive to occlusions. Yet,

occlusions due to moving hands are parsimonious in manipulation. We propose, in place of 2D detectors,

to instead detect and track object and object parts in our 3D feature maps, extracted from executor’s and

imitator’s environment using GRNNs and NL noun phrases. The dynamic visuotactile GRNNs of Section

2 represent in their hidden state the full state of the environment, unaffected from occlusions. We will train

active vision policies that learn to move the robot’s camera to further facilitate inference of the teacher’s ac-

tivity and thus its imitation. Once pretrained with real-time active visual imitation, we will train our robots

from internet videos, building upon their visual competence for human activity understanding.

5 Evaluation

We will implement and evaluate three instantiations of our learning ecosystem: Toys/Kits Testbed: Multiple

small low-cost robots working with educational toys and kits. Deformable/Liquid/Granular Testbed:
Human-scale robots working with deformable, liquid, and granular materials as is found in food preparation

and science experiment kits for children. Social/Affordance Testbed: Ubiquitous human-scale co-robots

(cobots) learning about social interaction and object affordances by interacting with people in our work

environment.

Toys/kits Testbed: Educational toys and kits are designed to stimulate and facilitate perceptual, affor-

dance, model, skill, and cognitive learning. Toys for infants typically demonstrate numerous manipulation
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skills and affordances (e.g., knobs to turn, buttons to press), are safe to operate, can break and be replaced

easily and inexpensively, and use exaggerated visual and audio cues to guide the learner. Educational K-12

toys and kits we will focus on include construction toys and kits such as Lego “Chain Reactions”, Keva

“Contraptions”, Marble runs, Rube Goldberg kits, and Jenga. We will also focus on learning to play simple

musical instruments such as keyboards, drums, rattles, and xylophones to emphasize multimodal visual,

aural, and tactile learning. More details of our prior work in this domain are provided in the Facilities sec-

tion. In this testbed, we will use human-scale robots with complex multi-fingered hands, as well as low cost

robots with simple grippers which we will equip with low cost handheld tools such as solenoids for snapping

together Lego parts and for “shooting” balls in small-scale versions of billiards, croquet, and mini (put-put)

golf. We will construct virtual reality versions of “rigid body” toys as well as our robots. Fun videogame-like

simulations will be used to engage a large number of human teachers on the web for virtual teaching, and this

domain is an excellent vehicle for outreach to schools and museums. Evaluation in this testbed will focus

on performance: how well can robots perform activities suggested by the instructional materials at varying

levels of detail, repair broken constructed setups, and construct setups that achieve new task specifications.

For specified construction tasks or in learning from demonstration, objective measures based on motion

capture and other forms of object (typically a ball) tracking will provide objective measures of performance.

Experimenters and independent judges (such as Mechanical Turk workers) will provide subjective perfor-

mance measures by grading how well constructed setups match task specifications or demonstrations. In the

case of musical instruments, the sounds generated will be objectively scored against ideal versions created

by humans, as well as being subjectively rated by experimenters and independent listeners. Experimenters

and also independent humans will introduce flaws in constructed setups to evaluate robot performance on

repair tasks. We will also use suggested projects from the kits and instructional materials as tasks to perform

without detailed instructions.

Deformable/Liquid/Granular Testbed: We choose deformable, liquid, and granular materials manip-

ulation to explore domains where modeling the task is more difficult and cultural knowledge of how to do

tasks is more important than model-based planning or reasoning from scratch using idealized models of

the underlying physics. We have chosen food preparation as a good domain, partly because we are already

working on food preparation in collaboration with Sony. We have chosen making salads as an initial focus

task because there is an existing infrastructure and progression of difficulty: one can start with “kit/bag/box

salads” where all items necessary can be purchased pre-washed and pre-cut in a bag or box, progress to

working with bulk pre-cut materials, and graduate to preparing a salad from whole vegetables. Similarly,

with baking we can progress from baking kits for children to cookie, cake, and muffin mixes commonly

found in supermarkets, to preparing materials “from scratch”. Science experiment kits for children allow

robots to explore mechanics, chemistry, and electricity while performing manipulations expected of young

children. Food preparation and science experiments will also be learned from online instructions, recipes,

and videos, which opens up a huge range of instructional material. More details of our work in these do-

mains are provided in the Facilities section. In addition to the evaluation methods and statistical analyses of

results previously discussed, food preparation needs to be evaluated subjectively by human tasters as well as

being judged more objectively for appearance and mechanical properties. Science experiments for children

can typically be objectively evaluated by experimenters and independent judges in terms of obtaining the

expected result, as well as subjectively evaluated for how the various sub-tasks were performed.

Social/Affordance Testbed: Our third domain, human-scale co-robots (cobots), builds on existing co-

robot infrastructure created by Professor Manuela Veloso and her PhD students [19, 86], who supports the

use of the cobots for our third testbed. For details on the cobot infrastructure, please see the Facilities section.

We will add simple arms and hands to the existing cobots. Our goal will be to enhance existing human-cobot

interactions to teach the cobots social rules and etiquette while acting as tour guides, meeting and seminar

hosts as well as general hosts, companions and other forms of social facilitators, mail and food deliverers,
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vendors, patrollers, monitors, cleaners, entertainers, and trash and recycling system managers. A concrete

goal is implementing a functioning trash and recycling management system with sorting and correcting

extensive human error and non-compliance. Robots will also learn about affordances of everyday objects

such as doors, elevators, furniture (especially mobile tables and chairs with adjustment controls), books,

backpacks, desktop, laptop, and tablet computers, phones, sinks, water fountains, refrigerators and other

kitchen objects, ice machines, lights, thermostats, whiteboards, black boards, markers, chalk, erasers, food

service objects (e.g., containers, napkins, utensils, cups) mops, brooms, and other cleaning equipment, toi-

lets, towel dispensors, hand dryers, packages, package material waste, various forms of recycling and trash

infrastructure, and A/V equipment (it is our hope that our meetings and seminars will run more smoothly

if a robot is in charge). We will emphasize a variety of manipulation skills, such as object pick-and-place,

pushing, pouring, stacking, cleaning, etc. Cobots are already successfully navigating our building while

executing a variety of prespecified tasks, including parcel delivery and visitor escort. More details of our

work in this domain are provided in the Facilities section. The Facilities section also describes our instru-

mented environments available for fine scale human-robot behavior capture, which augments learning from

ubiquitous human-robot interactions. Robot behavior in the Social/Affordance Testbed can be evaluated for

performance. Experimenters and independent judges can rate whether the correct behavior was selected,

and how well that behavior was performed. In addition, we can test what was learned by using it to narrate

or explain human or robot behavior in similar situations.

Evaluation, comparison, and hypothesis testing: Our work will include both testing of scientific

hypotheses and engineering development of design methods, architectures, and algorithms that facilitate

building a rich knowledge base and enable multiple heterogeneous robots and teams of robots and humans

to learn in a unified system. We will evaluate our never-ending affordance learners on their ability to improve

over time, as well as their rate of improvement, i.e., their ability to learn how to learn better in the future, as

stated in our requirements for successful never-ending learning architectures [59]. In all three testbeds, we

will evaluate our agent’s abilities in the following tasks:

Affordance and skill learning: For each testbed, we will create a task benchmark data set containing

100 tasks per testbed. These are tasks whose variations have been demonstated to our agents during training.

Periodically, during training, we will evaluate our agents on a subset of 10 tasks, where performance is

judged by human scorers. Note that our agents would have learned their own reward detectors for the tasks,

but we cannot use those as ground truth since they may be erroneous. In general, statistical analyses will be

straightforward (N out of M test tasks were successfully completed giving a success rate of Z%). Part of the

proposed research will be to develop metrics that measure partial performance and learning progress.

Natural language understanding: We will benchmark the ability of our agents to understand and carry

out human instructions in particular visual and execution contexts in two ways: 1) we will use a benchmark

set of instruction-to-task execution mappings collected using narrated demonstrations in virtual reality and

record task completion rates throughout the training period of our agents. 2) we will conduct studies at

regular time intervals to quantify the satisfaction/frustration of our teachers with the responsiveness of the

student-agents, both those accessible through the web as well as those sharing the same workspace, using

appropriate questionnaires. We will use their feedback to improve our pretraining open-loop teaching stage

as well as closed-loop learning algorithms.

Visual imitation: Given a novel (potentially silent) demonstration of a novel activity, we will evaluate

how fast our agents learn to perform the depicted task. We will create a benchmark of demonstrations by

varying their novelty against the training set encountered by our agents.

This proposal puts forward a set of hypotheses regarding architectural and supervision design choices

claimed to be important for behaviour and affordance learning. We state them below for clarity and describe

tests for their verification or disproof.

Does temporal integration of visual and tactile sensations into 3D feature maps lead to improved
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affordance recognition / policy learning / language grounding? We will compare policies learned by

varying the perceptual front-end between using conventional frame-stacked visuotactile features, traditional

engineering 3D representations such as pointclouds and the proposed 3D feature maps, and evaluate gen-

eralization of the skill policies learned. We expect that learning based on timing of event occurrences

(associational learning), and language about temporal relationships will not be improved by mapping to

three dimensions, but spatial learning and learning from language about spatial relationships will be greatly

enhanced by the use of 3D features. We expect learning using the proposed 3D features will be faster

and perform better than learning based on traditional 3D representations or 2D feature maps. Engineering

challenges include managing GPU memory for such memory-intensive representations.

Whether and how much closed-loop teaching helps over open-loop narrated demonstrations, and
whether and how much learning from NDs helps over learning from demonstrations? Here we will

evaluate robot learning (task completion) from the same training data with and without closed-loop teachers’

feedback, and with and without human narration.

Whether and how much predictive models accelerate acquisition of manipulation skills in imi-
tation and reinforcement learning? We will evaluate the learned dynamics models in model predictive

control, by unrolling them forward in time [70] for action selection, or exploration in the training control

loop [2].

Other issues and hypotheses we would like to explore include: a) A special simplified language (Robot

Esperanto) will improve human-robot interaction. accelerates learning and improves performance. c) Multi-

level feature representations including symbolic information can improve learning. d) Our approach actually

reduces the cost of robot programming, rather than just changing the form of robot programming.

6 Broader Impacts:

Impact on society: We expect to make programming robots cheaper, and make robots more useful, par-

ticularly for domestic and care robots supporting everyday life activities and unstructured activities such as

cleaning and repair. Programming a robot to do a desired task is difficult and expensive (typically requiring

one graduate-student-year for state of the art dynamic tasks). Adding the necessary error handling is many

times more expensive, as it is very difficult to anticipate all the things that will go wrong. We learned from

our participation in the DARPA Robotics Challenge (DRC) that designing robust behaviors for robots is
very difficult, even for professionals. Small changes in the task caused robots to fail, and even to fall or

crash. We propose methods that will help automate robot programming and error prevention and handling.

We want to enable robot workers and explorers to make simple plans and solve minor problems au-
tonomously, and be able to attain a safe state and ask for help when major errors or problems occur.
Endowing robots with the ability to solve simple problems, learn, and ask for help when needed is more

cost-effective than trying to make robot programs free of bugs and conceptual errors.

Impact on the research community: We expect to continue to make demonstration and robot data

available on the web. We have had great success making public most data collected in our Motion Capture

Lab (mocap.cs.cmu.edu and kitchen.cs.cmu.edu) and Panoptic Studio (domedb.perception.
cs.cmu.edu). Data made available so far has been acknowledged in several hundred papers, mostly from

the computer graphics, animation, and vision communities worldwide. This form of usage is freely available

to all, including those from non-Ph.D. and/or minority-serving institutions. We will host visitors who wish

to use our facilities, as we do now. Our technologies are being shared by being published, and papers and

software will be available electronically. We will maintain a public website to freely share our demonstra-

tions and robot data with additional video material. We will present our work at conferences and publish it in

journals, and will use these vehicles to advertise our work to potential collaborators in science and industry.

13



For a more complete description of our Dissemination Plan, please see our Data Management Plan.

Outreach: We have two outreach efforts aimed at reaching a wide audience. The first builds on our

experience with Disney, in which our soft robotics work inspired the soft care robot Baymax in the Oscar-

winning Disney movie Big Hero 6. We will coordinate with the ongoing “Big Hero 6” Disney TV show and

Disney park activities, and publicize our effort as “Building Baymax”. A second wide audience effort is our

effort to create a robot museum. Our work on low cost robots will be used as the basis of example museum

exhibits and school activities.

Broadening Participation: In terms of more general outreach to under-served populations, we will

make use of ongoing efforts in the Robotics Institute and CMU-wide. These efforts include supporting mi-

nority visits to CMU, recruiting at various conferences and educational institutions, and providing minority

fellowships. As the Robotics Institute PhD admissions chair in 2016, Atkeson led a process which resulted

in 31% of acceptances going to female applicants. As a member of the Robotics Institute faculty hiring

committee in 2017, Atkeson participated in a process that led to approximately half the interviewees being

female. Half of the faculty hired were women. As the head of Robotics Institute hiring in 2018, Atkeson

led a process in which again approximately half the interviewees were female, and 3 out of the 4 hires were

female. In the last few years we have tripled the number of women faculty in the Robotics Institute (3 to 9).

Atkeson is assisting efforts at CMU to raise money for fellowships for students who can help us in our efforts

to serve diverse populations and communities, including our own. Fragkiadaki organizes the CMU chapter

of the AI4ALL national program, with the first version presented in July 2018: a three week program for 20

high school students from disadvantaged local schools, to expose them to the excitement of AI, its potential

societal impact, and what people do in college, graduate school, and beyond. The first instantiation went

very well, and both the participants and the organizers learned a lot. Preliminary results of the proposed

research were presented to the students, who were very enthusiastic. At the end of the program, they all

indicated in surveys that they wanted to pursue AI as their field of college studies. We believe the research

proposed in this proposal is intuitive enough to excite young students, and we plan to organize one project

in the AI4ALL school of summer 2019 on visual and tactile recognition by robotic agents. Currently PI

Fragkiadaki is mentoring three Ph.D. students, one of which is female and leads the research on GRNNs.

A recently graduated undergraduate student from PI Fragkiadaki’s lab, Ricson Cheng, was selected as a
runner-up for the CRA outstanding undergraduate awards in 2018 for his work on active vision and

geometry-aware RNNs.

Technology Transfer: The best way to transfer technology is by having students go to industry. Three

recent students work at Boston Dynamics transferring our work in robotics to commercial applications, one

recent student and recent postdoc work on self-driving cars at Uber, one recent student works on self-driving

cars at Apple, and one recent student works on humanoid robotics at the Toyota Research Institute. An older

former student is the CTO of the Amazon drone effort. Several older former students work at Google. We

are thrilled that we and our students are part of the robotics revolution.

Education and Curriculum Development Activities: We intend to infuse this research and the robot

experimental program into our new AI major at CMU, especially through project courses and student theses.

We will develop course material on robot learning and reasoning, which will be influenced by our research

and freely available on the web. The PIs currently teach several courses that will benefit from this material.

For example, 10-403 (undergraduate) and 10-703 (graduate): Deep Reinforcement Learning and Control,
10-898: Language Grounding to Vision and Control, and 16-745: Optimal Control and Reinforcement
Learning directly address the research areas in which this proposal is embedded. We also teach a course

designed to attract undergraduates into the field, 16-264: Humanoids, which is currently using the first

version of the Toys/Kits Testbed.
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7 Results from Prior NSF Support

The most relevant recent award for Atkeson is: (a) NSF award: IIS-1717066 (PI: Atkeson); amount:
$440,000; period: 8/1/17 - 7/31/20. (b) Title: RI: Small: Optical Skin For Robots: Tactile Sensing and

Whole Body Vision (c) Summary of Results: This recent grant is supporting work on developing optical

approaches for tactile sensing as well as whole body vision (eyeballs all over the body). We will develop

robot hands that complement the robot skin.

Intellectual Merit: This project will enable robots to feel what they touch. The key idea is to put

cameras inside the body of the robot, looking outward at the robot skin as it deforms, and also through the

robot skin to see nearby objects as they are contacted or avoided. We turn tactile sensing into a computer

vision problem, taking advantage of recent progress in computer vision. This approach addresses several

challenges: 1) achieving close to human resolution (a million biological sensors) using millions of pixels,

2) reducing occlusion during grasping and manipulation, and detecting obstacles before impact, and 3)

protecting expensive electronics and wiring while allowing replacement of worn out or damaged inexpensive

skin. Technical goals for the project include first building and then installing on a robot a network of about

100 off-the-shelf small cameras (less than 1 cubic centimeter) that is capable of collecting information,

deciding what video streams to pay attention to, and processing the video streams in real time to estimate

forces, slip, and object shape. A transformative idea is to aggressively distribute high resolution imaging

over the entire robot body. This reduces occlusion, a major issue in perception for manipulation. Building

a camera network of hundreds of cameras on a mobile skin, and building a multi-modal sensing skin, is

synergistic with developing the proposed system.

Broader Impacts: Robots with better sensing can more safely help people. Development of Human
Resources: The project involves one graduate student. We have weekly individual meetings and weekly

lab meetings. The graduate student is performing research, making presentations to our group, and will

give conference presentations and lectures in courses. We will put the graduate student in a position to be a

success in academia and industry.

(d) Publications resulting from this NSF award: [93, 28]. (e) Other research products: We have made

instructions on how to build our tactile sensors available on the web. (f) Renewed support. This proposal is

not for renewed support.

Tom Mitchell has been a PI or co-PI on 15 NSF grants over the years, and on three recent NSF grants that

have focused on developing and analyzing machine learning algorithms for large scale continuous learning.

He was co-PI on NSF IIS1250956 “BIGDATA: Small: Big data for everyone,” ($548,417, Aug 2013 to

May 2017). Intellectual merit: Developed a continuously learning system that can be retargeted to extract

knowledge from the internet in different domains, leading to advances in self-reflection [Platanios 2014;

2017] and information extraction [Saparov 2017]. Broader impact: This research seeks to bring the benefits

of learning from internet data to new fields, and resulted in support for two Ph.D. advisees. Mitchell was co-

PI on NSF IIS1247489 “BIGDATA: Mid-Scale: DA: Collaborative Research: Big Tensor Mining: Theory,

Scalable Algorithms and Applications, ($894,892, Dec 2012 to Nov 2017). Intellectual merit: Improved

scalability for tensor and coupled tensor/matrix factorization, driven by real-world applications [Papalexakis

2014; 2016], [Xiao 2017]. Broader impact: More scalable tensor-based algorithms have impacted big

data analyses, including in cognitive neuroscience. This has supported one of Mitchell’s graduated Ph.D.

student and one female post-doctoral researcher. Mitchell is currently co-PI on NSF 1535967 ”AitF: FULL:

From Worst-Case to Realistic-Case Analysis for Large Scale Machine Learning Algorithms.” Intellectual
merit: This research seeks new theory to characterize real-world machine learning, and has resulted in

understanding new ways to use unlabeled data to estimate learning accuracy [Platanios 2016]. Broader
impact: This has supported one of Mitchell’s PhD advisees.

There is no prior NSF support for Katerina Fragkiadaki or Wenzhen Yuan.
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IEEE-RAS 17th International Conference on Humanoid Robots (Humanoids), 2017.

2. “Design of a Lightweight Soft Robotic Arm Using Pneumatic Artificial Muscles and In-

flatable Sleeves”, P Ohta, L Valle, J King, K Low, J Yi, C G Atkeson, and Y-L Park, Soft
Robotics, 5(2): 204-215, 2018.

3. “Team WPICMU: Achieving Reliable Humanoid Behavior in the DARPA Robotics Chal-

lenge”, M. DeDonato, F. Polido, K. Knoedler, B.P.W. Babu, N. Banerjee, C.P. Bove, X. Cui,

R. Du, P. Franklin, J.P. Graff, P. He, A. Jaeger, L. Li, D. Berenson, M.A. Gennert, S. Feng,

C. Liu, X. Xinjilefu, J. Kim, C.G. Atkeson, X. Long, and T. Padir, Journal of Field Robotics
34 (2), 381-399, 2017.

4. “Using Deep Reinforcement Learning to Learn High-Level Policies on the ATRIAS Biped”,

T. Li, A. Rai, H. Geyer, and C. G. Atkeson, arXiv preprint arXiv:1809.10811, 2018.

5. “Interpersonal interactions for haptic guidance during balance exercises”, S.M. Steinl, P.J.

Sparto, C.G. Atkeson, M.S. Redfern, and L. Johannsen, Gait & Posture 65, 129-136, 2018.

Five Other Relevant Publications

1. “Human-in-the-loop optimization of exoskeleton assistance during walking”, J. Zhang, P.

Fiers, K. A. Witte, R. W. Jackson, K. L. Poggensee, C. G. Atkeson, and S. H. Collins,

Science, 356:6344, 1280–1284, 2017.

2. “Learning Tasks From Observation and Practice”, D. C. Bentivegna, C. G. Atkeson, and G.

Cheng, Robotics and Autonomous Systems, 47:163-169, 2004.

3. “Finding and Transferring Policies Using Stored Behaviors”, M. Stolle and C. G. Atkeson,

Autonomous Robots, 29(2): 169-200, 2010.
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4. “Learning Control for Robotics”, S. Schaal and C. G. Atkeson, IEEE Robotics & Automation
Magazine, 17(2), 20-29, 2010

5. “Efficient Robust Policy Optimization”, C. G. Atkeson, American Control Conference (ACC),
2012.

Synergistic Activities

• IEEE-RAS International Conference on Humanoid Robots: Program Committee Co-Chair,

2003, General Chair, 2004, US Program Committee Chair, 2008, General Co-Chair, 2012.

• Scientific Board, Dynamic Walking Conference, 2005-present.
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Tom M. Mitchell 
E. Fredkin University Professor 
Machine Learning Department 
School of Computer Science  

Carnegie Mellon University, Pittsburgh, PA 15213 
Telephone: (412) 2682611, (412) 268-1299, (412) 721-2414 

Email: tom.mitchell@cmu.edu 

Professional Preparation: 

Massachusetts Institute of Technology  Electrical Engineering     S.B.,   1973 
Stanford University    Electrical Engineering    M.S.,  1975 
Stanford University   Electrical Engineering, Computer Science minor Ph.D., 1979  

Appointments:  

2009-present E. Fredkin University Professor, Carnegie Mellon University 
2006-2016 Department Head, Machine Learning Department, Carnegie Mellon University 
1999-2008 E. Fredkin Professor of Machine Learning, Carnegie Mellon University 
19972006  Director, Ctr. for Automated Learning and Discovery, Carnegie Mellon University 
19861999  Professor, Computer Science and Robotics, CarnegieMellon University 
2000-2002 Vice President and Chief Scientist, WhizBang! Labs, Pittsburgh, PA. 
197886 Assistant/Associate Professor, Department of Computer Science, Rutgers University,  

Five Related Products: 

• Instructable Intelligent Personal Agent. Amos Azaria, Jayant Krishnamurthy, and Tom M. Mitchell.  
Proceedings of the AAAI Conference, 2016.  

• Joint concept learning and semantic parsing from natural language explanations.  Proceedings of 
Conference on Empirical Methods in Natural Language Processing (EMNLP), 2017  

• An end user development approach for failure handling in goal-oriented conversational agents.   
Toby Jia-Jun Li, Igor Labutov, Brad A. Myers, Amos Azaria, Alexander I. Rudnicky, and Tom M. 
Mitchell.  In Robert J. Moore, Margaret H. Szymanski, Raphael Arar, and Guang-Jie Ren, editors, 
Studies in Conversational UX Design. Springer (in press), 2018. 

• Machine Learning: Trends, Perspectives, and Prospects. M. I. Jordan and T. M. Mitchell, 
Science 349:255, July 2015. DOI: 10.1126/science.aaa8415. 

• Machine Learning, T.M. Mitchell, McGraw Hill, 1997.  (textbook) 

Service, Synergistic Activities: 
• Currently lead a research project on sensor-effector agents learning from user verbal instruction, 

which is exploring how to enable users of mobile phones to teach their phones new capabilities.  
This project involves teaching a “softbot” instead of a “robot” but shares many fundamental 
research issues. 

• Serve as Co-PI (along with Professor Justine Cassell) on the $10M InMind project which seeks to 
develop prototypes of future intelligent mobile device agents.  This project involves over a dozen 
diverse faculty-led projects that bear on user-agent interactions, teaching and customization, 
which lies at the core of the research we propose here. 



• Founded CMU’s Machine Learning Department, which offers the world’s first Ph.D. program in 
Machine Learning, increasing both the pool of researchers available to support the proposed 
research, and its multidisciplinary educational impacts. 

• PI of the Never Ending Language Learning (NELL) research project, an effort to develop a 
computer to learn continuously for years to read the web.  NELL has been running 24 hours/day 
since 2010, and has produced a collection of over 120 million beliefs. 

• Co-Chaired recent U.S. National Academy study on “Information Technology, Automation, and 
the U.S. Workforce” and testified to the U.S. Congressional Research Service on results of the 
study.



Wenzhen Yuan

Assistant Professor yuanwz@cmu.edu
The Robotics Institute https://people.csail.mit.edu/yuan wz
5000 Forbes Avenue, Pittsburgh PA 15213-3890

EDUCATION

Tsinghua University Beijing, China Mechanical Engineering B.Eng. 2012
MIT Cambridge, MA Mechanical Engineering S.M. 2014
MIT Cambridge, MA Mechanical Engineering Ph.D. 2018

APPOINTMENTS

Aug. 2019- Assistant Professor, The Robotics Institute, Carnegie Mellon University
Oct. 2018-Jul. 2019 Postdoctoral Scholar, Computer Science Department, Stanford University

PRODUCTS

Five Relevant Publications

• Yuan, W., Dong, S., and Adelson, E. H. (2017). Gelsight: High-resolution robot tactile
sensors for estimating geometry and force. Sensors, 17(12), 2762.

• Yuan, W., Wang, S., Dong, S., and Adelson, E. H. (2017, July). Connecting Look and Feel:
Associating the visual and tactile properties of physical materials. In CVPR (pp. 4494-4502).

• Yuan, W., Zhu, C., Owens, A., Srinivasan, M. A., and Adelson, E. H. (2017, May). Shape-
independent hardness estimation using deep learning and a GelSight tactile sensor. In
Robotics and Automation (ICRA), 2017 IEEE International Conference on (pp. 951-958).

• Wang, S., Wu, J., Sun, X., Yuan, W., Freeman, W. T., Tenenbaum, J. B., and Adelson, E.
H. (2018, October). 3D shape perception from mnocular vision, touch, and shape priors. In
Intelligent Robots and Systems (IROS 2018), 2018 IEEE/RSJ International Conference on

• Yuan, W., Li, R., Srinivasan, M. A., and Adelson, E. H. (2015, May). Measurement of shear
and slip with a GelSight tactile sensor. In Robotics and Automation (ICRA), 2015 IEEE
International Conference on (pp. 304-311).

Five Other Significant Publications

• Calandra, R., Owens, A., Upadhyaya, M., Yuan, W., Lin, J., Adelson, E. H., and Levine, S.
(2017, October). The Feeling of Success: Does Touch Sensing Help Predict Grasp Outcomes?.
In Conference on Robot Learning (pp. 314-323).

• Yuan, W., Mo, Y., Wang, S., and Adelson, E. H. (2018, May). Active Clothing Material
Perception using Tactile Sensing and Deep Learning. In Robotics and Automation (ICRA),
2018 IEEE International Conference on (pp. 1-8).
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• Luo, S., Yuan, W., and Adelson, E. H., Cohn, A. G., and Fuentes, R. (2018, May). Vi-
Tac: Feature Sharing Between Vision and Tactile Sensing for Cloth Texture Recognition. In
Robotics and Automation (ICRA), 2018 IEEE International Conference on (pp. 2722-2727).

• Dong, S., Yuan, W., and Adelson, E. H. (2017, September). Improved gelsight tactile sensor
for measuring geometry and slip. In Intelligent Robots and Systems (IROS), 2017 IEEE/RSJ
International Conference on (pp. 137-144).

• Li, R., Platt, R., Yuan, W., ten Pas, A., Roscup, N., Srinivasan, M. A., and Adelson, E. (2014,
September). Localization and manipulation of small parts using gelsight tactile sensing. In
Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ International Conference on
(pp. 3988-3993).

SYNERGISTIC ACTIVITIES

• Co-organizer of workshop Tactile Sensing for Manipulation: Hardware, Modeling and Learn-
ing at the conference of Robotics: Science and Systems (RSS), 2017, Cambridge, MA.

• Actively promoting the research and application in robotic tactile sensing. Founded the
open-source platform for GelSight tactile sensor and shared the hardware platform with re-
searchers from 9 universities or research institutes. The support and collaboration resulted
in 5 published papers.

• Served as peer reviewer of 3 high-impact robotics or sensor related journals: Mechatronics,
Sensors & Actuators: A: Physical, IEEE Robotics and Automation Letters (RA-L) and 3 top
robotics conferences: International Conference on Intelligent Robots and Systems (IROS),
IEEE-RAS International Conference on Humanoid Robots (Humanoids),and Conference on
Automation Science and Engineering (CASE).

• Contributor of the C++ robotics toolbox Drake. Drake is an open source toolbox for analyzing
the dynamics of robots and building control systems for them. Now it is used by multiple
research groups across US.
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CMU Facilities

We will use three existing testbeds to evaluate the proposed learning ecosystem. We describe these

testbeds and their corresponding robots in this section. The lab-based Deformable/Liquid/Granular

Testbed involves existing human-scale robots working with deformable, liquid, and granular materi-

als as is found in food preparation and science experiment kits for children. These robots, grippers,

and tactile sensors include Baxters, Sawyers, Franka Emika Pandas, Robotiq hands, parallel jaw grip-

pers, and FingerVision and GelSight (Figure 1) tactile sensors. We use extensive robot-mounted and

external cameras, which at this point are too cheap and plentiful to mention. The Social/Affordance

Testbed is based on our existing deployment of CoBots in our computer science building. We have

developed low cost robots for our Toys/Kits Testbed. We describe our existing effort on low cost

robots for research and education, and the educational toys and kits they are working with. We de-

scribe our behavior capture facilities including the Motion Capture Lab (based on reflective markers

and IR illumination) and the Panoptic Studio (based on several hundred video cameras), which are

used to capture human teacher behavior and human-robot interaction. We also describe our work on

virtual reality-based robot training.

1 The Deformable/Liquid/Granular Testbed and lab-based robots

In this testbed human-scale robots work with deformable, liquid, and granular materials as are found

in food preparation and science experiment kits for children. We will use a number of Baxter, Sawyer,

and Franka Emika Panda robots which we have access to for this study. We also have several robot

hands, such as Robotiq hands and parallel jaw grippers. Atkeson has developed FingerVision tactile

sensors, and Yuan has GelSight sensors (Figure 1) and plans to develop next-generation vision-based

tactile sensors. In a separate project we are building new hands which may be useful to this project

(see Results from Prior NSF Support).

The physical testbeds we will use for evaluation will each include at least two robot arms with

hands. An example setup is a Baxter research robot with FingerVision tactile sensors mounted on

its fingers (Figure 2). It has two 7 DOF arms, and two different types of parallel jaw grippers. Its

arm payload is 2.2 kg. One gripper’s grip force is 44 N with a grip range 37 to 75 mm, and the other

Figure 1: The GelSight tactile sensor which measures high-resolution geometry of the contact surface

from the image-formatted output. The black dots painted on the sensor surface is used to estimate the

contact force.
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Figure 2: One of our Baxter robots pouring, our PR2 robot pouring, cutting a tomato, trying to peel

a banana using teleoperation (1 is a human-like strategy of ripping the skin at the stem, and 2 and

3 explore alternative strategies more appropriate for the robot), cutting a peeled banana (easy), and

cutting an apple (hard).

gripper’s grip force is 100 N with a grip range range 0 to 84 mm. The Baxter robot can estimate torque

at each joint. Here is a video of our Baxter robot pouring: https://youtu.be/NIn-mCZ-h_

g We have instrumented Baxter’s fingers with FingerVision, our optically based tactile sensing and

proximity vision system. This video of the system is a good introduction to FingerVision: https:

//youtu.be/ifOwQdy9gDg The vision system both measures the deformation of skin on the

robot fingers to measure contact locations and forces, and sees through the transparent skin to provide

object and surface localization and tracking during manipulation (in this case cutting with a knife). We

also have a number of soft robot prototypes currently available for experimentation and others under

development.

The Humanoid Robotics Lab (located in the Motion Capture Lab described below) provides a state

of the art full-sized humanoid for research and education. We have developed a hydraulic humanoid

in collaboration with Sarcos (with NSF equipment funding). We use this robot because of the speed,

power, and achievable joint compliance of the hydraulics and the range of motion of the joints.

We will deliberately test our ideas using tasks and materials that are hard to model, such as de-

formable, liquid, and granular materials (Figure 3). We believe cultural knowledge (knowledge learned

from others) of how to do tasks is more important than planning or reasoning from scratch for these

materials. Our previous work has focused on manipulating liquids and particulate materials (for exam-

ple, pouring), and cutting objects with skins. These tasks also allowed us to explore learning different

task strategies. In the case of pouring, strategies include tipping, shaking, and tapping. In the case of

cutting, one can slice, stab, or saw. We believe humans learn these type of skills from demonstrations

by other humans, and we all maintain skill libraries representing alternative strategies to do the same

task.

For this testbed we have chosen food preparation and science experiment kits as the tasks (Fig-

ure 3). We have chosen food preparation as a good domain, partly because we are already working on

food preparation in collaboration with Sony. We have chosen making salads as an initial focus task

because there is an existing infrastructure and progression of difficulty: one can start with “kit/bag/box

salads” where all items necessary can be purchased pre-washed and pre-cut in a bag or box, progress

to working with bulk pre-cut materials, and graduate to preparing a salad from whole vegetables. Sim-

ilarly, with baking we can progress from baking kits for children to cookie, cake, and muffin mixes

commonly found in supermarkets, to preparing materials “from scratch”. Science experiment kits for
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Figure 3: Some domains we will use to inspire and evaluate our work, taken from educational kits

and books involving physical processes and devices a robot can work with, learn and reason about,

and repair, including mechanical, electrical, thermal, chemical, and combustion processes.

children allow robots to explore mechanics, chemistry, and electricity while performing manipulations

expected of young children. Food preparation and science experiments will also be learned from on-

line recipes, cooking videos, and instructional materials, which opens up a huge range of instructional

material.

2 The Social/Affordance Testbed and wandering CoBots

We currently have multiple CoBot service robots (cobots, see Figure 4 and 5d) capable of performing

user-requested tasks in our multi-floor office buildings. These mature platforms are useful for the

proposed work because they provide a reliable platform on which we can focus on the interaction

between the users and the robots. One of the distinguishing features of the CoBot platform is the

stable low-clearance and omnidirectional base which makes it well-suited for its role as a guide. The

base is a scaled-up version of the CMDragons small-size soccer robot. The robots have operated

for more than 1,000km and for more than three years without hardware failures, and with minimal

maintenance.

The CoBots can already perform multiple classes of tasks which involve social interaction and

knowing object affordances. Tasks are programmed by humans through a speech or web interface.

Cobots currently ask for help from humans for any manipulation or object detection task, as they

are not equipped with manipulation hardware or software, or semantic perceptual capabilities. Tasks

include: 1) A single destination task, in which the user asks the robot to go to a specific location the Go-

To-Room task and, in addition, to deliver a specified spoken message the Deliver-Message task; 2) A

3



Figure 4: A CoBot leading a blind user.

Transport task, in which the user requests the robot to retrieve an item and to deliver it to a destination

location. This Transport task is also used for accompanying a person between locations (when the

item to transport is a person). A task to escort a person to a specified location, the Escort task, in

which the robot waits for a person in front of the elevator on the floor of the destination location,

and guides the person to the location. Another task is the semi-autonomous Telepresence task, in

which users may request to be remotely present on the mobile robot with autonomous navigation and

obstacle avoidance. Users select destination points on the map or on the robot image view to move

remotely through the telepresence web interface. Furthermore, they can control the robot through a

rich motion- and perception-controlled web-based interface. The research underlying the autonomous

CoBot robots has been focused on achieving a complete robust localization and navigation, so that the

robots can move in our environments completely autonomously. The robots can detect obstacles and

peoples silhouettes in particular. The research has strong underlying assumptions that surrounding

humans can actually see the robots. Our previous work has demonstrated instructable navigation

capabilities.

Planned CoBot upgrades: Using other funding sources, we will equip each CoBot with a Kinova

Jaco arm, a three finger gripper, and over-the-shoulder, wrist, and palm cameras, in addition to the

current body-mounted Kinect camera. Our goal is to teach the CoBots a diverse set of navigation

and manipulation tasks, natural language understanding and much enhanced vision capabilities, as

well as the ability to continually adapt their behaviors to the preferences of the users. Success of the

proposed research will be evaluated on the basis of the CoBots’ acquired competence in language,
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Figure 5: Collecting narrated demonstrations a) in virtual reality, b) in an instrumented space (the

CMU Panoptic Studio), c) in users’ homes captured by egocentric mounted cameras, and d) interac-

tively with a CoBot.

Figure 6: Low cost robot prototypes: see text.

visual recognition and behavior learning while minimizing human teacher supervision over time, as

well as the quality of their interaction with the human collaborators over time.

Engaging our community in CoBot teaching: Aside from the technological innovations, an

additional aim of this research is to informally explore the development of a “humans teaching robots”

culture. Will the users in our building be willing to teach the robots? Will they learn to be better

teachers? The proposed research includes an informal social “experiment” for large scale human-robot

collaborative learning. To reinforce engagement of our community, we will set up “robot museum”

exhibits that explain how the robots work and provide insight into what they are learning from the

humans.

3 The Toys/Kits Testbed and low cost robots

We are already building a variety of low cost robots (1000-2000$), which are being used in a project

class 16-264 Humanoids taught by Atkeson (Figure 6). The left 3 photos show the commercial robot

parts used as ingredients: a) a LewanSoul Drawarm ($140, we can also use the LewanSoul Xarm,

$200), b) a Lynxmotion “Little Grip” gripper ($16), and c) a Nexusrobot 4WD 60mm Mecanum

Wheel Arduino Robot ($330). A prototype showing the combination of these items is shown in the

fourth photo, as well as a larger and beefier Nexusrobot ($630). The current reach of the modified

Drawarm/Xarm is a little less than a meter (0.91m) and is easily adjustable. The last photo shows

our prototype of a more heavily geared arm (stronger but slower than the modified Drawarm/Xarm).

These arms have similar performance to any low cost arm built from hobby servos: they are slow,

they are not accurate, it is difficult to improve the joint-level control, and they suffer from structural

vibration which can be reduced by adding structural damping. However, these robots can perform the

tasks required for many infant and K-12 educational toys and kits, especially with visual, tactile, and

auditory feedback. We will use low cost handheld “tools” for our robots to extend their capabilities.

Examples include solenoids for snapping together Lego parts and for “shooting” balls in small-scale

versions of billiards, croquet, and mini (put-put) golf.
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Figure 7: K-12 kits we are using.
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Figure 8: Top two rows: Examples of labelling in instructional material in Keva Contraptions kits.

Bottom row: Examples of desired visual segmentation into re-usable parts.
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We will use a variety of educational toys and kits about mechanical processes and devices to de-

velop and evaluate our ideas and algorithms about how robots can learn about perception, affordances,

models, and skills. There are several reasons for this choice of task. These rigid body toys and kits are

easy to simulate and replicate in virtual reality. They are widely available in a standardized form. The

chosen tasks can be done by low cost (and low performance) robots. There is substantial instructional

material on the web, including Youtube videos. Educational toys and kits are designed to stimulate

and facilitate perceptual, affordance, model, skill, and cognitive learning. Toys for infants typically

demonstrate numerous manipulation skills and affordances (knobs to turn, buttons to press, ...), are

safe to operate, can break and be replaced easily and inexpensively, and use exaggerated visual and

audio cues to guide the learner. Educational K-12 toys and kits we will focus on include toys and

kits that focus on mechanical processes and construction such as Keva “Contraptions”, Marble runs,

Lego “Chain Reactions”, Rube Goldberg kits, and Jenga (Figure 7). Joke: We will be focusing on toy

problems and blocks world domains. In this case this is a good thing.

It is important to note that working with these kits will not require fast movement from the robot.

The robot can move as slowly and carefully as necessary to successfully set up and initiate the physical

process. After that, the robot mostly observes what happens and then hunts down stray marbles and

other pieces (yes, a robot can lose its marbles). We will also focus on learning to play simple musical

instruments such as keyboards, drums, rattles, and xylophones to emphasize multimodal visual, aural,

and tactile learning. We will extend these domains with the robot’s ability to design and 3D-print new

components and tools as part of the learning process.

For all of these domains there is a rich set of instructional material and videos, as well as suggested

experiments and other activities that can be used to inspire exploration, play, and evaluation. Figure 8

shows the kinds of linguistic labels found in the instructional material (top 2 rows), as well as manual

labelling of re-usable parts (bottom row, we hope to automate this labelling soon). Evaluation of the

proposed work will focus on how well robots can perform suggested activities from the instructional

material, repair broken processes and devices, and create processes and devices that achieve new task

specifications.

4 Our behavior capture facilities

We describe our behavior capture facilities including the Motion Capture Lab (based on reflective

markers and IR illumination) and the Panoptic Studio (based on several hundred video cameras), as

well as virtual reality and web-based videogames, which are used to capture human teacher behavior

and human-robot interaction (Figure 5).

4.1 Motion Capture Lab

The 1700 square foot Motion Capture Lab provides a resource for marker-based behavior capture of

humans as well as measuring and controlling robot behavior in real time (Figure 9). It includes a

Vicon Optical Motion Capture System with sixteen 200 Hz, 4Meg resolution cameras (MX-40). In

addition to traditional motion capture, the Vicon system can be used in real time to track robot motion,

and provide the equivalent of very high quality inertial feedback. In addition to capturing motion,

we have instrumentation to capture contact forces at the hands and feet (one force gauge (IMADA

DPS-44), one ATI Industrial Automation Mini85 wrist force torque sensor, and two AMTI AccuSway

PLUS force plates that measure the six-axis contact force and torque at a rate of 1 kHz), and also

electromyographic activity (EMG, a measure of muscle activation, Aurion ZeroWire (wireless) system
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Figure 9: Capturing skin deformation as well as whole body movement

Figure 10: Left: A wearable accelerometer system. Right: A Parkinson’s patient whose tremor is

being monitored by cameras and wearable accelerometers (red circles).

with 16 pairs of electrodes at a rate of 5 kHz) A high-speed video camera is also used to capture skin

deformation at 1 kHz. Behavior capture goes beyond motion capture with this capture of forces and

muscle activation. We have also built wearable behavior capture systems (Figure 10).

4.2 Panoptic Studio

The Panoptic Studio is a multiview capture system with 521 heterogeneous sensors, consisting of

480 VGA cameras, 31 HD Cameras, and 10 Kinect v2 RGB+D sensors, distributed over the surface

of geodesic sphere with a 5.49m diameter (Figure 11). The large number of lower resolution VGA

cameras at unique viewpoints provide a large volume with robustness against occlusions, and allow

no restriction for view direction of the subjects. The HD views provide details (zoom) of the scene.

Multiple Kinects provide initial point clouds to generate dense trajectory stream.

The structure consists of pentagonal panels, hexagonal panels, and trimmed base panels. Our
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Figure 11: Panoptic Studio layout. (Top Row) The exterior of the dome with the equipment mounted

on the surface. (Bottom Row) The interior of the dome. VGA cameras are shown as red circles, HD

cameras as blue circles, Kinects as cyan rectangles, and projectors as green rectangles.

design was modularized so that each hexagonal panel houses a set of 24 VGA cameras. The HD

cameras are installed at the center of each hexagonal panel, and projectors are installed at the center of

each pentagonal panel. Additionally, a total of 10 Kinect v2 RGB+D sensors are mounted at heights

of 1 and 2.6 meters, forming two rings with 5 evenly spaced sensors each.

Examples of human tracking include Figures 12, 13, and 14.

We expect to continue to make behavior capture data available on the web. We have had great

success making public most data collected in our Motion Capture Lab (mocap.cs.cmu.edu and

kitchen.cs.cmu.edu) and Panoptic Studio (domedb.perception.cs.cmu.edu). Data

made available so far has been acknowledged in several hundred papers, mostly from the computer

graphics, animation, and vision communities worldwide. As an example of behavior capture in the

PanOptic Studio, we publicly share a novel dataset which is the largest in terms of the number of

views (521 views), duration (3+ hours in total), and the number of subjects in the scenes (up to 8

subjects) for full deformable body motion capture. Our dataset is distinctive in that ours captures

natural interactions of groups without controlling their behavior and appearance, and contains motions

with rich social signals.
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Figure 12: Tracking humans in the Panoptic Studio.

Figure 13: Openpose is widely used human tracking software that came out of the work on the Panop-

tic Studio.

Figure 14: Several levels of proposals generated by our method. (a) Images from up to 480 views. (b)

Per-joint detection score maps. (c) Node proposals generated after non-maxima suppression. (d) Part

proposals by connecting a pair of node proposals. (e) Skeletal proposals generated by piecing together

part proposals. (f) Labeled 3D patch trajectory stream showing associations with each part trajectory.

In (c-f), color means joint or part labels shown below the figure.
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4.3 Virtual reality and videogames

We will construct virtual reality versions of “rigid body” toys and kits as well as our robots. Figure 5a

shows our current virtual reality interface. Fun videogame-like simulations will be used to engage

a large number of human teachers on the web for virtual teaching, and this domain is an excellent

vehicle for outreach to schools and museums.
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Collaboration Plan
This collaboration involves faculty from the Machine Learning Department and the Robotics Institute of the

School of Computer Science (SCS) at Carnegie Mellon University. Our offices and labs are part of the same

building complex. The co-PIs will collaborate on managing the project. Graduate students will be recruited

from all of the departments in SCS, including the Machine Learning Department, Robotics Institute, Language

Technologies Institute, Human-Computer Interaction Institute, and the Computer Science Department. This will

be facilitated by the policy that any faculty member in SCS can supervise students in any other SCS department

The students will be co-advised by several of the PIs encourage integration. Interaction between the PIs will be

facilitated by our proximity and shared labs and students.

Roles of co-PIs: What makes this team more than the sum of the individuals is that we bring together

researchers with different areas of expertise. We build on an existing machine learning and computer vision

research program (Fragkiadaki), an existing humanoid robot and robot learning research program (Atkeson),

a new effort in tactile sensing (Yuan), and an existing effort in machine learning and language (Mitchell).

PI Katerina Fragkiadaki has worked extensively on fine-grain activity understanding and visual recognition

from videos by combining semantics, geometry and unsupervised learning. Co-PI Chris Atkeson has worked

extensively on robot learning, manipulation, and locomotion, as well as robot design. Co-PI Wenzhen Yuan is an

expert on tactile perception, both in hardware development and algorithms for understanding tactile feedback.

Co-PI Tom Mitchell has extensive experience in machine learning and natural language.

The participating investigators will work synergistically to accomplish the proposed work. Fragkiadaki, as

the PI, will coordinate the efforts supported by this proposal. Her background will enable her to be a bridge

between the interdisciplinary components of this proposal and support more effective interaction. She will lead

work in visual perception and multimodal integration. The funding will also support several graduate students.

We expect the students to allocate aspects of the project based on their interests. The PIs will supervise, guide,

and provide assistance as needed, as well as focus on theoretical and algorithm development. All members of

the team will work together to evaluate each other’s work and results.

Project management: The co-PIs will make decisions by consensus. The PI is the final decision-maker

if consensus is not reached. In addition to the co-PIs, the project includes several co-advised students. The

students will interact with all of the co-PIs.

Specific collaboration mechanisms: The PIs will have multiple mechanisms in place to ensure effective

collaboration. In addition to frequent ad hoc meetings and interactions, the personnel involved in this work will

meet weekly to review research results, technical progress on individual technology, establishing milestones,

planning for system demonstrations and software releases, and discuss future directions. We will also hold

larger events such as workshops to focus attention on particular issues and get input from additional colleagues.

We will share experimental setups and software repositories.

Budgetary support for collaboration: Faculty salary support and student support will provide coverage for

the time necessary to interact. No additional funding is required for our regular meetings or other collaboration

mechanisms. Support is requested for several students. We would ask for more but are limited by the budget

limits set by the NSF. We also ask for summer support for the PIs. This support allows them to use their

summer for both their individual technical contributions and the leadership of collaborative activities necessary

to achieve our goals, in addition to the time provided in the academic year. Support is also requested for travel

to present results at scientific conferences as well as attend PI meetings.

Timeline for the integrative activities:
Year 1 will focus on building the foundations of the project. Our goal will be to establish limited prototypes

of all basic components of our learning ecosystem, including simulation and virtual reality, actual robot, and

evaluation components. A major emphasis will be making basic representational decisions and developing and

evaluating prototype implementations of various tasks. We will focus on integration of existing algorithms into

the first version of our system. Infrastructure such as computer vision, robot control, and data collection tools

will be created. We will manually build system components where learning approaches are not sufficiently
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mature. Another major task will be to create common software, data collection, and work sharing mechanisms

that cover all of the testbeds. In terms of first year evaluation, we will implement a baseline version of the

proposed approach, which will be evaluated in simulation and on our robots.

In terms of the Toys/Kits Testbed, we will continue the work we have already begun on the simplest infant

toys and K-12 kits. We will build a prototype system with example perception, learned models, reasoning capa-

bilities, behavior libraries, and learning algorithms. This example system will focus on rigid-body mechanics,

so it can work with kits like the Keva Contraptions kit (balls rolling around a blocks world), as well as many

kits involving marbles rolling down ramps magnetically attached to a wall, patterns of dominos falling, and

other rigid-body processes. In terms of the Social/Affordance Testbed involving all robots but emphasizing the

Cobots, we will integrate existing CoBot control software into our learning ecosystem. In terms of the De-

formable/Liquid/Granular Testbed, we will integrate our existing food preparation software into our learning

ecosystem.

In terms of general capabilities, our plan is described in the Roadmap in the description section. For exam-

ple, we will begin exploring how multi-modal narrated and annotated behavior capture of humans can be used

in learning from demonstration and also to define more useful component behaviors. We will develop efficient

algorithms to learn and optimize temporally decomposed dynamics, including bifurcations and loops. We will

develop symbolic-level reasoning to handle changes to processes, such as movement of objects, and failure of

previous strategies. At the end of the first year our milestones will include simple simulations, an implementa-

tion of our prototype system on robots for rigid body mechanical processes, and evaluation infrastructure.

Year 2 will focus on exploring and implementing alternative representations, algorithms, control structures,

and comparing their behavior in quantitative evaluations. We will clean up the arbitrary and expedient design

choices to get something working we have already made or made in the first year. Year 2 marks the beginning

of a much more thorough exploration, and a more careful statistical characterization of performance. We will

seriously evaluate the Year 1 system. Space limits do not permit specific discussion of the various testbeds.

Year 3 will focus on extending our system to other domains including deformable mechanical, electrical,

thermal, chemical, and combustion processes. Major emphases will be on multi-domain integration, transfer

learning across domains and robots, and scaling up our knowledge bases. We will evaluate the Year 2 system,

and improve the components using several forms of learning and reflection. Milestones will include the ability

of the system to do 100 tasks with representative tasks in all domains. We will demonstrate learning from

demonstration, simulation, practice, and reflection across a set of tasks and robots. We will seriously evaluate

the Year 2 system. Space limits do not permit specific discussion of the various testbeds.

Year 4 focuses on evaluation, redesign, and refinement. Although we will iteratively formatively evaluate

and refine our system throughout the duration of the project, Year 4 will focus on summative evaluation. We

will also refine our algorithms in response to early evaluation results, improving the integration of components.

We will evaluate our approaches both from an experimental and a theoretical point of view. Space limits do not

permit specific discussion of the various testbeds.

Relation to investigators’ long-term goals: The co-PIs share a goal of enabling robots to show human

levels of competence in performance and learning of everyday life activities. The proposed work clearly aligns

with these agendas.

Dissemination: We will setup a project web page on which we will publicly release software as well as

data and experimental results of interest to the research community. The PIs will work together to organize

workshops, tutorials and invited sessions at the major conferences relevant to this project. We will also include

challenges of our research in the courses taught by the PIs, at the undergraduate and graduate levels. We will

provide demonstrations to the large variety of visitors who come to CMU. We envision that by widely exposing

our work, we will contribute to a better understanding of the functionality and benefits that our perception,

learning, language, and robotics technology can bring to our society.
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