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Abstract:  In a series of case studies out of the field of dynamic
manipulation (Mason, 1992), different principles for open loop
stable control are in troduced and analyzed. This investiga tion
may provide some insight into how open loop control can serve as
a useful foundation for closed loop control and, par ticularly, what
to focus on in learning control.

1 Introduction
This paper explores open loop stable control strategies for a
variety of juggling tasks. By control strategy we mean the
way a movement system structures itself to approach a task.
An open loop stable  control strategy does not use active re-
action to respond to perturbations. It uses the geometry of
the mechanical device, the kinematics and dynamics of mo-
tion, and the properties of materials to stabilize the task ex-
ecution. It is distinguished from closed loop control strate-
gies by the absence of sensory input to the computing of ac-
tuator commands for error compensation. Some open loop
controlled devices use no actuators at all (McGeer, 1990).

As has been shown by McGeer’s (1990) passive dy-
namic walking machines, dynamic systems are likely to of-
fer regions in state and control space which are inherently
more advantageous to the execution of a task then others.
Analogously, such favorable, although not open loop, con-
trol strategies may be found in sports where, for instance,
the Fosbury Flop in high jumping lifted the entire discipline
to new heights. If strategy largely determines the perfor-
mance of a movement task and not the details of how the
strategy is implemented, exploitation of open loop dynam-
ics may be a promising way to find good task strategies.

Open loop control is interesting for several reasons.
It is an important technique for automation and can offer
cheaper and faster control for some operations. Vibratory
feeders and sorters, and the remote center compliance de-
vice for peg in hole insertions are good examples. Open
loop stable strategies may be used as a core around which
closed loop control is organized. This may make closed
loop control more robust by reducing the demands on the
feedback controller. Finally, understanding open loop sta-
ble strategies may aid in understanding the key features to
be learned by a robot practicing a task.

In section 2 several juggling tasks will be discussed
to illuminate issues of open loop control and their implica-
tions. We believe that searching for open loop stabi lity, or
at least something which comes close to that, may help the
system to substantially reduce control effort, improve per-
formance and speed up learning. Discussions of the case
studies are largely deferred to section 3. Each case study
has been explored by building an actual machine.

2     Case Studies of Stable Open Loop Control

2.1 Paddle Juggling
In paddle juggling, a ball (or multiple balls) is kept in the
air by hitting the ball vertically with a horizontal paddle (a
behavior often exhibited by tennis players waiting for a
court). Under visual guidance, this is a closed loop task
which has been examined by (Aboaf 1988, Bühler 1990,
Rizzi 1992a&b, Ballard 1989, and Toshiba 1989). Without
information about the ball state, only open loop control is
possible. This task received considerable attention in recent
years, for the vibrating paddle version (high paddle oscilla-
tion frequency with small ampli tude) can be shown to ex-
hibit period bifurcations, strange attractors, and chaos-like
motion (Lichtenberg & Lieberman, 1982; Guckenheimer &
Holmes, 1983; Moon, 1987; Tufillaro et al., 1992). In the
following, open loop stable control strategies for paddle
juggling will be explored. The emphasis lies on achieving a
constant bouncing height and period; control of the horizon-
tal dimensions will be neglected for the moment. The pad-
dle mass is assumed to be much larger than the ball mass.
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FIGURE 1 (a) sketch of paddle juggling and notation for
continuous case; (b) notation for discretized case

As can easily be verified, the discrete equations of
motion (using the notat ion of Figure 1) yield:

ẋk+1 = − 1+ α( )wk − α ẋk( )2 − 2guk ,

xk+1 = xk + uk ,

tk+1 = 1
g

1+ α( )wk − α ẋk( ) + ẋk+1( ).
(1)

( ẋk , xk )  denote the velocity and the position, respectively,
of the ball just before the moment of impact. The ve locity
of the paddle at this time is (wk ) . After the impact, the
paddle shifts its position by the distance (uk ) where the
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next impact (k+1) will take place. Energy loss during the
impact is modeled with a coefficient of restitution (α ) .

Is there an open loop control strategy which would
achieve a stable, simple (one impact per cycle) juggling
pattern? It turns out that a sinusoidal driving motion,
xP = Asin(ωt + θ0 ) , as chosen in nearly all open loop
studies, suffices to obtain stability. Appropriately relating
(wk ,uk )  to the sine motion results in the fol lowing condi-
tion for stable fixed points of period (τ ), where
τ = 2π / ω :

θ0 = arccos
π g

Aw2
1− α
1+ α















 (2)

This condition was formulated for the phase (θ0 ), assum-
ing the motion of the paddle is constant and the ball has to
find the impact phase where a stable periodic motion exists;
impact velocity is solely determined by the ballistic flight
of the ball of duration (τ ).
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FIGURE 2 Simulation of effect of hit trajectory on open loop
stabil ity: (top) positively accelerating hit trajectory; (middle) con-
stant velocity hit trajectory; (bottom) negatively accelerating hit tra -
jectory

The essence of this open loop stability lies in what
could be called a focusing hit tra jectory (Schaal et al.
1992). As depicted in the simulations of Figure 2, only hit
trajectories which are negatively accelerating at impact
while the position is still increasing accomplish this stabil-
ity. The middle row of Figure 2 shows the effect of a con-
stant velocity hit trajectory on a set of ball trajectories with
a range of initial velocities. Both the paddle and ball verti-
cal posi tions are plotted against time. Due to the neutral sta-
bility of the constant velocity hit trajectory the trajectories
diverge at a rate that is linear in time. The top row of Figure
2 shows the exponential divergence due to a posi tively ac-
celerating hit trajectory for a set of ball trajectories with a
tenth of the range of initial velocities used in the constant
velocity case. The bottom row of Figure 2 shows the focus-
ing effect of a negatively accelerat ing hit trajectory for a
wide range of initial ball velocities. Interestingly, in all the
literature on closed loop ball juggling this control strategy
has not been applied.

Two runs of a simple one-joint robot using a panto-
graph linkage to maintain a horizontal paddle orientation

(Figure 3a) demonstrate the feasibility of this open loop
control method (Figure 3b and 3c). A special trampoline-
like racket and a ping-pong ball as juggling object even al-
low open loop stability in the horizontal plane: this racket
exerts a restoring force toward the racket center if the ball
lands off-center. Data was recorded with a vision system
running at 60 Hz; parameters of the paddle movement were
τ = 0.4sec, A = 0.05m,α = 0.51.
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FIGURE 3 (a) setup of juggling robot; (b) period-one juggling
motion; (c) period-two juggling motion

It is possible to estimate the size of the basin of at-
traction of steady paddle juggling. The system has a trap-
ping region for all initial velocities of the ball yielding:

ẋk =0 ≤
2 gA + (1 + α )Aw

α − 1
(3)

 The derivation of this bound is similar to Tufillaro
et al. (1992) and had to be omitted due to space limitations.
Knowing the trapping region, it is sufficient to investigate
the basin of attraction only in this region, which is illus-
trated numerically in Figure 4 for the paddle motion param-
eters given above. The gray areas denote initial conditions
belonging to the basin of attraction for periodic juggling,
the white areas physically impossible initial conditions, and
the black areas initial conditions which did not lead to peri-
odic juggling (Tufillaro et al., 1992).

The numerical calculation for Figure 4 assesses the
size of the basin of attraction as 0.257 of the trapping re-
gion, corresponding to a probability P=0.257 that the ball
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ends up in periodic juggling if it was initially dropped from
a large enough height. In the real robot, random effects dur-
ing bouncing as well as unmodeled parameters (like air re-
sistance for the ping-pong ball) made the basin of attraction
significantly larger. Under the given parameter settings, the
paddle peak acceleration is greater than gravity so that the
ball can never come to rest on the paddle indefinitely. This
results in many launches of the ball with some randomiza-
tion due to mechanical variability in the apparatus, and it
turned out that we were unable to avoid getting a periodic
juggling pattern (most often period-one, but sometimes pe-
riod-two or higher).
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FIGURE 4 Basin of attraction of paddle juggling

The easiest way to paddle juggle more than one ball
in phase (so the hits are roughly at the same time) with one
actuator is to use an open loop stable hit trajectory. Since
the balls fall approximately at the same time it is difficult to
manipulate the paddle velocity to actively control each hit.
We have used our open loop strategy to paddle juggle three
balls simultaneously by attaching three separate paddles to
the pantograph mechanism.

So far the paddle has been driven sinusoidally which
is a rather arbitrary choice, essentially for mathematical
convenience. It would be far more interesting if the system
developed its own way of dealing with the juggling task.
Schaal & Sternad (1992) examined learning of paddle jug-
gling with genetic algorithms (Holland, 1992). They
demonstrated that a learning system can find focusing tra-
jectories just from reinforcing small variance juggling pat-
terns and minimization of jerk (˙̇ẋP ) . When feedback of the
ball state was also provided, the focusing trajectory was
still found, al though it emerged out of a coupled oscillator-
like representation in which the ball drives the paddle by
some linear coupling terms (Bühler, 1990). Particularly in
the lat ter case, the paddle trajectory was clearly not a sine
wave anymore.

2.2 Ball-in-a-Wedge Juggling
The next juggling task constitutes a slight extension of the
paddle juggler. Instead of juggling the ball vertically with a
racket, it is juggled horizontally between two walls, ar-
ranged in a V-form (Figure 5). Both walls can pivot to-
gether about the tip of the wedge. The angle between the
walls is adjustable but fixed during experimental runs, and
the two walls move in unison.

Driving the wedge with a sinusoidal motion and try-
ing to rely on the principle of self-focusing trajectories does
not suffice to find an open loop control law. From the anal-
ysis of the conservative, non-oscillat ing ball-in-a-wedge,
Lethihet & Miller (1986) found a dependence of the sys-
tem’s stability on the wall angle (θ). The result of their Lia-
punov stability examination  is depicted in Figure 6.

Oscillation

θ θ

xB, yB

ß

FIGURE 5 Ball-in-a-wedge juggling system

The conservative system is Hamiltonian and, by
virtue of its first integral, i.e., the Hamiltonian, its stability
can be graphed in this way. Due to energy conservation,
maximum stability does not go beyond neutral stability
(Liouville’s theorem, Symon, 1971). This corresponds to a
Liapunov exponent of zero (note: numerical instabilities in
calculating the data of Figure 6 also give some incorrect
values slightly below zero). Liapunov exponents greater
than zero indicate instability (or chaotic motion).
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FIGURE 6 Liapunov exponents of ball-in-wedge sys tem as a
function of the wall angle (θ)

A linear stability analysis of the oscillating, thus
non-autonomous, dissipative system yields similar results.
Figure 7 depicts the magnitude of the four eigenvalues as a
function of the wall angle (θ) for a coefficient of restitution
α = 0.8 . It should be noted that the stability analysis was
based on a discrete version of the system’s equations (cf.
Lethihet & Miller, 1986). Hence, stable regions are charac-
terized by all eigenvalues in the interval [-1,1]. The basin
of attraction could be estimated as in the previous section.

Figure 8 shows a run of a real ball-in-a-wedge ma-
chine. From the impact phase, one recognizes again the
principle of a focusing trajectory which, as well as the wall
angle, is crucial to achieve stable juggling.
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FIGURE 7 Eigenvalue analysis of ball-in-a-wedge as a func-
tion of the wall angle (θ) (note: physically implausible regions of (θ)
are clipped)
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FIGURE 8 Run of the real ball-in-a-wedge system with
θ = 49°  us ing a tennis ball (recorded with a 60Hz vision system)
Note: the dashed lines indicate the impact phase of ball and wall on
one side of the wedge (for notation see Figure 5)

2.3 Five Ball Juggling
Although the transfer from conservative systems to dissipa-
tive nonautonomous systems, as done in the previous sec-
tion, is not possible in general, it raises the issue of the role
of dissipation in dynamic systems. Pushing dissipation to
an extreme, the ball-in-a-wedge may be transformed into
another juggling task. Setting the coefficient of resti tution
to 0 and supporting the ball at impact so that it cannot roll
away results in regular ball juggling. Ball juggling involves
catching, carrying, and releasing a ball on the proper trajec-
tory. After the ball’s ballistic flight the catching hand has to
be placed appropriately in the bal l’s trajectory, which may
require velocity matching with the incoming ball to reduce
the impact. From the moment of contact between ball and
hand the control phase begins. During the carrying phase
the ball has to be guided to the desired release conditions
from where it continues its cycle autonomously. Since the
throw of the balls is unlikely to be precisely repeatable, a
juggling system must be able to tolerate a variety of incom-
ing ball trajectories and guide the balls from these different
catch conditions to the intended release state.

Changing the ball-in-a-wedge as described above,
one ball could be thrown back-and-forth between the walls.
In order to juggle more than one ball, the balls must travel
on distinct trajectories, and they should travel for a rather
long time to facilitate the coordination of the other balls.
These requirements can be met by letting the balls bounce

once on the floor before catching them again. This “bounce
juggling” makes catching easier because the balls are
caught roughly at the top of their trajectories where the ball
velocity is at its lowest.

Several years ago, Claude Shannon found a rather
simple solution to a robot bounce juggler. He built a ma-
chine essentially consisting of a motor attached at the cen-
ter of a rod which has two catchers mounted at each end
(Figure 9). By driving the motor sinusoidally and adjust ing
the distance of the catchers, the motor frequency and ampli-
tude, and the height of the setup above the floor, it is possi-
ble to find a configuration in which the balls are juggled in
a stable fashion. A drum was used to provide an elastic
floor. Juggling three balls requires one full oscillation dur-
ing the flight of a ball. The modified Shannon juggler
which was built for this investigation could even juggle five
balls for one to two minutes. Here, two full oscillations had
to elapse during the flight phase of one ball which demands
a much faster driving frequency.

M

FIGURE 9 Sketch of the Shannon Juggler

When the linkage and the driving frequency are ad-
justed correctly, the basin of attraction of this juggling is
solely determined by the size of the catchers. The catchers
are padded with shock absorbing material (bean bags or
some special foam) to replace the active catch of human
juggl ing. As long as the balls hit the catchers far enough
from the catcher edges, the balls will be guided to the throw
location in the catchers by centripetal and gravitational
forces. The padding of the catchers implements an inelastic
impact. Thus, a repeatable start position for the throw is
achieved. Five-ball juggling requires an accurately symmet-
ric driving motion as well as some additional damping of
the vibrat ing drum head. The range of parameter settings
for robust five-ball juggling is narrow, while three-ball jug-
gling is much easier to achieve.

2.4 Devil Sticking
By applying the ingredients of the previous sections, more
demanding juggling tasks can be investigated. Devil stick-
ing requires manipulating a center stick with two hand
sticks by hitting the center stick back and forth between the
hand sticks (Figure 10a). A sketch of a devil sticking robot
is given in Figure 10b. Three direct drive motors al low
posi tioning of the hand sticks anywhere in space. The
hands sticks have passive compliance through the indicated
springs which work in parallel with oil dampers. This im-
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plements a passive catch. The center stick does not bounce
when hitting the hand stick and, therefore, requires an ac-
tive throwing motion by the robot. To simplify the problem,
the center stick was constrained to move on the surface of a
sphere by a boom attached perpendicularly to the center
stick at its center of mass. For small movements the center
stick stays approximately in a plane. The boom also pro-
vides a way to measure the current state of the center stick.
The juggl ing robot uses its top two joints to perform planar
devil sticking.

         

(a) (i) (ii) (iii)

(b)
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FIGURE 10 (a) Human devil sticking: (i) flight phase, (ii) catch
phase, (iii) throw phase; (b) sketch of devil sticking robot; (from van
Zyl, 1991)

The task state was defined as the predicted location
of the center stick when it hits the hand stick held in a fixed
nominal position in absolute space. Standard bal listics
equations for the flight of the center stick are used to map
flight trajectory measurements (x(t), y(t),θ (t)) into a task
state:

x = ( p,θ , ẋ, ẏ, θ̇ ) (4)

where ( p)  is the distance between the hand stick and the
center of mass of the center stick, (θ )  is the angle of the
center stick, and ( ẋ, ẏ, θ̇ ) is the velocity vector of the center
stick. The task command is given by a displacement of the
hand stick from the nominal position (xh , yh )  which speci-
fies where and when the catch occurs, a center stick angular
velocity threshold to trigger the start of a throwing motion
(θ̇t )  which specifies how long to hold the center stick, and
a throw velocity vector (vx ,vy )  which specifies the charac-
teristics of a fixed distance constant velocity throwing mo-
tion.

u = (xh , yh , θ̇t ,vx ,vy ) (5)

Only juggling patterns that are symmetric are considered.
The importance of geometry in the ball-in-a-wedge

task can be applied to devil sticking. A simplified stability
analysis indicated that juggling patterns at steep center stick
angles, e.g., θ ∈ 45°,135°[ ]  are more stable than those at
larger center stick angles, for instance, θ ∈ 15°,165°[ ]
(Schaal et al., 1992). The former case achieved clearly bet-
ter results when implemented with an open loop throwing
motion: a fixed throw pattern was triggered through sensing
the impact between hand stick and center stick. Figure 11
shows a run for the steep juggling pattern. The shallow pat-
tern accomplished only 4-5 hits (not shown here).

Due to the improved open loop stability, an active
LQR controller achieved quite a performance improvement
with respect to an LQR controller implementing the less fa-
vorable juggling strategy (several hundred hits on average
against 60-80 hits on average). The LQR controller was
built by calculating a pair of setpoints yielding the left-right
symmetry requirement, then iteratively finding the controls
which achieve a one-hit juggle from the left setpoint to the
right setpoint and vice versa, and finally collecting empiri-
cal data around the setpoints to build a linear model and
subsequently the LQR controller.
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FIGURE 11 Open loop run of devil sticking robot with trigger ing
of fixed throw movement through impact sensing. The graph shows
the y coordinate of the center of mass of the devil stick (cf. Figure
10b).

3 Discussion
The examples of section 2 all had a common feature: a
large amount of freedom in how to approach the given
problem. Instead of forcing a desired trajectory or move-
ment pattern on the system, the design goal was to find so-
lutions exhibiting open loop stability. This reduces compu-
tational effort for any control system and uses mechanics to
help implement the task (Mason, 1992).

The Shannon juggler literally implements the task
mechanically. Aside from relying on clever design and
correct tuning of mechanical parameters, its function was
mainly accomplished by an energy reset strategy: at the end
of each cycle of a ball, the ball’s remaining kinetic energy
was absorbed, and the ball was re-launched with the desired
initial conditions.

Focusing trajectories, as used for the paddle juggler,
belong in the class of open loop control design strategies. In
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the case of the ball-in-a-wedge, a pure trajectory control de-
sign strategy is insufficient to accomplish open loop stable
control. Additional control parameters are required, i.e., pa-
rameters which are kept fixed during the run of a system,
but which may be changed between runs. The key control
parameter is the geometry of the wedge, namely its angle
(θ). Control parameter space usually offers such advanta-
geous regions for a given task, as some arrangement of
controls harmonizes more favorably with the system’s in-
trinsic dynamics.

Devil sticking is the most complex jof our uggling
examples. It combines two of the preceding strategies: the
passive catch of the center stick is an energy reset, the angle
of the juggling pattern belongs to geometry variations.
Since a focusing trajectory has not been found so far, the
system still needs sensory feedback. However, efforts to
find open loop-like schemes resulted in clearly improved
performance of a closed loop controller.

A crucial property of movement systems is their loss
of energy, on which all concepts of open loop stability rely.
Liouville's theorem (Symon 1971) shows that conservative
systems, i.e., systems which do not lose any energy (as in
celestial physics), cannot be asymptotically stable; a change
in energy caused by a small perturbation persists.
Therefore, dissipation is desirable. At one extreme it can be
used as a complete control strategy as demonstrated for the
Shannon juggler. At another extreme, a system which can-
not dissipate its energy fast enough will need extra control
effort to be steered appropriately. Systems with energy dis-
sipation must have some source of energy to avoid running
down. McGeer (1990) used an inclined walking surface to
drive passive dynamic walking. We have used open loop
motion of paddles or hands to drive the system. Finding the
right compromise between energy efficiency and stabiliza-
tion due to energy loss is a topic for future research.

Open loop stable control strategies may be a key in
facili tat ing control system design and, therefore, learning
control. A system with improved open loop performance is
less dependent on the sampling rate and the accuracy of its
sensor readings. It becomes easier to control and more ro-
bust. Being open loop stable in cer tain regions, the system
may be able to decrease attention during the open loop
phases and use its computational power elsewhere. As we
demonstrated with the devil sticking robot, good open loop
and feedback strategies are complementary. To find open
loop stability becomes equalivalent to the detection of rele-
vant parameters of a task. This may be especially helpful in
high dimensional problems.

All dynamic tasks introduced in this paper were
solved by special purpose systems. If one were asked to
solve such tasks with more complex and general mechani-
cal systems such as multi degree of freedom robot arms,
then it might be possible to derive the same open loop
strategies by choosing appropriate constraints on the gen-
eral system. If the complex system confined itself to mim-
icking the simple machine, redundant degrees of freedom
might be resolved more easily. A major topic for research is

how these general purpose devices can learn to constrain
themselves appropriately.
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