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ABSTRACT. The skill of rhythmic juggling a ball on a racket was
investigated from the viewpoint of nonlinear dynamics. The dif-
ference equations that model the dynamical system were analyzed
by means of local and nonlocal stability analyses. These analyses
showed that the task dynamics offer an economical juggling pat-
tern that is stable even for open-loop actuator motion. For this pat-
tern, two types of predictions were extracted: (a) Stable periodic
bouncing is sufficiently characterized by a negative acceleration of
the racket at the moment of impact with the ball, and (b) a nonlin-
ear scaling relation maps different juggling trajectories onto one
topologically equivalent dynamical system. The relevance of these
results for the human control of action was evaluated in an exper-
iment in which subjects (N = 6) performed a comparable task of
juggling a ball on a paddle. Task manipulations involved different
juggling heights and gravity conditions of the ball. The following
predictions were confirmed: (a) For stable rhythmic performance,
the paddle’s acceleration at impact is negative and fluctuations of
the impact acceleration follow predictions from global stability
analysis; and (b) for each subject, the realizations of juggling for
the different experimental conditions are related by the scaling re-
lation. These results permit one to conclude that humans reliably
exploit the stable solutions inherent to the dynamics of the given
task and do not overrule these dynamics by other control mecha-
nisms. The dynamical scaling serves as an efficient principle for
generating different movement realizations from only a few para-
meter changes and is discussed as a dynamical formalization of
the principle of motor equivalence.
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T he skill of juggling has attracted the fascination of peo-
ple for centuries. It is, from the viewpoint of motor
control, a complex multiple-degree-of-freedom movement
that requires the control of one or two hands with respect to
several balls or other manipulanda. Qur goal in this study
was to identify the laws and rules responsible for the
achievement of the coordinated perception and action that
are involved in such tasks.
In research on human movement coordination and robot-
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ics, two theoretical perspectives can be distinguished. Mo-
tor program theory, which is rooted in a control theoretic
approach, has dominated research on motor control. In this
approach, one typically uses feedback and feedforward con-
trol signals to overrule any inherent dynamics and impose
desired movements or dynamics. An alternative approach,
based on a dynamical systems perspective, has developed
over the last decade and applies the mathematical tools and
concepts from nonlinear dynamical systems theory. This
approach stresses the need for and opportunity of taking ad-
vantage of existing task dynamics rather than canceling
them. The second approach was explored in the present
study, in which a model system was proposed for the task of
bouncing a ball on a racket, a simple kind of juggling. We
have used theoretical predictions from the model and em-
pirical results from human performance as examples to
evaluate the relevance of dynamical systems theory. More-
over, these results suggest a new perspective on Bernstein’s
notion of motor equivalence, in the spirit of dynamical sys-
tem theory.

The skill of juggling has been addressed by several in-
vestigations from the control theoretic and motor program
perspective. The overall goal of these investigations has
been to establish algorithms and programs that are capable
of the control and execution of motor actions. The essence
of this perspective is that control is completely attributed to
the central command level and execution is relegated to the
effector system, which is logically separate from the com-
mand level. Control is exerted by means of a combination
of feedback and feedforward signals. Feedback control sig-
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nals are computed on the basis of sensor measurements and
provide flexibility and compensatory adaptability to envi-
ronmental changes. Feedforward signals are generated at a
separate planning level and stored in internal representa-
tions. (For more details about control theoretic and motor
program approaches, see Brady, Hollerbach, Johnson,
Lozano-Perez, & Mason, 1982; Schmidt, 1975; Shapiro &
Schmidt, 1982.) This stance has been taken by Austin
(1976), who analyzed human ball juggling by structuring
the recurrent pattern of hand movements and the flying
balls into a sequence of motor subroutines that can be
plamned and successively executed. Aboaf, Drucker, and
Atkeson (1989) studied a robot’s juggling action as a robot
arm bounced one ball on a planar surface. A learning algo-
rithm was developed in which a task controller used the pre-
dicted landing location of the ball to choose the correct pa-
rameters of the algorithm for hitting the ball. In both of
these examples, emphasis was put on the planning of the ac-
tuator’s trajectory and stabilization was obtained by a feed-
back controller.

A slightly different route was taken by Biihler and Kod-
itschek (1990) and Rizzi and Koditschek (1992), who de-
veloped a nonlinear algorithm that controlled the move-
ments of a robot arm whose goal was to bounce a ball
rhythmically at a fixed height. The spatiotemporal path of
the actuator was specified to be a scaled mirror image of the
ball’s flight trajectory. The new element in this “mirror al-
gorithm” was that the movements of ball and paddle were
tightly coupled at every moment in time and essentially
could be viewed as two strongly coupled nonlinear oscilla-
tors (Koditschek, 1993). Thus, a bidirectional influence be-
tween controller and controlled object was established.

One motivation for the present work was the dynamical
systems approach advocated by Kugler, Kelso, and Turvey
(1980, 1982) and Schéner, Haken, and Kelso (1986). The
concept of bidirectionality, or mutuality between the actor
and the manipulated object, is a fundamental component of
their version of a dynamical approach to action control. The
actor is viewed as a participant in a dynamical regime and
not as a controller in a hierarchical regime. Human behav-
ior is modeled as a nonlinear dynamical system, whose
space—time evolution displays features observed and stud-
ied in models of self-organizing physical systems. Saltzman
and Kelso (1987) proposed a task dynamical framework in
which the constraints for the articulators’ movement are de-
rived from a functionally defined task space. The stable per-
formance of movements within given task constraints as
well as the flexible adaptation to changing conditions be-
come intrinsic properties of the dynamical system. Thus,
the desired kinematic trajectory of an effector requires nei-
ther a detailed plan nor any contingency or replanning pro-
cedures for dealing with unexpected perturbations. This
perspective has received theoretical and empirical support
in a number of investigations (e.g., Kelso, 1981; Kelso, Tul-
ler, Vatikiotis-Bateson, & Fowler, 1984; Schoner, Haken, &
Kelso, 1986; Sternad, Turvey, & Schmidt, 1992; Turvey,
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1990). This conceptual framework has been applied to hu-
mans performing the skill of juggling three to seven balls
(Beek, 1989; Beek & van Santvoord, 1992). In this work,
fundamental concepts of dynamical systems theory, such as
circle map dynamics, provided the tools for accounting for
the temporal and spatial patterning of balls and hand loop
times.

The movement task investigated here is a simple juggling
task, paddle juggling, in which one keeps a ball in the air by
hitting it upward with a planar surface. The ball bounces on
the paddie because of the elastic impact, and its trajectory
in the air follows the standard laws of ballistic flight. The
first mathematical treatment of a paddle-juggting-like task
by Wood and Byrne (1981) focused on a system consisting
of one ball bouncing on a planar surface that periodically
moves in the vertical direction. High-frequency motions rel-
evant for industrial problems, in which the surface’s ampli-
tude is much smatller than the object’s amplitude (as, for ex-
ample, vibration in gear boxes), were investigated in this
analysis. Assuming a perodical movement of the surface
implies the simplification that no influence is exerted from
the ball to the effector and, consequently, the effector acts
as an open-loop system. The bouncing-ball system received
further attention by Holmes (1982) and Guckenheimer and
Holmes (1983), who showed that a ball bouncing on a peri-
odically driven planar surface exhibits steady states, period
bifurcations, strange attractors, and chaotic motion (see also
Tufillaro, Abbott, & Reilly, 1992). Their analysis, however,
was still confined to the special case of a bouncing ball on
a vibrating table; that is, the amplitude of the table was rel-
atively small when compared with the amplitude of the
ball’s flight trajectory, and, as a consequence, the table’s
amplitude could still be neglected.

When investigating human juggling, however, one must
direct the emphasis of an investigation upon the paddle’s
movement and, hence, can no longer neglect its amplitude.
In identifying the relevant components for modeling human
juggling, it is helpful conceptually to differentiate the pad-
dle-juggling system into three subsystems: the ball, the ef-
fector (the musculoskeletal system and the paddle), and the
perceptual coupling between the ball and the effector. The
ball’s dynamics are strictly defined by the laws of ballistic
flight and are coupled to the paddle by the laws of elastic
impact. The movement of the effector can be sufficiently
captured by rigid-body dynamics. Because these two sub-
systems can be reasonably well approximated by estab-
lished physical principles, the question remains: How com-
plex a perceptual coupling is required for a successful
performance of the task? In this light, for instance, mirror
law control (Biihler & Koditschek, 1990) can be interpreted
as a very strong coupling that forces the effector to mirror
the motion of the ball. In contrast, the analysis of Gucken-
heimer and Holmes (1983) assumes unidirectional cou-
pling, for it is only the surface that drives the ball, whereas
the ball has no effect on the surface’s motion. Coupling
from ball to paddie—bidirectional coupling, as could be es-
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tablished by perception (e.g., Schoner, 1991)—was not in-
cluded in their formal model. Therefore, their analysis can
be interpreted as a way to investigate whether and to what
degree one requires additional perceptual coupling to main-
tain a stable juggling pattern.

If the unidirectionally coupled system, the open-loop sys-
tem, is able to obtain stability, a human may exploit this
“passive” stability, which is inherent to the dynamics of the
task. Importantly, if humans do exploit the passive stability,
their control system must be sensitive to task dynamical
properties. On the one hand, this sensitivity could come
from a planning instance. Solutions based on movement
plans (and the corresponding feedback stabilization), how-
ever, are unlikely to make use of passive stability, unless the
planner has full understanding of the physical properties of
the system, which requires a quite complex planner. An al-
ternative solution is that the dynamics of paddle and ball
merely get attracted into a passively stable regime. Within
this regime, perceptual coupling may contribute little to the
control of the task, and the system could be governed by its
open-loop stability properties. Note that this does not imply
that the movement is executed in an open-loop fashion, but,
rather, that the open-loop stability of the system will be the
essential component of stable performance and dominate
the observed movement behavior.

Our motivation in the present work was to investigate
whether a dynamical analysis of the paddle-juggling sys-
tem, in which the paddle executes a periodic movement
with only unidirectional coupling (i.e., no perceptual cou-
pling), as in the analysis of Guckenheimer and Holmes
(1983), can provide a basis for modeling the relevant as-
pects of the hand-ball coordination of human paddle jug-
gling. Within this goal, a twofold route was taken. First, we
modified Guckenheimer and Holmes’ dynamical analysis of
the bouncing-ball system to serve as a model for a move-

A Dynamical Approach to One-Handed Juggling

ment system that can perform stable juggling of one ball on
a paddle. Second, we conducted an experiment in which
human subjects performed a one-handed paddle-juggling
task similar to the ball-bouncing model. The hypotheses de-
rived from the analyses allow a qualitative and quantitative
comparison between analytical and experimental results
and, hence, an evaluation of the biological validity of such
dynamical models.

Dynamical Analysis of Paddle Juggling

To formulate a model for paddle juggling, one must cap-
ture the motions of ball and paddle in two state vectors,
each describing position and velocity of ball and paddle, re-
spectively (Figure 1):

Xp = (xp.%p)".

xp = (xp,ip)T.

Y]

The motion is confined to the vertical dimension, where a
positive sign defines the upward direction. According to Li-
ouville’s theorem, the system must dissipate energy to dis-
play asymptotic stability (Lichtenberg & Lieberman, 1982).
This energy loss is captured by the coefficient of restitution,
o € [0,1], characterizing the elastic impact:

2

The variables %z and x4 denote the ball’s velocity imme-
diately before (—) and immediately after (+) the impact. The
paddle’s mass is assumed to be sufficiently larger than the
ball’s mass so that the effects of the impact on the paddle’s
trajectory are negligible. To render the analysis tractable,
one reduces the two continuous dynamical equations of mo-
tion for ball and paddle by discretizing at the point immedi-
ately before the impact between ball and paddle. At this mo-
ment, both positions, xz and xp, are identical and collapse
into one state, thus reducing the dimensionality of the sys-

(G — xp) = —0UX5 — Xp).
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FIGURE 1. (a) Sketch of the paddle-juggling model. (b) Notation for the discretization.
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tem by one. This discretization is equivalent to taking the
Poincaré section, T = {(xz, Xp) € R¥xz — xp = 0}. Informa-
tion about the stability properties of the continuous ball-
bouncing system is completely contained in the recurrent
pattern of the discrete points of impact.

In the new discrete notation xp, refers to the correspond-
ing vertical position of the paddle at the nth impact, xp, to
the paddle velocity, and Xz, to the ball’s velocity immedi-
ately before the nth impact. From the equations for the bal-
listic flight and the elastic impact, discrete equations can be
written for the ball as

X = _\/[(1+a)x8,n ]2 _2g(xP.n+l —xP,n); 3)
'xB,nH = xPJ1+1 >

where xp, 11 = Xp,+1(t,), and ¢, results from

_O~5gtn2 + [(1 + (X)XP,N - axB,n]tn - (xP,n+l - -xP,n) = 0

It should be noted that these equations include the term
Xpn+1 on the right side, which is the position of the paddle
at the (n + 1)th impact. Evidently, without explicit knowl-
edge of the paddle’s dynamics Equation 3 is not solvable.
Even if xp, . is the result of a simple sinusoidal trajectory
of the paddle, the third equation is transcendental and can-
not be solved analytically for the time to impact, t,. Never-
theless, one can perform a number of dynamical analyses to
gain insight into some of the system’s characteristic proper-
ties. In particular, stable cycles manifest themselves in fixed
points of Equation 3. The understanding of the existence
and nature of these fixed points will provide explicit hy-
potheses for the subsequent experiment with human sub-
jects. The detailed analytical derivations can be found in
Schaal (1996), and the results are summarized in the fol-
lowing paragraphs.

Characteristics of Stable Fixed Points

For any arbitrary, smooth periodic paddle motion, the dy-
namical system (Equation 3) has at least one asymptotical-
ly stable fixed point, provided that the peak velocity of the
paddle exceeds a minimum value to compensate for the en-
ergy lost during the elastic impact. Formally, this can be ex-
pressed by three conditions, which have to be fulfilled:

i. t,=1, where T= constant.

Xpa(0—1 -
i, g, = @Y o5 (00)
’ (x+1) l+oa @)
5 (1+0? N
i, ~ < Xp, <
g(1+a)2 P

Condition (i) ensures periodicity with constant period 7, and
condition (ii) states that the paddle must be moving in the
positive direction at the impact, that is, upward toward the
ball. It is Condition (iii) that provides the most interesting
information about the equilibrium dynamics. Dynamically
stable fixed points with period one can be achieved only if
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the paddle is in its decelerating phase at impact and the
magnitude of deceleration is bounded by (iii).

Figure 2 illustrates the influence of the paddle’s accelera-
tion at impact, by means of a numerical simulation. In each
of the three time series, 25 balls start at the same position
with slightly different initial velocities and go through a se-
ries of 12 bounces. In Figure 2a, each ball is hit with a
positively accelerating movement, indicated by the upward
concavity of the paddle’s trajectory. This leads to a quick di-
vergence of the balls’ trajectories, indicating that the solution
is unstable. Paddle trajectories with constant velocity, as
shown in Figure 2b, exhibit neutral stability; different initial
conditions lead to different ball trajectories, and perturba-
tions are not compensated for and persist over time. Only the
decelerating paddle movement (Figure 2c¢) stabilizes the
balls’ trajectories, leading to the asymptotic convergence of
the discrete point of impact to a stable fixed point.

It should be pointed out that it is not obvious that a
movement system should start decelerating before hitting
the ball. Related work in robotics, for instance, focused on
solutions (a) and (b), and stable juggling could therefore be
obtained only in connection with feedback controllers
(Aboaf et al., 1989; Biihler, 1990; Biihler & Koditschek,
1990; Rizzi & Koditschek, 1992). Solution (c), which ex-
ploits the dynamic stability intrinsic to the task, was not
taken advantage of by such algorithms. In the light of the
earlier discussion, the hypothesis is that it is this nonobvi-
ous solution (c) that a movement system should tune into
for stable, but simultaneously parsimonious control.

Local Linear Stability

Local linear stability analysis gives a first assessment of
the stability properties of the fixed points determined for the
model system (Equation 3). Linearizing about an equilibri-
um point results in a matrix equation for the ball,

= AXB,n- (5)

XBn+1

The characteristic 2 X 2 matrix A has two eigenvalues A,,4,
The condition for stable equilibrium points in discrete sys-
tems is that the absolute value of both eigenvalues must lie
in the interval [0, 1]. It therefore suffices to test the larger
absolute eigenvalue, Mmaxl, for this condition and distin-
guish among the following three cases within the range of
Xp,, specified in Equation (4fiii]):

i. For0>%, >-g (—IL) 1> A, |20
' (1 o)’
2
ii. For —gSJ—rZ;Z >80 A=A, =R =0 (6)
2
iii. For —g2%,,>-2g I+o 1> .20

(1+a)
The equations show that local stability depends only on the

paddle’s acceleration at impact, Xp,; the coefficient of resti-
tution, o¢; and the gravitational constant, g. Because o and
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FIGURE 2. Simulation of the influence of shape of paddle trajectory on stability. Twenty-
five balls start on the left at the same position but with slightly different initial velocity con-
ditions, and each ball is hit with a hit trajectory having (a) positive acceleration, (b) constant

g are constant and not under the control of an effector sys-
tem, ¥p,, can serve as the main variable for the assessment
of different juggling solutions in the experiment. For the an-
alytical evaluation of local stability, the range of ip,
where l/lnm! is at a minimum, is of primary importance. The
results are illustrated in Figure 3, which shows |),max|
against Xp,. In the central range, with its limits specified in
Equation (6[ii]), |),mﬂx| has a minimum, which is a plateau
over the whole interval of (6{ii]). This result provides a first
analytical constraint on possible solutions. Differentiating
between the stability within this range of acceleration val-
ues requires a global stability analysis.

Topological Orbital Equivalence

Obviously, when humans perform the model task, they
will produce not one, but a family of solutions. The ques-
tion is whether all successful but, nevertheless, different
solutions can be normalized such that quantitative compar-
isons are possible. Mathematically, this question is ad-
dressed by topological orbital equivalence (TOE), which
tests whether one dynamical system can be continuously
transformed into another one. A formal way of establishing
TOE is to find an orientation-preserving homeomorphism
between two dynamical systems (Arnol’d, 1983; Jackson,
1989). The following scaling relation,
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.
xB,n - CxB,n
., .
Xpp = CXpy
hi=4q |
X, =c’x c>0 7N
Pn Pn ’
=ct, (=1 =c1)

fulfills the requirements of TOE for Equation 3. For any
constant, ¢, the primed variables also fulfill Equation 3,
which can be verified by inserting them into these equations
(Schaal, 1996). This implies that by choosing ¢ = 1/¢,, each
periodic paddle-juggling system is normalized by £ to unit
period without changing its dynamical properties. Hence,
because of &, any further analysis of paddle juggling can be
performed on one system with unit period. For the present
analyses, it is important that the scaling relation does not af-
fect the acceleration of the paddle. If the paddle trajectories
are transformable into each other by this scaling, then their
acceleration at impact remains invariant. Thus, acceleration
at impact can directly serve as a measure of local stability
(Figure 3) and will form an important criterion for the em-
pirical analysis.

Figure 4 illustrates the scaling relation when applied to
an idealized sinusoidal paddle trajectory. Three trajectories
with three different amplitudes and three periods, respec-
tively, are portrayed in the phase plane. These trajectories
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are transformable into each other by % and are therefore dy-
namically equivalent. Lines are drawn that connect points
of identical acceleration across ellipses of a continuous
range of periods and amplitudes. Note that these isoacceler-
ation lines are not straight, even though the dynamical prop-
erties of the three systems are identical. Therefore, descrip-
tions that are anchored in the coordinate system of the phase
plane cannot reveal the invariances under the scaling rela-
tionh.

It is important that A holds not only for the discretized
measures, but also for continuous measures. With a view to-
ward analyzing experimental data, two dependent measures
of the continuous movement, the amplitude of the paddle’s
displacement and of its velocity, are of interest and are de-
fined as follows: Xpawp = Xp,max — XP,min» XPamp = %P, max —
Xp.min- When examining Equation 7 with respect to how po-
sition and velocity scale with period, it can be seen that
Xp amp and Xp.mp are straightforwardly related to period by
the following invariant ratios:

’ 2

xP,amp C xP,amp _ xP,amp
> = O > = constant,

T’ (c7) T

., ) . ®)
X cX X

P’“,"'p =Pamw _ Zhaw — constant,

T cT

which means that the scaling relation £ requires that xg 4,
be proportional to the square of paddle period, 72, and that
Xpamp be proportional to 7. These dependent measures can
easily be extracted from kinematic data of human perform-
ance. It is of interest to determine whether humans scale
their trajectories in a manner such that different trajectories
with different periods and amplitudes obey this nonlinear
relationship. With respect to motor control, this implies that
a whole range of task-specific trajectories form a class of
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FIGURE 4. Application of the scaling relation 4 to three si-
nusoidal trajectories, with periods T=0.255,0.5s,and 1 s,
and three different amplitudes. Despite their dynamical
equivalence, the isoacceleration lines intersect with the
three limit cycles at different angles in the phase plane.

actions that are unified by this nonlinear scaling relation.
This can be interpreted as an economizing principle in the
control of action, such that one class of movements can be
parameterized to fulfill different variants of the required
task. It is also important to point out that this scaling of
movements is independent of the stability of the solution.
Trajectories that are scaled with respect to each other do not
necessarily have to produce a stable juggling rhythm, and,

Journal of Motor Behavior



conversely, stable solutions do not have to follow the scal-
ing relation.

Nonlocal Stability

Without making any assumption about the shape of the
paddle trajectory, the preceding analyses established that
paddle acceleration at impact can serve as a measure of sta-
bility, that this criterion has to satisfy the specified neces-
sary conditions, and that a scaling relation exists that pre-
serves the dynamic properties of the juggling system.
Results of local stability analysis, however, do not differen-
tiate between conditions for a wide range of the criterion
measure, Xp,. Intuitively, one would expect that the stabili-
ty properties of a solution, ¥p,, change as Xp, changes: A
very large acceleration, Xp,, implies a very quickly chang-
ing paddle trajectory, and its basin of attraction should dif-
fer from that of a trajectory that has a relatively small Xp,.
These questions can be addressed by a nonlocal stability
analysis. The most common method for performing such
nonlocal stability of an equilibrium point of a dynamical
system is by finding a Lyapunov function, which is a po-
tential function of the state variables and which is formulat-
ed to have a global minimum at this equilibrium point. If the
time derivative of this potential function is always negative,
meaning that its value monotonically decreases with time,
then the system converges to the minimum of the Lyapunov
function. Because, by definition, the minimum is the equi-
librium point, global stability of the system is proved. For a
nonlinear system, a Lyapunov function candidate can be de-
rived from the linearized system. The candidate function,
L, for the linearized dynamical system (Equation 5) is (e.g.,
Chen, 1984)

Ln = XZ, nPXB,n~ (9)

Negative time derivatives can be obtained if the matrix P
satisfies the equation

A’PA-P=-1 (10)

A is the system matrix of Equation 5, and I is the identity
matrix. For the discretized sysem, the value of L, must con-
tinuously decrease when X, is recursively iterated through
Equation 3. Thus, a AL can be defined between two succes-
sive impacts n and n + 1 of ball and paddle:

AL:L}I+] _Ln=XTI;,n+lPXB,n+l_Xg,nPXB,m (11)

where the nonlinear system Equation 3 must be inserted for
Xz, +1- For any state xg,, AL may serve as a measure of how
quickly the ball will converge to the stable equilibrium
point. Whereas negative values of AL indicate that x, lies
in the basin of attraction, a single positive AL characterizes
Xp, as unstable.

Because the Lyapunov function was derived for the lin-
earized system, its range as a stability measure is restricted
to a subset of the state space around the equilibrium point
and is therefore, strictly speaking, not global, but only non-
local. By using numerical optimization analysis, one can as-
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sess these stability properties by simulating the dynamics of
the paddle-juggling system given by Equation 3. At time ¢t =
0 an equilibrium point was defined to be at the impact posi-
tion, xp = 0, and the juggling period was set to 7= 0.4 s. The
scaling relation 4 ensures that these values can be chosen
arbitrarily without losing generality of the results. The lo-
cally relevant section of the paddle trajectory around the
equilibrium point was modeled as a sixth-order polynomial
in time (we empirically determined the order six to provide
sufficient accuracy for the given purpose):

Xft) = co + it + oot? + ¢3t> + catt + o5t + ot (12)

For the given impact conditions, x,(f = 0) = 0, ¢; must be
zero. The constant ¢ is also determined, because the paddle
velocity at impact is fully determined by the ballistic flight
and the coefficient of restitution. At impact, the second de-
rivative of Equation 12, %,(t = 0) = 2¢,. This acceleration
was set to 19 different values, taken from the range of local
stability [-.5, —9.5]. Our goal for the optimization was to
adjust the constants c3 to ¢ for each of the 19 X,(t = 0) so
that the largest and steepest basin of attraction for the equi-
librium point could be achieved. Values of AL were calcu-
lated by starting the ball at 2,500 different initial conditions
in the vicinity of the equilibrium point. The sum of all 2,500
ALs for a given set of parameters, ZAL, was defined as an
operational measure quantifying stability for each %,(r = 0).
The ball’s initial conditions were determined by different
deviations from the impact time, ¢ = 0, and impact velocities
around the equilibrium point of ¥p. We chose the range of
the initial values to cover an appropriately large neighbor-
hood around the equilibrium point, but, as our purpose for
performing this calculation was to get relative evaluations
of ¥p(t), the actual range limits could be chosen freely: #,;
€[-0.187, +0.187], %z i €[4 m/s?, —1 m/s?]. The initial
conditions were obtained by discretizing the intervals into
50 values each. The optimization was performed with Pow-
ell’s conjugate gradient method (Press, Flannery, Teukol-
sky, & Vetterling, 1989).

Figure 5 shows the numerical results of AL as a func-
tion of Xp(z). Note that small ZAL corresponded to high
global stability. Because we optimized the trajectory of the
paddle corresponding to each of the different ¥p(z) to obtain
maximal stability, the results express the best possible case
for each ¥p(1). As expected, a relative differentiation of sta-
bility within the range of locally stable ¥p(?) was achieved.
The optimal solutions of the juggling task are performed
when ¥p, € [-3.5 m/s2, —1.5 m/s?]. It should be emphasized
that this result, like all the previous results, is generally val-
id for any arbitrary smooth periodic paddle trajectory.

Stability is closely related to variability, because weakly
stable states are accompanied by larger fluctuations than
highly stable states are, and have longer relaxation times
when perturbed (Kelso, Schoner, Scholz, & Haken, 1987).
Therefore, the variability of ¥, should increase in propor-
tion to the numerical estimate of the global stability index,
TAL. For the empirical evaluation, this relative increase in
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FIGURE 5. Global stability, as function of paddle acceler-
ation at impact.

fluctuations will be operationalized in the standard devia-
tions of %p .

Predictions for the Experiment

On the basis of the analyses above, a juggling pattern can
be characterized and evaluated in terms of its stability prop-
erties. It has been argued that this movement, when uni-
directionally coupled to the ball, becomes a system that dis-
plays passive stability without the need for additional
regulation with the help of visual perception. An alternative
solution to the task, however, may be active control of the
paddle on the basis of some kind of explicit or implicit plan-
ning strategy that can impose qualitatively different stable
solutions by means of feedback control through visual per-
ception (Aboaf et al., 1989; Biihler, 1990; Biihler &
Koditschek, 1990). These two ways of control and their
combinations span the range of solutions that human sub-
jects could possibly pursue when trying to juggle a ball. If
the solution follows the one defined by the open-loop dy-
namics of the task, the analyses outlined above make the
following predictions:

1. At the moment of impact between ball and paddle, the
trajectory of the paddle is in its decelerative phase, that is,
Xpn has a negative value. The range is specified by the actu-
al values of constants in the experiment.

2. The variability of %», should be proportional to the nu-
merical estimate of the global stability index, YA L.

3. The scaling relation % requires that xp ., be propor-
tional to the square of paddle period, 72, and that xp 4, be
proportional to 7, if the paddle acceleration at impact is held
invariant.
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Method
Subjects

Six subjects volunteered for the experiment (2 were
women, 4 were men). They were graduate and postgraduate
students at the Massachusetts Institute of Technology and
were, on average, 33.4 years old. Five subjects were right-
handed, one was left-handed; the dominant hand performed
the juggling movement.

Apparatus

To allow a direct comparison of the formal analysis with
the actual movement execution, we constructed an appara-
tus that simulated the model task as closely as possible. Fig-
ure 6 is a sketch of a subject juggling one ball in the verti-
cal direction. The paddle was mounted to a pantograph
linkage of 1.0 m length, whose two hinges were connected
to a stanchion of height 1.0 m. The paddle was a commer-
cially available “Koosh paddle,” which consisted of a circu-
lar frame of diameter 0.30 m, covered by an elastic fabric.
The coefficient of restitution, o, was experimentally deter-
mined to be 0.71. The pantograph linkage was a lever arm
with a parallelogram-like arrangement such that the pad-
dle’s surface stayed horizontal during its movement. The
distal end of the linkage had an attached handle, which the
subjects held in a fully pronated grip, and downward move-
ment of the subjects’ hand produced upward movement of
the paddle. Subjects were positioned behind the handle so
that the linkage was horizontally aligned with their forearm
and their elbow joint was at an approximately right angle.
Although the pantograph’s motion was curvilinear, the ef-
fective movements of the linkage, both at the hand and at
the paddle, could be considered vertical, because the ampli-
tudes generally did not leave the linear range (£30°).

A table tennis ball of diameter 0.03 m was fixed to an alu-
minum boom of length 1 m, which, in turn, was attached to
a stanchion by a hinge joint at a height of 1.2 m. At the
boom’s opposite end, a weight could be affixed, which mod-
ified the flight properties of the ball. In a first-order approx-
imation, this corresponded to a change of gravity for the
ball’s ballistic flight. Because of the rigid linkage of the ball
to the boom, the trajectory of the ball described a curvilinear
path. At high juggling amplitudes, subjects exceeded the lin-
ear range of this motion, which introduced a nonlinearity in
the trajectory of the ball. However, it was numerically deter-
mined that parabolic curves still fitted the ball’s trajectory
with high significance (r* = .99), and the ball’s trajectory
was thus treated as a ballistic flight in the vertical dimension.
The boom and paddie were aligned so that, in the horizontal
position, the ball rested on the center of the paddle’s surface.
A potentiometer, attached to the boom’s hinge, measured the
angular displacement of the boom; we used this measure-
ment to determine the ball’s vertical displacement. Similar-
ly, the collection of the position data of the actuator’s move-
ment was done by a high-resolution position encoder that
was attached in one of the hinge joints at the stanchion.
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FIGURE 6. Apparatus and task in the experiment.

counter
weight

Data Collection and Data Reduction

Three MVME 147 computers in a VME bus collected
and processed the data at a sampling frequency of 1000 Hz.
Velocity data of ball and paddle were derived on-line by nu-
merical differentiation of the position data and subsequent
filtering, by using a third-order, low-pass Butterworth filter
with a cut-off frequency of 30 Hz. Because of memory
limitations, only every 10th data point was stored, which
corresponds to downsampling of the data to 100 Hz. Filter-
ing the data on-line at 1000 Hz resulted in a higher band-
width than off-line filtering of the downsampled data. De-
lays introduced by the purely forward filters were negligible
because of the high sampling frequency. We used a high-
pass, second-order, Butterworth filter to filter the position

data to eliminate slow drifting of the average paddle posi-

tion (cut-off frequency 0.5 Hz, zero-delay filter). We nu-
merically differentiated the filtered velocity data to derive
accelerations for ball and paddle.

The point of impact was defined to be at the time at
which the ball’s displacement was at a minimum within
each cycle. The period of the paddle was determined as the
interval between two successive zero crossings of acceler-
ation at which the paddle velocity was positive. Once the
times of the impacts were obtained, the corresponding
measures of position, velocity, and acceleration for the
paddle’s and ball’s movements could be calculated. All po-
sition data were taken with respect to the absolute coordi-
nate system of the pantograph linkage. Absolute values,
however, were irrelevant, because only relative measures
were entered into the analysis. For the computation of am-
plitude measures of the paddle, the data were converted
into the coordinate system of the phase portrait, x,x, and
subsequently converted into its polar coordinates 6,r. The
position data were normalized such that the mean position
coincided with the origin. Dividing the range of the angu-
lar polar coordinate into 400 equally spaced values allowed
calculation of the intersection of a straight line at each of
these angles with the paddle’s trajectory in the phase por-
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trait. The values of all intersections at each angle were av-
eraged, and we used the mean and its standard deviation to
determine the mean phase portrait of every trial. Subse-
quently, the amplitudes of position and velocity, xp 4, and
Xpamp, Were computed as the difference between maxima
and minima of the position and velocity data in the mean
phase plot.

We averaged all discrete measures characterizing the im-
pact, that is, position, velocity, and acceleration at the point
of impact, across all cycles for each trial (between 20 and
34 cycles) to obtain mean values per trial. Subject mean val-
ues were computed as the arithmetic mean of the two trials
per condition.

Design

A two-factor design was chosen, with three different jug-
gling amplitudes (high, medium, and low) and two different
ball gravity properties (normal and reduced). Medium am-
plitude was defined to be the height at which each subject
preferred to juggle the ball. High amplitude was defined as
a high but still comfortable range. Low amplitude was de-
fined as a low as possible amplitude that did not let the ball
merely vibrate on the paddle and, thus, still required active
control over the ball. A control condition was included in
which the subject moved the paddle rhythmically at a com-
fortable frequency and amplitude without bouncing a ball.
The second factor in the design, the gravity conditions for
the ball, were manipulated by attaching a counterweight at
the distal end of the boom (Figure 6). The chosen weight re-
duced the gravity constant to g = 7.0 m/s. When no weight
was attached, the gravity condition was normal: g = 9.81
m/s2. Two trials were performed for each of the three am-
plitude conditions, the control condition, and the two grav-
ity conditions of the ball. The total of 16 trials was grouped
into two blocks. Within each block, the ball’s gravity was
held constant and the four amplitude conditions (including
the control condition) were randomized. The order of
blocks was counterbalanced for the 6 subjects.
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Experimental Procedure and Instructions

Before the experiment, subjects were instructed about the
task. Subjects were given about 5 min to practice, which
was sufficient to make them feel comfortable with the task.
During this practice, they were asked to explore different
amplitudes and frequencies so that they would find three
distinguishable heights where they could juggle the ball sta-
bly and comfortably. The experimenter also pointed out that
for the high amplitudes, the juggling height should still stay
below the angle at which the boom’s angular excursion be-
came increasingly curvilinear. At the beginning of the data
collection, the subjects stood right behind the pantograph,
grasping the handle from the top in a pronated grip. Before
each trial, the subject was informed about the particular am-
plitude condition. Data collection started when the rhythmic
movement was stable. If the subject failed to maintain a
steady rhythm, the trial was repeated. Each trial lasted 30 s.
After the first block of eight trials, the ball’s gravity was
changed and the subject practiced again for 5 min, until he
or she adjusted to the new flight behavior of the ball. The
whole experiment lasted approximately 30 min. Learning
effects during the practicing were not examined.

Results

Kinematic Description of the Movements
of Paddle and Ball

Figure 7a gives a first qualitative impression of the coor-
dination of paddle and ball in a 5-s window of a typical trial
in which a medium ball amplitude juggle was performed
under normal gravity conditions. The time series shows that
the paddle moved in an approximately sinusoidal wave-
form. The height of the ball’s trajectory showed slight vari-
ations, but this did not seem to perturb the overall coordi-
native pattern. For instance, after the slightly lower apex of
the fourth bounce, the average height was regained without
any problem. Importantly, the moment of contact was un-
ambiguously in the upward branch of the paddle’s trajecto-
ry, where acceleration takes on a negative value. Figure 7b
shows the phase portrait of an entire trial; the dots on the
limit cycle mark the points of contact between ball and pad-
dle. In Figure 7c, the central band represents the mean tra-
jectory, the inner and outer bands illustrate its 95% confi-
dence interval. The dot corresponds to the mean impact
point during this trial.

To test that the experimental conditions actually pro-
duced different solutions and that the subjects actually per-
formed the juggling task at three different ranges of ball
amplitudes, we subjected subject means of the ball’s ampli-
tude, x5 amp» t0 @ 3 X 2 analysis of variance (ANOVA), with
the two variables, juggling height (low, medium, high) and
gravity (normal, reduced). The control condition was ex-
cluded. The analysis yielded a significant interaction, F(1,
5) = 31.68; p < .0001, a significant main effect for juggling
height, F(2, 10) = 97.89; p < .0001, and for gravity, F(1, 5)
=44.52; p < .001. This main effect of juggling height veri-
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fied that subjects fulfilled the task and juggled the ball at
three different ranges of amplitudes (Figure 8). When grav-
ity was reduced, the subjects juggled the ball at a higher am-
plitude, even at low juggling amplitudes where the differ-
ence between the two gravity conditions reached statistical
significance in a pairwise 7 test (p < .05). The significant in-
teraction, together with the second main effect of gravity,
implies that gravity additionally influenced the height of the
ball’s trajectory. Figure 8 displays the mean values of all
subjects’ performance as a function of the categorical task.

The amplitudes of the paddle’s movement, xp 4, Were
analyzed by performing the same 3 X 2 ANOVA; the con-
trol trials were again excluded. The results for xp ,,, showed
a significant main effect, F(2, 10) = 52.99; p < .0001, which
indicated that bouncing the ball at three different heights
was achieved by three different amplitudes of the paddle’s
movement. Neither the interaction nor the second main ef-
fect for gravity was significant. The paddle movement’s pe-
riod was completely dependent on the ball amplitude, and
an analysis was therefore redundant. The individual sub-
jects’ means for the paddle’s amplitude in the six experi-
mental conditions are summarized in Table 1.

Acceleration at Impact

As we discussed in the dynamical analysis of the model
system, the stability of a bouncing pattern can be deter-
mined by the acceleration of the paddle at the point of con-
tact with the ball, xXp .. To test whether the subjects preferred
particular acceleration values and whether the task require-
ments had a differential effect on X5,, we conducted a 3 x 2
ANOVA, with the variables juggling height (low, medium,
high) and gravity (normal, reduced). As in the preceding
analyses, the control trials were of no concern and were
thus excluded from the analysis. None of the results of this
ANOVA reached significance. Hence, neither juggling
height nor gravity led to statistically significant differences
in the Xp,. In other words, the acceleration with which the
end effector hit the ball was indifferent to the variations
specified in the task conditions. Looking at the absolute val-
ues of Xp , reveals that subjects stayed within the range spec-
ified as stable in the local stability analysis. By inserting the
explicit experimental values for the coefficient of restitution
and gravity in Equation 6, the quantitative limits of the
range of local stability could be determined to be ip, €[0.0
m/s?, ~10.09 m/s?] for Gpma and ¥p, €[0.0 m/s?, —7.20
m/SZ] for Gmduced~

Figure 9 gives an overview of the trial means of all con-
ditions of the individual subjects. Subjects clustered around
individually confined ranges that differed for each subject.
The first observation was tested by means of regression
analyses in which X, was regressed against juggling height
and gravity for each individual subject. Neither of the six
regressions yielded significant dependencies. Second, to
test whether the cluster size for the different gravity condi-
tions per subject in Figure 9 changed as a function of grav-
ity, we pooled the Xp, of the different juggling heights per
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gravity condition for each subject and used pairwise ¢ tests
to compare their standard deviations. These tests yielded no
significance. Third, we conducted a one-way analysis of
variance on the trial means of the 6 subjects, to test for dif-
ferences between the clusters of the individual subjects. The
ANOVA revealed a significant effect, F(5, 55) =93.73, p <
.0001. Pairwise post hoc Tukey tests specified these differ-
ences: Although Subject 1 was identical to Subjects 5 and 6,
and Subject 2 was identical to Subject 3, all other compar-
isons showed significant differences (p < .05). Because
there was no significant difference between the two gravity
conditions across subjects, the means of ¥p , of all 6 subjects
across all six conditions were pooled. The six values ranged
between —8.75 m/s? and —.50 m/s?; the mean value across
all conditions and all 6 subjects was —3.44 m/s?. As is evi-
dent from Figure 9, the trial means stayed in the range that
is analytically designated as stable for G, and Greguceds
respectively, with the obvious exception of Subject 4 and
Subject 5. Subject 4 was outside the limits, with two trials
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performed under normal gravity conditions and five trials
with reduced gravity conditions, but Subject 5 was in the
unstable range, with three trials at G,,,,,,; and two trials at
G eauced; 10 the Discussion section we will return to the issue
of how these subjects’ behavior can be explained. These tri-
als are expected to display a very high variability in the jug-
gling pattern, and in Xp, in particular. Eighty-one percent of
the total number of trials were performed in the stable
range. This result supports Prediction 1, which required that
Xp . (a) be negative and (b) lie within the specified limits. Tt
shows that subjects, indeed in most cases, find the passive-
ly stable solution that is offered by the dynamics of the task.

Variability of Acceleration at Impact

Prediction 2 concerned the variability that is associated
with solutions of different nonlocal stability. To answer the
question whether less stable solutions were accompanied
by higher variability, we analyzed the standard deviations
of the acceleration at impact, SDXp,. The same 3 x 2
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ANOVA, with the variables juggling height (low, medium,
high) and gravity (normal, reduced), was conducted on
SDip,. As for Xp,, no significant differences were found
between the experimental conditions. The mean value of
SDip, across all experimental conditions for all subjects
was 2.98 m/s%.

As the task was relatively unconstrained and subjects
were free to select their own preferred ranges as their three
juggling amplitudes, xg .y, values showed considerable
scatter across subjects within the three categories. This
overlap across xg ., ranges yielded a relatively good distri-
bution of values, which enabled us to use a continuous re-
gression model. A linear regression was performed on ¥p,
and SDXp , against xz ., per subject and per gravity condi-
tion. It confirmed the nonsignificance of the categorical
analysis by showing flat distributions across the continuous
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FIGURE 8. Subject means of ball amplitudes, g amp, for
the three juggling heights in the two gravity conditions
Gnormal and Gmduced-

range of ball amplitudes. These negative statistical results
gave evidence that the task’s inherent dynamical properties
seemed to override the experimental manipulations and,
again, show that subjects performed the juggling task unin-
fluenced by the different variants resulting from the task
manipulations. This can be understood as support for the
analytically derived Prediction 1, that ¥z, is a criterion for
stable performance of the juggling task.

As addressed above, we were interested in knowing to
what degree the values of %p, are accompanied by fluctu-
ations. The numerical analysis on nonlocal stability allows
stability predictions, provided that the juggling pattern is
stable and periodic. Nonlocal stability, as indexed by AL,
was maximal in the approximate interval around Xp, =
-2.5 m/s? (Figure 5). Different values of i», were predict-
ed to be accompanied by different fluctuations, as quanti-
fied in the empirical measure SDXp .. According to Predic-
tion 2, SD¥p, should increase with decreasing XAL. To
test the subjects’ performance along this prediction, we
plotted SDXp, against Xp, for all subjects and all condi-
tions (Figure 10). Although it was shown in Equation 6
that the limits of the stability estimates depend on g, and
also that XA L is dependent on g, a numerical nonlocal sta-
bility analysis, performed for the two values of gravity
from the experiment, produced only marginal differences.
Therefore, it was permissible for the two gravity condi-
tions to be pooled for the present evaluation. In Figure 10,
the experimental data of SDXp, are plotted together with
the numerical results of ZAL. The latter data were scaled
to match the range of the experimental values. Qualita-
tively, it is evident that the distribution of SD%p, data fol-
lows the shape of the numerically derived curve. A quan-
titative assessment of the data distribution was obtained
from a second-order polynomial regression, which gained
a significant fit, r? =.32, y = 1.43 + 0.05x + 0.02x2, p <
.0001; the squared term contributed with a probability of
p < .02. As the global stability curve could also be fitted
significantly by a second-order polynomial (r? = .90), the

TABLE 1
Mean Values of Paddle Amplitude, xpamp (M), for 6 Subjects at
Three Juggling Heights (Low, Medium, and High) and Two Gravity Condi-
tions, Gnormar and Greduced

Gnormal Gmdmred
Subject Low Medium High Control Low Medium High Control
1 .053 109 149 300 .055 .108 .149 295
2 .064 092 165 136 .068 .095 .183 132
3 .036 .099 216 190 .042 At1 216 122
4 134 158 217 .181 106 141 240 155
5 .032 074 103 205 .031 074 122 192
6 .061 093 160 106 074 113 .170 125

Note. In the control condition, paddle movement was performed but no ball was juggled.
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qualitative similarity of the two results was confirmed.
This result supports Prediction 2: that stable juggling was
indeed governed by the task’s dynamics and not by an im-
posed control mechanism.

Dynamical Scaling of the Paddle Movement

Because for each individual subject the stability criteri-
on, Xp,, did not change significantly with the experimen-
tal manipulations, we investigated how subjects modify
the movements of the paddle so as to juggle the ball at dif-
ferent heights. The continuous kinematic characteristics of
the paddle movement were captured by its amplitude,
Xpamp, and amplitude of velocity, Xp,.,. When the same
two-way analysis of variance as above was conducted on
paddle amplitude, xp gy, it revealed that xp,,, increased
significantly with increasing ball amplitude, xg 4,,. Pre-
diction 3 states that if subjects find dynamically stable so-
lutions and hold the acceleration at impact invariant across
the experimental conditions, xp ., should be proportional
to the square of paddle period, 72 and %z, should be pro-
portional to 7.

These predictions were tested by means of linear regres-
sion analysis. Figure 11 shows the results for the scaling be-
tween Xp ., and 72 for all 6 subjects individually. When the
regression was performed separately for G0 and Greguced,
all subjects obtained highly significant fits with r? values
ranging from .92 to .99. The different slopes that each sub-
ject displayed for G,pma and Gguceq in the six conditions
were entered into a two-tailed ¢ test. The result was signifi-
cant, #(5) = 3.1, p < .05, meaning that the ball’s flight prop-
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FIGURE 10. Standard deviations of 6 subjects in six ex-
perimental conditions plotted against the mean acceleration

at impact, Xp,. We scaled the graph of Figure 5 appropri-
ately and inserted it to allow a qualitative comparison.

erties led to different scaling constants, ¢. Similarly signifi-
cant regressions were obtained when Xp,., was regressed
against 7. These results of the regression analyses are sum-
marized in Table 2. The highly significant fits supported
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Prediction 3, indicating that the paddle trajectories of each

subject for each gravity condition can be normalized to one

trajectory by the scaling relation A. :
To further see the effect of 4 on the continuous trajecto-

ries, we performed the scaling transformation on the contin-
uous data. Figure 12 illustrates this normalization on the 12
trials of Subject 1 for G,pma and G egyceq respectively. The
two panels on the left (a, c) show six original mean limit cy-
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cles paired in three distinct bands, which corresponded to the
three juggling heights; the two panels on the right (b, d)
show the same limit cycles after this normalization. As can
be seen, by applying A, the six limit cycles were collapsed
onto a narrow band. In a first approximation, this can be un-
derstood as evidence that human subjects scale their trajec-
tories according to the dynamical scaling described above.

A Dynamical Approach to One-Handed Juggling

Discussion
In the present study, we analyzed the skill of juggling a
ball rhythmically on a racket from the perspective of dy-
namical systems theory. The analysis of the difference
equations modeling this dynamical system demonstrated
that the task dynamics offer an economical juggling pattern
that is stable even for open-loop actuator motion. Qur goal

TABLE 2
Regression Results of Paddle Velocity, Xpamp, Over Paddle Period, t

Gromal Greduced
Subject R? Intercept  Slope R? Intercept  Slope
1 978 -.141 2.163 973 -.032 1.502
2 .889 312 1.564 925 136 1.704
3 994 =511 3.088 .993 -.256 2.068
4 .589 1.084 1.54 828 515 1.822
5 981 128 1.367 997 143 1.047
6 .992 —495 2.756 983 -.257 1.831

Note. Regressions were conducted separately for the two gravity conditions, G,ormar and G requced-
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in this study was to investigate whether principles deter-
mining this behavior are also relevant for humans perform-
ing a comparable task. ‘

Analytical Results

The mathematical analysis of the model equations in
which a ball bounces on a rhythmically moving planar sur-
face, without perceptual feedback, yielded two major re-
sults identifying (a) the characteristic criteria for stability of
this periodic motion and (b) a scaling relation that acts as an
organizing principle for a class of movement variants. The
interaction between ball and surface was shown to display
dynamically stable fixed points that required the actuator’s
movement to be in its decelerating phase at the moment of
impact. The range of values of deceleration that ensure this
stability is bounded by analytically determined limits. With-
in these bounds, the different values can be assigned differ-
ential stability by means of local and nonlocal stability
analysis. If the dynamical system is analyzed with respect
to topological orbital equivalence (TOE), a family of solu-
tions to the periodic juggling task are found that are essen-
tially equivalent, because they are governed by identical dy-
namical properties. Trajectories with different amplitudes
and periods are transformable into each other by a single
scaling relation and are therefore invariant.

Empirical Results

These two fundamental results about the dynamical
model system provided hypotheses for investigating how
human subjects perform the task. The question guiding the
experiments was to what extent human movement takes ad-
vantage of the task dynamics. Because the analysis of the
model system revealed that the nonreactive, that is, open-
loop, motion can achieve a stable bouncing pattern, the
question was whether human control mimics this strategy
or, more accurately, tunes into this passively stable pattern
to obtain a parsimonious solution of the task. Importantly,
the requirement for deceleration of the paddle at impact
that characterizes the passively stable solution is nonobvi-
ous for an external planning device. If human coordination
of hand and ball is indeed comparable with the equilibrium
solution of the dynamical model system, then an actor can
be viewed as an equal part of such a coupled dynamical
system. This perspective is in contrast to the view that at-
tributes to the human actor a dominant role that is logical-
ly distinct from the dynamical system, where the human
actor would impose control over the system. In this frame-
work, arbitrarily many different solutions can be generated
by making use of feedback stabilization. Such solutions are
qualitatively different from the passively stable solutions
brought about by coupled dynamical systems, in which the
actor is seen as participating in and coupled to the entire
action system.

The results of the experiment in which subjects per-
formed one-handed paddle juggling can be summarized as
follows:
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1. Subjects juggled the ball with negative accelerations
of the paddle at the moment of impact, iz, < 0.

2. Different task manipulations, three juggling ampli-
tudes, and two gravitational conditions for the ball did not
influence the paddle acceleration at impact.

3. Subjects chose individually different negative impact
accelerations of the paddle as their preferred juggling
regime.

4. The standard deviation of the paddle’s acceleration at
impact, §D%p,, varied as a function of the magnitude of the
paddle’s acceleration, in accordance with results from the
numerical nonlocal stability analysis.

5. The constant ratios of paddle position amplitude
against paddle period and paddle velocity amplitude against
paddle period suggest that the subjects’ trajectories abide
by a dynamical scaling rule when the ball is juggled at dif-
ferent heights.

Results 1 to 4 support the conclusion that humans indeed
find a solution to the task in the inherent dynamics that does
not require additional corrective control mechanisms by
means of continuous perceptual coupling. Result 5 opens up
a another perspective on the role of dynamical principles.
Each of these will be dealt with in turn.

Motor Equivalence

The scaling relation 4 first was a necessary fact to facili-
tate our analysis of different realizations of juggling pat-
terns but, because of Result 5, it also allows a more far-
reaching interpretation. As described earlier, the scaling
relation is a nonlinear transformation that is dependent on
only one parameter. It can serve to generate arbitrarily many
realizations that are functionally equivalent by a low-di-
mensional relation, or conversely, it transforms many dif-
ferent spatiotemporal realizations into one structurally
equivalent fundamental movement pattern. This one-to-
many mapping is the essence of Bernstein’s (1967) princi-
ple of motor equivalence, which says that when a variety of
patterns that are seemingly different on the level of kine-
matic description are functionally equivalent, then their or-
ganizational principle should be the same. Within the dy-
namical perspective to movement control this intuition has
been interpreted as the requirement of one unifying control
principle, which should be brought about by nonspecific pa-
rameter changes (Turvey, 1977) and which should be low
dimensional (Haken & Wunderlin, 1990). In the present
work, the scaling relation is an explicit formulation of this
notion of functional equivalence, and its validity was em-
pirically verified with Result 5. The underlying theorem of
TOE can therefore be seen as the dynamical rationale for
the organizing principle of motor equivalence, in the sense
of Bernstein.

Some aspects of the data on the scaling relation, however,
require further clarification. It was shown that the paddle am-
plitudes, xp ., for the three juggling heights significantly
scale to the squared paddle period 72 (Figure 11). Still, it re-
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FIGURE 13. Mean paddle amplitude as function of
squared mean paddle period for a sinusoidal driving motion
of the paddle if the paddle acceleration at impact is kept
constant over different juggling heights. The solid lines rep-
resent the normal gravity condition; the dashed lines, the re-
duced gravity condition.

mains to be explained why the slopes of the regression lines
were different in value for the 6 subjects and why the two
gravity conditions seemed to produce different scaling con-
stants. Whereas for all subjects the slopes for G,,4,..s Showed
a trend to be smaller than G, the two regression lines di-
verged for 4 subjects, but were parallel for 2 subjects (Sub-
jects 2 and 4). That these seemingly different results do not
contradict the main conclusion about the role of the scaling
relation can be explained with an example. For an idealized
sinusoidal paddle movement, amplitudes and periods for dif-
ferent accelerations Xp , were generated and their scaling con-
stant was determined (see Appendix). The results of this cal-
culation are presented in Figure 13, which shows six pairs of
lines for six different ¥z, at G,y AN Gregpeeds TESpECtively.
Each line was the result for one choice of X, and one gravi-
ty condition when the paddle movement was scaled accord-
ing to relation A. It can be seen that (a) the value of the scal-
ing constant is a function of X, and that (b) the slopes were
smaller for Ggceq- Interestingly, for higher xp,, the differ-
ence between the two gravity conditions became increasing-
ly smaller, rendering the lines almost parallel. Based on the
result that each subject had one characteristic ¥p,, and that
they differed from each other, this numerical study can ex-
plain the apparent interindividual differences: The regression
slopes of Subject 2 and Subject 4 were almost parallel, be-
cause both subjects juggled at a relatively high X», (Subject
2: -4.8 m/s?; Subject 4: —8.75 m/s?). All other subjects’ mean
¥p, remained below —3.0 m/s?, where the slope differences
were shown to be greater. Thus, these considerations, which
explicate the quantitative intra- and intersubject differences
from Figure 11 even further, support the invariance postulat-
ed by the scaling relation in accordance with the principle of
motor equivalence.
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Reach of the Dynamical Strategy

Despite the fact that, on the whole, the experimental re-
sults supported the hypothesis of a dynamical system’s so-
lution, we still need to consider whether the data are suffi-
cient to exclude alternative interpretations and, of course,
whether alternative solutions exist. One alternative strategy
may be that subjects exploit continuous closed-loop control
with feedback. In the present case, only the moment of
ball-paddle contact permitted corrective control of the
ball’s trajectory. For a biological system, however, this
feedback control is not feasible, because the duration of an
impact lies in the range of 10~-20 ms, which is too short a
time even for spinal reflexes. Therefore, the impact itself
cannot be regulated. However, feedback regulation may be-
come possible when anticipatory control is applied. This
type of control was implemented in the robotics study by
Aboaf et al. (1989), where, on the basis of the observed bal-
listic flight of the ball, the next impact of ball and paddle
was planned ahead. Similar strategies might be exploited by
human subjects. For instance, Figure 14 depicts one of the
five trials in which Subject 5 juggled the ball with positive
paddle acceleration at the point of impact—contrary to the
model predictions. On the basis of the given dynamical
analysis, such a solution should be unstable and the pattern
should be lost. As this was not the case, some additional
control mechanisms have to be assumed. As laid out above,
the model system did not include a coupling from ball to
paddle and the remaining control may be found in the per-
ceptual component. The nature of such perceptual coupling
between ball and paddle is being addressed in further re-
search. Importantly, though, these trials prove that the sub-

Paddle Velocity [m/s]

-0.75 -

Paddle Position [m]

FIGURE 14. A juggling trial in which the task goal was
achieved with positive paddle accelerations at impact(Xp,, =
+2 m/s?).
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jects’ solutions characterized by negative acceleration at im-
pact are not the only solution and the fact that all other sub-
jects reliably juggled with negative acceleration at impact
confirms that there is a common strategy that is captured by
the given dynamical model.

Conclusions

The results of the experiment demonstrate that biological
systems can exploit the inherent dynamics of a task by
using the dynamically stable solutions defined by the task.
Hence, successful performance of a movement skill does
not necessarily require extensive real-time planning of tra-
jectories and computationally expensive information pro-
cessing. From the viewpoint of perception—action coupling,
these results state that a.coupling mechanism between per-
ception and action can be brought about in which the inher-
ent dynamics of a task are not destroyed if they support the
task goal. The data also support the conclusion that human
subjects scale their movements according to a scaling rela-
tion that leaves dynamical properties invariant, despite indi-
vidually different spatiotemporal realizations. This scaling
can be considered as an explicit formulation for the princi-
ple of motor equivalence, a higher order invariance by
which the system generates variants of a skill providing for
the biologically requisite flexibility.

In the present analysis of the discretized model equa-
tions, it was implicit that ball and actuator form a nonlinear
system of coupled oscillators. We will pursue this issue fur-
ther in future work, by analyzing the continuous spatiotem-
poral structure of the component units and the coupled sys-
tem, to shed light on the nature and the role of
perception—action coupling in this task.
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APPENDIX

Assuming an idealized sinusoidal juggling movement, it can be
demonstrated that under the scaling relation 4 the regression lines
of Figure 11 should be straight where the slopes are a function of
Xpn, & and oo

x .
i;t;mp =f(xp,,,,g,0t)=constant. (A])

This will be derived as follows. For a sinusoidal paddle move-
ment, the paddle velocity is given by
X
ip= ZPamp pcos(t), 0= Z—TC,
2 T

which can be reformulated as

X Pamp _ X P

2

T nTcos(or) (A2)

For stable juggling, Equation (4[ii]) gives an expression for
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Xpn, Which can be inserted into Equation (A2) as follows:

0.
Tramp _ l+o _ gd-a)

7? nTcos(w, S 2n(l+o) COS(O;01) ’

) (A3)
mpact

As the last step, the cosine term in Equation (A3) must be re-
placed by a more general expression. Here it is useful to start with
the quotient of paddle acceleration and paddle velocity:

. 2 .
x.'i _ —xP.nmpw Sln(wtimpncr) _

- =-@tan ((’otimpacr )’

X Pan

X P.nmpm Cos(mtimpau )

and to insert Equation (4[ii]) in this expression:

fan(or, Xp,  Xp,{l+a)

zmpa(t) == ‘D-i'PJ, - 01‘.’3_.,(1 —) N (A4)

For stable juggling, the impact velocity of the ball, x5 ,, is en-
tirely determined by the ballistic flight to be xg, = —0.5gT Com-
bining this result with Equation (A4) gives

Xp (1+a
tan(mtimpacr) = ﬁ’_"u
ng(l-a)

Inserting Equation (A3) into Equation (A5) results in the final
expression:

(A5)

x 1-
P‘t;mp — g( (X.) = constant. (A6)

4r(l+ a)cos[arctan(mn

ng(l-a)

Equation (A6) depends only on the constants g and ¢, and the
paddle acceleration at impact, Xp , . Because Xp, remains constant
under the scaling relation A, Equation (A6) must be constant
across different realizations of juggling. This demonstrates that for
sinusoidal juggling trajectories, plotting xpg, against 12 should
yield straight lines. Varying g according to the experimental con-
ditions results in the plots of Figure 13. This result generalizes to
arbitrary periodic trajectories.
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