
Auton Robot (2010) 29: 169–200
DOI 10.1007/s10514-010-9191-2

Finding and transferring policies using stored behaviors

Martin Stolle · Christopher Atkeson

Received: 9 November 2008 / Accepted: 20 April 2010 / Published online: 6 May 2010
© Springer Science+Business Media, LLC 2010

Abstract We present several algorithms that aim to advance
the state-of-the-art in reinforcement learning and planning
algorithms. One key idea is to transfer knowledge across
problems by representing it using local features. This idea
is used to speed up a dynamic programming based general-
ized policy iteration.

We then present a control approach that uses a library
of trajectories to establish a control law or policy. This ap-
proach is an alternative to methods for finding policies based
on value functions using dynamic programming and also to
using plans based on a single desired trajectory. Our method
has the advantages of providing reasonable policies much
faster than dynamic programming and providing more ro-
bust and global policies than following a single desired tra-
jectory.

Finally we show how local features can be used to trans-
fer libraries of trajectories between similar problems. Trans-
fer makes it useful to store special purpose behaviors in the
library for solving tricky situations in new environments. By
adapting the behaviors in the library, we increase the ap-
plicability of the behaviors. Our approach can be viewed as
a method that allows planning algorithms to make use of
special purpose behaviors/actions which are only applicable
in certain situations.

M. Stolle (�) · C. Atkeson
5000 Forbes Ave, Pittsburgh, PA 15213, USA
e-mail: martin@stolle.name

C. Atkeson
e-mail: cga@cs.cmu.edu

Present address:
M. Stolle
Google Switzerland, Brandschenkestrasse 110, 8002 Zürich,
Switzerland

Results are shown for the “Labyrinth” marble maze and
the Little Dog quadruped robot. The marble maze is a dif-
ficult task which requires both fast control as well as plan-
ning ahead. In the Little Dog terrain, a quadruped robot has
to navigate quickly across rough terrain.

Keywords Behaviour-based systems · Learning and
adaptive systems · Learning from demonstration · Legged
robots · Planning

1 Introduction

1.1 Overview

With the work presented here, we aim to advance the state-
of-the-art in reinforcement learning and planning algorithms
so they can be applied to realistic, high-dimensional prob-
lems. Our approach is two-pronged:

One part is to enable the reuse of knowledge across dif-
ferent problems in order to solve new problems faster or bet-
ter, or enable solving larger problems than are currently pos-
sible. The key to attaining these goals is to use multiple de-
scriptions of state in a given domain that enable transfer of
knowledge as well as learning and planning on different lev-
els of details. In particular, while most domains have a stan-
dard state representation such as Cartesian position and ve-
locity with respect to a fixed origin or joint position and ve-
locities, it is sometimes beneficial to also consider ambigu-
ous descriptions using local features of the agent or task.
While only short term predictions of the future are possi-
ble due to their local and ambiguous nature, they are pow-
erful tools to generalize knowledge across different parts of
the environment or to new problems. In order to avoid the
limitations of state aliasing (multiple states mapping to the

mailto:martin@stolle.name
mailto:cga@cs.cmu.edu

170 Auton Robot (2010) 29: 169–200

Fig. 1 Different types of libraries. The red line illustrates a possible
path taken by the agent using the library

same features), it is however important to use local features
in conjunction with a global state representation.

The second key idea is to take advantage of libraries of
stored behaviors. In particular, when solving stochastic con-
trol problems, often great computational resources are spent
on computing globally optimal control laws using dynamic
programming (DP) or policy search. The reasoning is that
given knowledge on how to act from any state, one can
still behave well under uncertainty: even after an unexpected
state transition, the robot knows what is the best action to
pick. In some domains, it is possible to avoid this upfront
computation by using path planners to quickly obtain a valid
solution. In case the original plan becomes infeasible due
to the stochasticity of the environment, replanning is per-
formed to find a new solution. However, this much simpler
approach is only possible if computers are fast enough so
that delays due to replanning are small enough to be permis-
sible. We aim to close the gap between computing globally
optimal policies and replanning by leveraging libraries of
trajectories created by path planners. By storing many tra-
jectories in a library, we avoid or reduce replanning while
at the same time avoiding the computation required by more
traditional methods for finding a globally optimal control
law.

Libraries can be implemented in different ways. In the
simplest type of library, the planner used to populate the li-
brary is reasoning at the level of elementary actions that are
directly executed by the agent or sent to motors (Fig. 1(a)).
An example of this type of library could be a pendulum
swing problem where we know the correct actions for a
given angle and angular velocity or a grid world problem
where we know in which cardinal direction to move for

a given x–y position. For more complex domains, it can
quickly become unfeasible to provide such low level actions
for a sufficient amount of states. In such complex domains, a
library can be populated by planning at the level of more ab-
stract actions (Fig. 1(b)). Low level controllers or heuristics
are used to generate the elementary actions when a particular
abstract action is executing. An example of this could be an
autonomous race vehicle with low level behavior for track-
ing the optimal race line, passing and obstacle avoidance.
Yet another type of library, which is not necessarily created
directly from planning, consists of knowledge about behav-
iors that can be executed in specific parts of the state space
(Fig. 1(c)). This third type of library encodes knowledge
about possible behaviors, but not all behavior possibilities
are necessarily desirable in attaining a specific goal. Hence,
a high-level search is necessary to ensure goal-directed be-
havior. An example of this could be an off-road vehicle with
special behaviors for crossing rivers, scaling rocks and tree
trunks. Just because there is a rock that the agent knows how
to scale, doesn’t mean it should do so for achieving its goal.

One way the third kind of library is created is when a
library of behaviors is transferred to a new environment.
Searching through the resulting library of behaviors to find
a path can be viewed as augmenting a path planner with
external knowledge contained in the library of behaviors.
This library of behaviors, describing possibilities for exe-
cuting special purpose behaviors, enables the path planner
to find solutions to hard problems where the models avail-
able to the planner are not sufficient to find these behaviors
autonomously. Using local features to transfer libraries of
behaviors to new problems combines the two key ideas of
transfer using local features and libraries of stored behav-
iors.

This article is organized as follows: In the next section,
we introduce and describe the experimental domains we are
using to validate the ideas and algorithms. In Sect. 2, we
describe an algorithm to speed up the creation of global
control laws using dynamic programming by transferring
knowledge from previously solved problems. Results are
presented for simulations in the marble maze domain. In
Sect. 3, we describe a representation for control laws based
on trajectory libraries. Results are shown on both simulated
and actual marble maze. Finally, in Sect. 4, we propose ways
of transferring the libraries presented in Sect. 3.

1.2 Experimental domains

1.2.1 Marble maze

Two domains are used to validate and assess the proposed
algorithms: the marble maze domain and the Little Dog do-
main. The marble maze domain (Fig. 2) is also known as
“Labyrinth” and consists of a plane with walls and holes.

Auton Robot (2010) 29: 169–200 171

Fig. 2 A sample marble maze

A ball (marble) is placed on a specified starting position and
has to be guided to a specified goal zone by tilting the plane.
Falling into holes has to be avoided and the walls both re-
strict the marble and can help it in avoiding the holes. Both
a hardware based, computer controlled setup as well as a
software simulator are designed and implemented.

The simulation uses a four-dimensional state representa-
tion (x, y, dx, dy) where x and y specify the 2D position on
the plane and dx, dy specify the 2D velocity. Actions are
also two dimensional (f x,fy) and are force vectors to be
applied to the marble. This is not identical but similar to tilt-
ing the board. The physics are simulated as a sliding block
(simplifies friction and inertia). Collisions are simulated by
detecting intersection of the simulated path with the wall
and computing the velocity at the time of collision. The ve-
locity component perpendicular to the wall is negated and
multiplied with a coefficient of restitution of 0.7. The fric-
tional forces are recomputed and the remainder of the time
slice is simulated to completion. Some of the experiments
use Gaussian noise, scaled by the speed of the marble and
added to the applied force in order to provide for a more re-
alistic simulator and to gauge the robustness of the policies.
This noise roughly approximates physical imperfections on
the marble or the board. Other noise models could be imag-
ined. A higher-dimensional marble maze simulator was used
by (Bentivegna 2004). In Bentivegna’s simulator the current
tilt of the board is also part of the state representation. An
even higher fidelity simulator could be created by taking
into account the distance of the marble to the rotation axes
of the board, because the rotation of the board causes ficti-
tious forces such as centripetal and centrifugal forces on the
marble. Additionally, one could improve the simulator using
data from executing on a physical maze.

The experiments that were performed on the physical
maze (Fig. 3) used hobby servos for actuation of the plane
tilt. An overhead Firewire 30fps, VGA resolution camera
was used for sensing. The ball was painted bright red and
the corners of the labyrinth were marked with blue markers.
After camera calibration, the positions of the blue markers
in the image are used to find a 2D perspective transform for
every frame that turns the distorted image of the labyrinth
into a rectangle. The position of the red colored ball within

Fig. 3 The physical maze

Fig. 4 Little Dog environment

this rectangle is used as the position of the ball. Velocity is
computed from the difference between the current and the
last ball position. Noise in the velocity is quite small com-
pared to the observed velocities so we do not perform fil-
tering. This avoids adding latency to the velocity. As in the
simulator, actions are represented internally as forces. These
forces are converted into board tilt angles, using the known
weight of the ball. Finally, the angles are sent to the servos
as angular position.

1.2.2 Little Dog

Another domain we will use for assessing the effective-
ness of the algorithms is the Little Dog domain. Little Dog
is a quadruped robot developed by Boston Dynamics for
DARPA (Fig. 4). It has four legs, each with three actuated
degrees of freedom. Two degrees of freedom are at the hip
(inward–outward, forward–backward) and one at the knee

172 Auton Robot (2010) 29: 169–200

(forward–backward). Torque can be applied to each of the
joints. This results in a 12 dimensional action space (three
for each of the four legs). The state space is 36 dimensional
(24 dimensions for the position and velocity of the leg joints
and 12 dimensions for the position, orientation, linear veloc-
ity and angular velocity of the center of mass). The task to
be solved in this domain is to navigate a small-scale rough
terrain.

The robot is controlled by sending desired joint angles
to an on-board proportional-derivative (PD) controller for
each joint. A PD controller sends desired torques to a motor
proportional to the error of the joint angle while subtracting
torque proportional to the speed at which the error is de-
creasing. The desired joint angles can be updated at 100 Hz.
The on-board PD controller computes new torque outputs at
500 Hz. The robot is localized using a Vicon motion capture
system which uses retro-reflective markers on the robot in
conjunction with a set of six infrared cameras. Additional
markers are located on the terrain boards. The proprietary
Vicon software provides millimeter accuracy location of the
robot as well as the terrain boards. We are supplied with ac-
curate 3D laser scans of the terrain boards. As a result, no
robot sensor is needed to map the terrain.

The user interface shown in Fig. 5 is used for monitor-
ing the controllers and drawing plans as well as execution
traces. Program data is superimposed over a heightmap of
the terrain. A more advanced, interactive 3D display is used
for playing back and analysing logfiles from previous exe-
cution runs (Fig. 6).

Fig. 5 Little Dog graphical interface with plan. The black line shows
a hypothetical trajectory for the body while the colored crosses corre-
spond to stance locations of the feet (red = front left, green = front
right; yellow = hind left, blue = hind right). The dog moves from left
to right and the green circle marks the goal for the plan

Fig. 6 Little Dog simulator

2 Transfer of policies based on value functions1

2.1 Introduction

In this section, we introduce the notion of local features
for the purpose of transferring a well-known type of pol-
icy, value function based global policies computed using dy-
namic programming (DP). Policies are functions mapping
states to actions, allowing the agent to behave correctly over
a large part of the state space. Finding such policies is com-
putationally expensive, especially in continuous domains.
The alternative of computing a single path, although compu-
tationally much faster, does not suffice in real world domains
where sensing is noisy and perturbations from the intended
paths are expected.

When solving a new task in the same domain, planning
algorithms typically start from scratch. We devise an algo-
rithm which decreases the computation needed to find poli-
cies for new tasks based on solutions to previous tasks in the
same domain. This is accomplished by initializing a policy
for the new task based on policies for previous tasks.

As policies are often expressed using state representa-
tions that do not generalize across tasks, policies cannot be
copied directly. Instead, we use local features as an inter-
mediate description which generalizes across tasks. By way
of these local features, policies can be translated across tasks
and used to seed planning algorithms with a good initial pol-
icy.

For example, in a navigation domain, a policy is usually
defined in terms of (x, y) coordinates. If the terrain or goal
changes, the same (x, y) position will often require a dif-
ferent action. For instance, on the left terrain in Fig. 7, the
policy of the upper left corner is to go down, whereas in the
right terrain the policy of the same position is to go right.
However, one can represent the policy in terms of local fea-
tures that take into account the position of the agent with
respect to the goal and obstacles. A new policy is initialized
by looking up what the local features are for each state and
setting the action of that state to the action that is associ-
ated with the local features. By reverting back to the global
(x, y)-type state representation, the policy can be refined for
the new task without being limited by the local state descrip-
tion.

2.2 Related work

Transfer of knowledge across tasks is an important and re-
curring aspect of artificial intelligence. Previous work can
be classified according to the type of description of the
agent’s environment as well as the variety of environments

1An earlier version was published in (Stolle and Atkeson 2007b).

Auton Robot (2010) 29: 169–200 173

Fig. 7 Example navigation domain, left: original terrain, middle: fea-
ture-based policy, right: new terrain

the knowledge can be transferred across. For symbolic plan-
ners and problem solvers, high level relational descriptions
of the environment allow for transfer of plans or macro op-
erators across very different tasks, as long as it is still within
the same domain. Work on transfer of knowledge in such
domains includes STRIPS (Fikes et al. 1972), SOAR (Laird
et al. 1986), Maclearn (Iba 1989) and analogical reasoning
with PRODIGY (Veloso 1992). More recent relevant work
in discrete planning can be found in (Winner and Veloso
2002; Fern et al. 2004).

In controls, research has been performed on modeling
actions using local state descriptions (Mahadevan 1992;
Chernova and Veloso 2004b). Other work has been done to
optimize low-level controllers, such as walking gaits, which
can then be used in different tasks (Kohl and Stone 2004;
Chernova and Veloso 2004a; Röfer 2005; Weingarten et al.
2004). In contrast, our work focuses on finding policies
which take into account features of the specific task.

Some research has been performed in automatically cre-
ating macro-actions in reinforcement learning (McGovern
2002; Stolle and Precup 2002; Şimşek and Barto 2004;
Mannor et al. 2004), however those macro actions could
only transfer knowledge between tasks where only the goal
was moved. If the environment was changed, the learned
macro actions would no longer apply as they are expressed
in global coordinates, a problem we are explicitly address-
ing using feature-based descriptions. Another method for
reusing macro actions in different states by discovering geo-
metric similarities of state regions (homomorphism) can be
found in (Ravindran and Barto 2003).

At the intersection of planning and control, work in re-
lational reinforcement learning creates policies that operate
on relational domain state descriptions (Fern et al. 2006;
Yoon et al. 2008). Applying the policy to the planning do-
main is expected to either solve the planning query (which
explicitly encodes the goal state) or guide a search method.
The policy is learned only once for a given domain and
is reused for different planning queries. Similar to tradi-
tional work in relational planning, the policies derive their
ability to generalize from the relational domain description.
Work that is more closely related to ours in solving rela-

tional Markov Decision Processes (MDP) can be found in
(Guestrin et al. 2003). Like in our approach, a domain expert
creates an alternative state description. This state descrip-
tion allows for the creation of a factored MDP over classes.
Every class has a value function associated with it that de-
pends on the state of an instance of that class. For a particu-
lar environment, the value of a state is the sum of the value
of each instance of every class. This allows for generaliza-
tion to new problems, assuming the state of the instances
contains the information necessary to generalize.

Finally, a related area of research is multi-task learning
(Caruana 1993). The idea behind multi-task learning is that
a machine learning algorithm (originally neural networks)
can learn faster if it learns multiple related tasks at the same
time. There are two ways to look at this: One way is that the
input to the machine learning algorithm is very high dimen-
sional and by learning multiple tasks at the same time, the
machine learning algorithm can learn which state features
are relevant. When learning new tasks, the algorithm can fo-
cus learning on those features. Alternatively, one can hope
for the machine learning algorithm to compute new relevant
features from the given input features. In navigational do-
mains, this would require the whole map to be part of the
input state, which would dramatically increase the size of
the state space. It is unclear what kind of relationships be-
tween original state (such as position) and maps would be
learned.

2.3 Case study: marble maze

We used the marble maze domain (Fig. 2) to gauge the ef-
fectiveness of our knowledge transfer approach. The model
used for dynamic programming is the simulator described
in Sect. 1.2.1. The reward structure used for reinforcement
learning in this domain is very simple. Reaching the goal re-
sults in a large positive reward. Falling into a hole terminates
the trial and results in a large negative reward. Additionally,
each action incurs a small negative reward. The agent tries
to maximize the reward received, resulting in policies that
roughly minimize the time to reach the goal while avoiding
holes.

Solving the maze from scratch was done using value it-
eration. In value iteration, dynamic programming sweeps
across all states and performs the following update to the
value function estimate V for each state s:

V t+1(s) = max
a

{r(s, a) + V t(s(a))} (1)

where a ranges over all possible actions, r(s, a) is the re-
ward received for executing a in state s and s(a) is the next
state reached after a is executed in state s.

The simulator served as the model for value iteration. The
state space was uniformly discretized and multi-linear inter-
polation was used for the value function (Davies 1997).

174 Auton Robot (2010) 29: 169–200

For the marble maze, we used a 4-dimensional state-
space containing position and velocity in the plane (s =
〈x, y, dx, dy〉). The positional resolution of the state space
was 3 mm and the velocity resolution was 12.5 mm/s. The
mazes were of size 289 mm by 184 mm and speeds between
−50 mm/s to +50 mm/s in both dimensions were allowed,
resulting in a state space of about 380,000 states. This res-
olution is the result of balancing memory requirements and
accuracy of the policy. At coarser resolution, values in some
parts of the state space were inadequately resolved, resulting
in bad policies. Variable resolution methods such as (Munos
and Moore 2002) could be used to limit high-resolution rep-
resentation to parts of the space where it is strictly necessary.
We used a 2-dimensional action-space representing force in
the plane (a = 〈f x,fy〉). The maximum force on the mar-
ble in each dimension was limited to 0.0014751 N and dis-
cretized into −.001475 N, 0 and +.001475 N in each di-
mension, resulting in 9 possible actions for each state. With
a simulated mass of the marble of .0084 kg, maximal accel-
eration was about 176 mm/s2 in each dimension. Time was
discretized to 1/60th of a second.

2.3.1 Local state description

The local features, chosen from the many possible local fea-
tures, depicts the world as seen from the point of view of the
marble, looking in the direction it is rolling. Vectors point-
ing towards the closest hole, the closest wall as well as along
a path towards the goal (dashed line in Fig. 8) are computed.
These vectors are normalized to be at most length 1 by ap-
plying the logistic function to them. The path towards the
goal is computed using A∗ on a discretized grid of the con-
figuration space (position only). A∗ is very fast but does not
take into account velocities and does not tell us what actions
to use. Two examples of this local state description can be
seen in Fig. 8. In the circle representing the relative view
from the marble, the forward velocity is towards the right.
In the first example, the marble is rolling towards a hole,
so the hole vector is pointing ahead, slightly to the right of
the marble, while the wall is further to the left. The direc-
tion to the goal is to the left and slightly aft. This results

Fig. 8 Local state description

in a state vector of (.037; −.25, −.97; .72, −.38; .66, .34),
where .037 is the scalar speed of the marble (not shown in
figure), followed by the relative direction to the goal, rela-
tive direction to the closest wall and relative direction to the
closest hole. The second example has the closest hole be-
hind the marble, the closest wall to the left and the direction
to the goal to the right of the direction of the marble, re-
sulting in a state vector of (.064; .062, .998; −.087, −.47;
−.70, .58). As all vectors are relative to the forward veloc-
ity, the velocity becomes a scalar speed only. Actions can
likewise be relativized by projecting them onto the same for-
ward velocity vector. For comparison purposes, we show re-
sults for a different local state description in the discussion
section (Sect. 2.5). Note: while A∗ requires global informa-
tion, we still consider the information it provides as local, as
it is not tied to the global state of the marble. The purpose
of local features is not to eschew global information but to
ensure that information is not tied to a global state.

2.3.2 Knowledge transfer

The next step is to transfer knowledge from one maze to the
next. For the intermediate policy, expressed using the local
state description, we used a nearest neighbor classifier with
a kd-tree as the underlying data structure for efficient query-
ing. After a policy has been found for a maze, we iterate over
the states and add the local state description with their local
actions to the classifier. It is possible to use this intermedi-
ate policy directly on a new maze. For any state in the new
maze, the local description is computed and the intermedi-
ate policy is queried for an action. However, in practice this
does not allow the marble to complete the maze because it
gets stuck. (It will roll into a corner and the action, determin-
istically chosen for that state, keeps the marble pushed into
the corner.) Furthermore, performance would be expected to
be suboptimal as the local description alone does not nec-
essarily determine the optimal action and previous policies
might not have encountered states with local features similar
to states that now appear on the new task.

Instead, an initial policy based on global coordinates is
created using the classifier by iterating over states of the new
maze and querying the classifier for the appropriate action
based on the local features of that state. This policy is then
refined.

2.3.3 Improving the initial policy

Originally, we wanted to use policy evaluation to create a
value function from the initial policy which could then be
further optimized using value iteration. In policy evaluation,
the following update is performed for every state to update
the value function estimate:

V t+1
π (s) = r(s, a) + V t

π (s(a)) (2)

Auton Robot (2010) 29: 169–200 175

where a = π(s), the action chosen in state s by the pol-
icy π .

Compared to value iteration (1), policy evaluation re-
quires fewer computations per state because only one action
is evaluated as opposed to every possible action. We hoped
that the initial value function could be computed using little
computation and that the subsequent value iterations would
terminate after a few iterations.

However, some regions of the state space had a poor
initial policy so that values were not properly propagated
through these regions. In goal directed tasks such as the mar-
ble maze, the propagation of a high value frontier starting
from the goal is essential to finding a good policy: At first all
states will have a value of zero. When performing a sweep of
policy evaluation, all states will lower their value (due to the
one step cost and then reaching a state of value zero), except
those states where the policy picks an action that reaches the
goal. In the next sweep, again most states will lower their
value, except those states that reach the goal or which reach
a state that itself reaches the goal. This way, every sweep
will grow the region of states that have a high values. How-
ever, it is possible to have a region of states which could
reach the goal but where the policy chooses actions that do
not result in a state that reaches the goal (given the policy).
If such a region extends from wall to wall in a corridor of the
marble maze, the high value region growing from the goal
cannot grow past this region.

As a result, the values behind these bad regions will be
uninformed and value iteration will not be sped up. Addi-
tionally, if a policy improvement step was used to update
the policy in these states, the policy of states behind these
bad regions would be updated based on an uninformed value
function. An intuitive example of this might be the case of
a tightrope walk: The optimal policy includes a tightrope
walk. However, if in one of the states on the tightrope the
policy chooses an action leading to falling off the rope, the
value of that state will be low. If we then perform a pol-
icy update on the states leading up to the tightrope, we will
incorrectly avoid the tightrope walk. We have to ensure to
first update the policy of states between the goal and the
tightrope walk, including the state with the incorrect action
on the tight rope, before we can allow updating the policy of
states leading up to the tight rope on the non-goal side.

We overcame these two problems by creating a form of
generalized policy iteration (Sutton and Barto 1998). The
objective in creating this dynamic programming algorithm
was to efficiently use the initial policy to create a value func-
tion while selectively improving the policy where the value
function estimates are valid. Our algorithm performs sweeps
over the state space to update the value of states based on a
fixed policy. In a small number of randomly selected states,
the policy is updated by checking all actions (a full value
iteration update using (1)). As this is done in only a small

number of states (on the order of a few percent), the addi-
tional computation required is small. The states are selected
at random for every sweep.

In order to avoid changing the policy for states using in-
valid or uninformed values, the randomly selected states are
filtered. Only those states are updated where the updated ac-
tion results in a transition to a state which has been updated
with a value coming from the goal. This way we ensure that
the change in policy is warranted and a result of information
leading to the goal. This method of attempting to update a
state and then filtering is necessary, as we do not have an
inverse model available which would allow us to propagate
values back from the goal more directly. The check we used
can easily be implemented by a flag for each state that is
propagated back at each update with the values. Note that as
a result, we do not compute the value of states that cannot
reach the goal.

2.4 Simulation results

In order to gauge the efficiency of the algorithm, a series
of simulated experiments was run. First, pools of 30 training
mazes and 10 test mazes where created using a random maze
generator (mazes available from Stolle 2007). We trained the
intermediate classifier with an increasing number of training
mazes to gauge the improvement achieved as the initial pol-
icy becomes more informed. The base case for the compu-
tation required to solve the test mazes was the computation
required when using value iteration.

Computational effort was measured by counting the
number of times that a value backup was computed be-
fore a policy was found that successfully solved the maze.
The procedure for measuring the computational effort was
to first perform 200 dynamic programming sweeps and then
performing a trial in the maze based on the resulting policy.
Following that, we alternated between computing 50 more
sweeps and trying out the policy until a total of 1000 dy-
namic programming sweeps were performed.

When performing a trial, the policy was to pick the best
action with respect to the expected reward based on the
current estimate of the value function. Figure 9 shows the
quality of the policy obtained in relation to the number of
value backups. The right most curve represents value itera-
tion from scratch and the other curves represent starting with
an initial policy based on an increasing number of training
mazes. The first data points show a reward of −2100 be-
cause policy execution was limited to 2100 time steps. The
trials were aborted if the goal was not yet reached.

Clearly, an initial policy based on the intermediate pol-
icy reduces the computation required to find a good policy.
However, final convergence to the optimal policy is slow be-
cause only a small number of states are considered for pol-
icy updates. This results in a slightly lower solution quality
in our experiments.

176 Auton Robot (2010) 29: 169–200

Fig. 9 Results for one test maze. While learning, every couple of itera-
tions the maze is simulated with actions taken from the current policy.
Reward for reaching the goal is 5000 and the penalty for every step
is 1. A simulation is limited to 2100 steps. An uninformed policy will
result in the marble not reaching the goal and a total reward of −2100.
Once the policy has improved to the point of reaching the goal, the total
reward will be 5000 minus the number of steps to get to the goal

Fig. 10 Relative computation, averaged over 10 test mazes, using two
different sequences of training mazes

In order to ensure that the savings are not specific to this
test maze, we computed the relative computation required to
find a policy that successfully performs the maze for ten dif-
ferent test mazes and plotted the mean in Fig. 10 (solid). Ad-
ditionally, in order to exclude the peculiarities of the train-
ing mazes as a factor in the results, we reran the experiments
with other training mazes. The results can be seen in Fig. 10
(dashed). Clearly, the individual training mazes and their or-
dering do not influence the results very much.

2.5 Discussion

State description: The local features that we are propos-
ing as a solution to this problem are intuitively defined as
features of the state space that are in the immediate vicinity

Fig. 11 Relative computation required for one test maze for two dif-
ferent local state descriptions

of the agent. However, often the agent is removed from the
actual environment and might even be controlling multiple
entities or there may be long-range interactions in the prob-
lem. A more accurate characterization of the features we are
seeking are that they influence the results of the actions in a
consistent manner across multiple tasks and allow, to a vary-
ing degree, predictions about the relative value of actions.
These new features have to include enough information to
predict the outcome of the same action across different envi-
ronments and should ideally not include unnecessary infor-
mation that does not affect the outcome of actions. They are
similar in spirit to predictive state representation (Littman
et al. 2002). These conditions will preclude features such as
position on a map, as this alone will not predict the outcome
of actions—obstacles and goals are much more important.

In order to gauge the effect of different local state de-
scriptions, we created an alternative state description. In this
alternative description, the world is described again as seen
from the marble, but aligned with the direction to the goal
instead of the direction of the movement. Furthermore, the
view is split up into 4 quadrants: covering the 90 degrees
towards the path to the goal, 90 degrees to the left, to the
right and to the rear. For each quadrant, the distance to the
closest hole and closest wall are computed. Holes that are
behind walls are not considered. The velocity of the mar-
ble is projected onto the path towards the goal. The result-
ing state description is less precise with respect to direction
to the walls or holes than the original local description but
takes into account up to four holes and walls, one for each
quadrant. As can be seen in Fig. 11, the results are similar
for both state descriptions. The new state description per-
forms slightly better with fewer training mazes but loses its
advantage with more training mazes.

Computational saving: There are several factors that in-
fluence the computational saving one achieves by using an
informed initial policy. The computational reduction results

Auton Robot (2010) 29: 169–200 177

Fig. 12 Relative computation required for one test maze and different
number of actions

from the fact that our generalized policy evaluation only
computes the value of a single action at each state, whereas
value iteration tries out all actions for every state. As a result,
if the action space is discretized at high resolution, result-
ing in many possible actions at each state, the computational
savings will be high. If on the other hand there are only two
possible actions at each state, the computational saving will
be much less. The computation can be reduced at most by
a factor equal to the number of actions. However, since in a
small number of states in the generalized policy evaluation
we also try all possible actions, the actual savings at every
sweep will be less. In order to show the effects of chang-
ing the number of actions, we reran the experiments for one
maze with actions discretized into 25 different actions in-
stead of 9. As seen in Fig. 12, the relative computational
saving becomes significantly larger, as was expected.

We also ran experiments to determine the effect of per-
forming policy updates on a varying number of states. If
many states are updated at every sweep, fewer sweeps might
be necessary, however each sweep will be more expensive.
Conversely, updating fewer states can result in more sweeps,
as it takes longer to propagate values across bad regions
which are now less likely to be updated. The results are pre-
sented in Fig. 13. When reducing the percentage of states
updated to 0.1%, the computational saving is reduced as it
now takes many more sweeps to find a policy that solves the
maze, unless the initial policy is very good (based on sev-
eral mazes). The savings become more pronounced as more
states are updated fully and are the greatest when 2.0% of the
states are updated, performing better than our test condition
of 0.5%. However, increasing the number of states updated
further results in reduced savings as now the computational
effort at every sweep becomes higher. Comparing the ex-
treme cases shows that when updating few states, the initial
policy has to be very good (many training mazes added), as
correcting mistakes in the initial policy takes longer. On the

Fig. 13 Relative computation required for one test maze and different
percentages of full updates

other hand, if many states are updated, the quality of the ini-
tial policy is less important—many states are updated using
the full update anyways.

Intermediate policy representation: Another issue that
arose during testing of the knowledge transfer was the rep-
resentation of the intermediate policy representation. We
chose a nearest neighbor approach, as this allows broad gen-
eralization early on, without limiting the resolution of the in-
termediate policy once many training mazes were added to
the intermediate policy. However, after adding many mazes,
the data structure grew very large (around 350,000 data
points per maze, around 5 million for 15 mazes). While the
kd-trees performed well, the memory requirements became
a problem. Looking at the performance graph, adding more
than 5 mazes does not seem to make sense with the current
state description. However, if a richer state description was
chosen, it might be desirable to add more mazes and then
pruning of the kd-tree becomes essential.

The nearest neighbor algorithm itself is modifiable
through the use of different distance functions. By running
the distances to the closest hole and wall through a logis-
tic function, we have changed the relative weight of differ-
ent distances already. However, instead one could imagine
rescaling distance linearly to range from 0 and 1, where 1 is
the longest distance to either hole or wall observed.

Dynamic programming on local state space: As we
are using the local state space to express an intermediate
policy, it might be interesting to perform dynamic program-
ming in this state space directly. Due to the possible alias-
ing of different states to the same local state, the problem
becomes a partially observable Markov decision process
(POMDP). This is aggravated if one keeps the value func-
tion across multiple tasks, as now even more states are po-
tentially aliased to the same local state. A policy is less sen-
sitive to this aliasing, as the actions might still be similar
while the values could be vastly different. An example can

178 Auton Robot (2010) 29: 169–200

Fig. 14 Aliasing problem: same local features, same policy but differ-
ent values

be seen in Fig. 14. Both positions with the agent have the
same features and the same policy, but the value would be
different under most common reward functions which fa-
vor short paths to the goal (either with discounting or small
constant negative rewards at each time step). We avoid this
problem by expanding the intermediate feature-based policy
back into a global state-based policy and performing policy
iteration in this state space (see also Fig. 7). For similar rea-
sons, it is tricky to transfer the value function directly: the
same local features might have different values depending
on their distance to the goal. However, adding additional fea-
tures to the local features such as distance to the goal, might
allow function approximation to learn this dependency and
allow dynamic programming to be applied directly to local
state space.

2.6 Summary

We presented a method for transferring knowledge across
multiple tasks in the same domain. Using knowledge of pre-
vious solutions, the agent learns to solve new tasks with less
computation than would be required without prior knowl-
edge. Key to this knowledge transfer was the creation of a
local state description that allows for the representation of
knowledge that is independent of the individual task.

3 Policies based on trajectory libraries2

3.1 Introduction

In the previous section, we introduced an algorithm to trans-
fer policies based on value functions found via DP. Unfor-
tunately, methods for finding and improving such policies,
even when they are initialized from previous policies, are
computationally expensive and require large amounts of fast
memory. Furthermore, finding a suitable representation for

2Partially published in (Stolle and Atkeson 2006).

the value function in continuous or very large discrete do-
mains is difficult. Discontinuities in the value function or
its derivative are hard to represent and can result in unsatis-
factory performance of dynamic programming methods. Fi-
nally, storing and computing this value function is impracti-
cal for problems with more than a few dimensions.

When applied to robotics problems, dynamic program-
ming methods also become inconvenient as they cannot pro-
vide a “rough” initial policy quickly. In goal directed prob-
lems, a usable policy can only be obtained when the value
function has almost converged. The reward for reaching the
goal has to propagate back to the starting state before the
policy exhibits goal directed behavior from this state. This
may require many sweeps. If only an approximate model of
the environment is known, it would be desirable to compute
a rough initial policy and then spend more computation after
the model has been updated based on experience gathered
while following the initial policy.

In some sense, using dynamic programming is both too
optimistic and too pessimistic at the same time: it is too opti-
mistic because it assumes the model is accurate and spends
a lot of computation on it. At the same time, it is too pes-
simistic, as it assumes that one needs to know the correct
behavior from any possible state, even if it is highly unlikely
that the agent enters certain parts of the state space.

To avoid the computational cost of global and provably
stable control law design methods such as dynamic pro-
gramming, often a single desired trajectory is used, with ei-
ther a fixed, time varying linear or state dependent control
law. The desired trajectory can be generated manually, gen-
erated by a path planner (LaValle and Kuffner 2001), or gen-
erated by trajectory optimization (von Stryk 2001). For sys-
tems with nonlinear dynamics, this approach may fail if the
actual state diverges sufficiently from the planned trajectory.
Another approach to making trajectory planners more robust
is to use them in real time at fixed time intervals to compute
a new plan from the current state. For complex problems,
these plans may have to be truncated (N step lookahead) to
obey real time constraints. It may be difficult to take into ac-
count longer term outcomes in this case. In general, single
trajectory planning methods produce plans that are at best
locally optimal.

To summarize, we would like an approach to finding a
control law that, on the one hand, is more anytime (Boddy
and Dean 1994) than dynamic programming—we would
like to find rough policies quickly and expend more compu-
tation time only as needed. On the other hand, the approach
should be more robust than single trajectory plans.

In order to address these issues, we propose a represen-
tation for policies and a method for creating them. This rep-
resentation is based on libraries of trajectories. Figure 15
shows a simple navigational domain example. The cross
marks the goal and the trees represent obstacles. The black

Auton Robot (2010) 29: 169–200 179

Fig. 15 Illustration of a trajectory library. When queried at any point
(e.g. ‘q’), the action (indicated by arrows) of the closest state on any
trajectory is returned

lines are the trajectories which make up the library and the
attached arrows are the actions. These trajectories can be
created very quickly using forward planners such as A∗
or Rapidly exploring Random Trees (RRT) (LaValle and
Kuffner 2001). The trajectories may be non-optimal or lo-
cally optimal depending on the planner used, in contrast to
the global optimality of dynamic programming.

Once we have a number of trajectories and we want to use
the agent in the environment, we turn the trajectories into a
state-space based policy by performing a nearest-neighbor
search in the (global) state-space for the closest trajectory
fragment and executing the associated action. For example
in Fig. 15, when queried in states marked with ‘q’, the action
of the closest state on any trajectory (shown with the dashed
lines) is returned.

3.2 Related work

Using libraries of trajectories for generating new action se-
quences has been discussed in different contexts before. Es-
pecially in the context of generating animations, motion cap-
ture libraries are used to synthesize new animations that do
not exist in that form in the library (Lau and Kuffner 2005;
Lee et al. 2002). However, since these systems are mainly
concerned with generating animations, they are not con-
cerned with the control of a real world robot and only string
together different sequences of configurations, often ignor-
ing physics, disturbances or inaccuracies.

Another related technique in path planning is the creation
of Probabilistic Roadmaps (PRMs) (Kavraki et al. 1996).
The key idea of PRMs is to speed up multiple planning
queries by precomputing a roadmap of plans between sto-
chastically chosen points. Queries are answered by planning
to the nearest node in the network, using plans from the net-
work to get to the node closest to the goal and then plan-
ning from there to the goal. The method presented here and

PRMs have some subtle but important differences. Most im-
portantly, PRMs are a path planning algorithm. Our algo-
rithm, on the other hand, is concerned with turning a library
of paths into a control law. Internally, PRMs precompute
bidirectional plans that can go from and to a large number
of randomly selected points. However, the plans in our li-
brary all go to the same goal. As such, the nature of the
PRM’s “roadmap” is very different than the kind of library
we require. Of course, PRMs can be used as a path planning
algorithm to supply the paths in our library. Due to the op-
timization for multiple queries, PRMs might be well suited
for this and are complementary to our algorithm.

Libraries of low level controllers have been used to sim-
plify planning for helicopters in Frazzoli’s Ph.D. thesis
(Frazzoli 2001). The library in this case is not the solution
to the goal achievement task, but rather a library of con-
trollers that simplifies the path planning problem. The con-
trollers themselves do not use libraries. Older works exists
on using a library of pregenerated control inputs together
with the resulting path segments to find a sequence of con-
trol inputs that follow a desired path (Grossman et al. 1992;
Bailey et al. 1996) or nearby waypoint (Sermanet et al.
2009). These are examples of motion primitives where a li-
brary of behaviors is used as possible actions for planning
instead of low level actions. These motion primitives encode
possible behaviors of the robot and are not used as reac-
tive controllers like the work presented here. Typically, mo-
tion primitives assume that their applications will result in
the same trajectory relative to the starting position no mat-
ter which position they are applied from. Bouncing into a
wall would be grounds for disqualifying the use of a par-
ticular motion primitive. An exception to this is the work
by Howard and Kelly (Howard and Kelly 2007), where a li-
brary of motion primitives (generated on flat ground) is used
to seed an optimizer that takes into account interactions with
rough terrain for particular instantiations of a primitive.

Prior versions of a trajectory library approach, using
a modified version of Differential Dynamic Programming
(DDP) (Jacobson and Mayne 1970) to produce globally op-
timal trajectories can be found in (Atkeson 1994; Atkeson
and Morimoto 2003). This approach reduced the cost of dy-
namic programming, but was still quite expensive and had
relatively dense coverage. The approach of this section uses
more robust and cheaper trajectory planners and strives for
sparser coverage. Good (but not globally optimal) policies
can be produced quickly.

Other related works in planning do not attempt to use li-
braries of trajectories but exploit geometrical properties of
the state space and carefully analyze the model of the envi-
ronment to create vector fields. These feedback motion plans
(Rimon and Koditschek 1992; Connolly and Grupen 1993;
Conner et al. 2003) can be hard to compute and it is unclear
how to make use of discontinuities in the model, such as

180 Auton Robot (2010) 29: 169–200

bouncing into a wall in the case of the marble maze. Sam-
pling based methods such as (Yang and LaValle 2004) have
been introduced to simplify the construction of feedback
motion plans.

3.3 Case study: marble maze

The first domain used for gauging the effectiveness of the
new policy representation and generation is the marble maze
domain (Fig. 2). The model used for creating trajectories
is the simulator described in Sect. 1.2.1. The hardware de-
scribed in the same section was used for the experiments on
the actual maze. The actions in the library are tilts that are
directly sent to the maze, which makes this a library of ele-
mentary actions (see Fig. 1(a)).

3.3.1 Trajectory libraries

The key idea for creating a global control policy is to use
a library of trajectories, which can be created quickly and
that together can be used as a robust policy. The trajectories
that make up the library are created by established planners
such as A∗ or RRT. Since our algorithm only requires the
finished trajectories, the planner used for creating the tra-
jectories is interchangeable. For the experiment presented
here, we used an inflated-heuristic (Pearl 1985) A∗ plan-
ner. By overestimating the heuristic cost to reach the goal,
we empirically found planning to proceed much faster be-
cause it favors expanding nodes that are closer to the goal,
even if they were reached sub-optimally. This might not be
the case generally (Pearl 1985). We used a constant cost per
time step in order to find the quickest path to goal. In order
to avoid risky behavior and compensate for inaccuracies and
stochasticity, we added a cost inversely proportional to the
squared distance to the closest hole on each step. As basis for
a heuristic function, we used distance to the goal. This dis-
tance is computed by a configuration space (position only)
A∗ planner working on a discretized grid with 2 mm resolu-
tion. The final heuristic is computed by dividing the distance
to the goal by an estimate of the distance that the marble can
travel towards the goal in one time step. As a result, we get
a heuristic estimate of the number of time steps required to
reach the goal.

The basic A∗ algorithm is adjusted to continuous do-
mains as described in (LaValle 2006). The key idea is to
prune search paths by discretizing the state space and trun-
cating paths that fall in the same discrete “bin” as one of the
states of a previously expanded path (see Fig. 16 for an il-
lustration in a simple car domain). This limits the density of
search nodes but does not cause a discretization of the actual
trajectories. Actions were limited to physically obtainable
forces of up to ±0.007 N in both dimension and discretized
to a resolution of 0.0035 N. This resulted in 25 discrete ac-
tion choices. For the purpose of pruning the search nodes,

Fig. 16 An example of pruning (LaValle 2006)

the state space was discretized to 3 mm spatial resolution
and 12.5 mm/s in velocity resolution.

The A∗ algorithm was slightly altered to speed it up. Dur-
ing search, each node in the queue has an associated action
multiplier. When expanding the node, each action is exe-
cuted as many times as dictated by the action multiplier.
The new search nodes have an action multiplier that is in-
cremented by one. As a result, the search covers more space
at each expansion at the cost of not finding more optimal
plans that require more frequent action changes. In order to
prevent missed solutions, this multiplier is halved every time
none of the successor nodes found a path to the goal, and the
node is re-expanded using the new multiplier. This resulted
in a speed up in finding trajectories (over 10× faster). The
quality of the policies did not change significantly when this
modification was applied.

As the policy is synthesized from a set of trajectories,
the algorithms for planning the trajectories have a profound
impact on the policy quality. If the planned trajectories are
poor, the performance of the policy will be poor as well.
While in theory A∗ can give optimal trajectories, using it
with an admissible heuristic is often too slow. Furthermore,
some performance degradation derives from the discretiza-
tion of the action choices. RRT often gives “good” trajecto-
ries, but it is unknown what kind of quality guarantees can
be made for the trajectories created by it. However, the tra-
jectories created by either planning method can be locally
optimized by trajectory optimizers such as DDP (Jacobson
and Mayne 1970) or DIRCOL (von Stryk 2001).

Currently, no smoothness constraints are imposed on the
actions of the planners. It is perfectly possible to command
a full tilt of the board in one direction and then a full tilt
in the opposite direction in the next time step (1/30th sec-
ond later). Only imposing constraints on the plans would
not solve the problem as the policy look up might switch be-
tween different trajectories. However, by including the cur-
rent tilt angles as part of the state description and have the
actions be changes in tilt angle, smoother trajectories could
be enforced at the expense of adding more dimensions to the
state space.

Auton Robot (2010) 29: 169–200 181

In order to use the trajectory library as a policy, we store
a mapping from each state on any trajectory to the planned
action of that state. During execution, we perform a nearest-
neighbor look up into this mapping using the current state to
determine the action to perform. We used a weighted Euclid-
ean distance which tries to normalize the influence of dis-
tance (measured in meters) and velocity (measured in meters
per second). As typical velocities are around 0.1 m/s and a
reasonable neighborhood for positions is about 0.01 m, we
multiply position by 100 and velocities by 10, resulting in
distances around 1 for reasonably close data points.

We speed up the nearest-neighbor look ups by stor-
ing the state-action mappings in a kd-tree (Friedman et al.
1977). Performance of the kd-tree was very fast. After 100
runs, the library contained about 1200 state-action pairs
and queries took about 0.01 ms on modest hardware (Pen-
tium IV, 2.4 GHz). Query time is expected to grow logarith-
mically with the size of the library.

Part of the robustness of the policies derives from the cov-
erage of trajectories in the library. In the experiments on the
marble maze, we first created an initial trajectory from the
starting position of the marble. We use three methods for
adding additional trajectories to the library. First, a number
of trajectories are added from random states in the vicinity
of the first path. This way, the robot starts out with a more
robust policy. Furthermore, during execution it is possible
that the marble ceases making progress through the maze,
for example if it is pushed into a corner. In this case, an ad-
ditional path is added from that position. Finally, to improve
robustness with experience, at the end of every failed trial a
new trajectory is added from the last state before failure. If
no plan can be found from that state (for example because
failure was inevitable), we backtrack and start plans from
increasingly earlier states until a plan can be found. Com-
putation is thus focused on the parts of the state space that
were visited but had poor coverage or poor performance. In
later experiments, the model is updated during execution of
the policy. In this case, the new trajectories use the updated
model. The optimal strategy of when to add trajectories, how
many to add, and from which starting points is a topic of fu-
ture research.

Finally, we developed a method for improving an existing
library based on the execution of the policy. For this purpose,
we added an additional discount parameter to each trajectory
segment. If at the end of a trial the agent has failed to achieve
its objective, the segments that were selected in the policy
leading up to the failure are discounted. This increases the
distance of these segments in the nearest-neighbor look up
for the policy and as a result these segments have a smaller
influence on the policy. This is similar to the mechanism
used in learning from practice in Bentivegna’s marble maze
work (Bentivegna 2004). We also used this mechanism to
discount trajectory segments that led up to a situation where
the marble is not making progress through the maze.

Fig. 17 The two mazes used for testing

Fig. 18 Learning curves for simulated trials. The x-axis is the number
of starts and the y-axis is the number of successes in 10 starts (optimal
performance is a flat curve at 10). We restarted with a new (empty)
library three times

3.3.2 Experiments

We performed initial simulation experiments on two differ-
ent marble maze layouts (Fig. 17). The first layout (maze A)
is a simple layout, originally designed for beginners. The
second layout (maze B) is a harder maze for more skilled
players. These layouts were digitized by hand and used with
the simulator.

For maze A, we ran 100 consecutive runs to find the
performance and judge the learning rate of the algorithm.
During these runs, new trajectories were added as described
above. After 100 runs, we restarted with an empty library.
The results of three sequences of 100 runs each are plotted
in Fig. 18(a). Almost immediately, the policy successfully
controls the marble through the maze about 9–10 times out
of 10. The evolution of the trajectory library for one of the
sequences of 100 runs is shown in Fig. 19. Initially, many
trajectories are added. Once the marble is guided through the
maze successfully most of the times, only few more trajec-
tories are added. Similarly, we performed three sequences
of 150 runs each on maze B. The results are plotted in
Fig. 18(b). Since maze B is more difficult, performance is
initially weak and it takes a few failed runs to learn a good
policy. After a sufficient number of trajectories was added,
the policy controls the marble through the maze about 8 out
of 10 times.

We also used our approach to drive a real world marble
maze robot. This problem is much harder than the simula-

182 Auton Robot (2010) 29: 169–200

Fig. 19 Evolution of library of trajectories. (The trajectories (thick
lines) are shown together with their actions (thin arrows))

Fig. 20 Learning curve for trials on hardware for maze A. The x-axis
is the number of starts and the y-axis is the number of successes in 10
starts

tion, as there might be quite large modeling errors and sig-
nificant latencies. We used the simulator as the model for
the A∗ planner. In the first experiment, we did not attempt to
correct for modeling errors and only the simulator was used
for creating the trajectories. The performance of the policy
steadily increased until it successfully navigated the marble
to the goal in half the runs (Fig. 20).

In Fig. 21 we show the trajectories traveled in simula-
tion and on the real world maze. The position of the marble
is plotted with a small round circle at every frame. The ar-
rows, connected to the circle via a black line, indicate the
action that was taken at that state and are located in the posi-

Fig. 21 Actual trajectories traveled. The circles trace the position of
the marble. The arrows, connected to the marble positions by a small
line, are the actions of the closest trajectory segment that was used as
the action in the connected state

tion for which they were originally planned for. Neither the
velocity of the marble nor the velocity for which the action
was originally planned for is plotted. Due to artificial noise
in the simulator, the marble does not track the original tra-
jectories perfectly, however the distance between the marble
and the closest action is usually quite small. The trajectory
library that was used to control the marble contained 5 tra-
jectories. On the real world maze, the marble deviates quite
a bit more from the intended path and a trajectory library
with 31 trajectories was necessary to complete the maze.

Close inspection of the actual trajectories of the marble
on the board revealed large discrepancies between the real
world and the simulator. As a result, the planned trajectories
are inaccurate and the resulting policies do not perform very
well (only half of the runs finish successfully). In order to
improve the planned trajectories, we tried a simple model
update technique to improve our model, without much suc-
cess.

Another factor that impacted the performance of the ro-
bot was the continued slipping of the tilting mechanism such
that over time, the same position of the control knob corre-
sponded to different tilts of the board. While the robot was
calibrated at the beginning of every trial, sometimes signifi-
cant slippage occurred during a trial, resulting in inaccurate
control.

3.4 Case study: Little Dog

Another domain to which we applied the algorithm to is
the Little Dog domain (Fig. 4) described in Sect. 1.2.2. Due
to the complexity of the domain, we use a hierarchical ap-
proach to control the robot. At the high level, actions des-
ignate a foot and a new target location for that foot. A low
level controller then controls the joints to move the body, lift
the foot and place it at the desired location. The trajectory li-
brary operates at the high level and is responsible for select-
ing foot step actions, which makes this a library of abstract

Auton Robot (2010) 29: 169–200 183

actions (see Fig. 1(b)). Before explaining how the library
works, we explain how the hierarchical controller works us-
ing a normal planner.

3.4.1 Planning and feedback control

In order to cross the terrain and reach a desired goal location,
we use a footstep planner (Chestnutt et al. 2005) that finds a
sequence of steps going to some goal location. The planner
operates on an abstract state description which only takes
into account the global position of the feet during stance.
Actions in this planner merely designate a new global po-
sition for a particular foot. We use a heuristic method to
compute continuous body and foot trajectories in global co-
ordinates that move the dog along the footsteps output by
the planner. We also implemented a safety monitor, which
evaluates the robot’s stance before taking a step and pre-
vents unsafe steps to be taken. Details of the step execution
and feedback control are described in the appendix of (Stolle
2008).

In principle, a single plan suffices for the robot to reach
the goal location, especially since the low-level step execu-
tion always tries to hit the next global target of the swing foot
in the plan, regardless of how well the previous step was ex-
ecuted. In practice, if there is significant slip, the next foot
hold might no longer be reachable safely. This is detected
by the safety monitor and replanning is initiated.

3.4.2 Trajectory libraries

By using a trajectory library, the robot can start with mul-
tiple plans and reduce the likelihood of needing to replan.
Even with slips, it might be close enough to execute a step
of a previous plan safely. Only if the robot detects that the
step selected from all the steps in the library is unreachable
does it have to stop the execution and replan. The new plan
is then merely added to the library and, if necessary in the
future, actions from previous plans can still be reused.

Similar to the marble maze, the robot uses a global state-
based lookup into the trajectory library to select its next
step. In the Little Dog case, this is the global position of the
four feet. When started or after completing a step, the robot
computes the position of the four feet in global coordinates.
Then, for every step in the library, the sum of the Euclidean
distances between the current position of the feet and their
respective position at the beginning of the step is computed.
The step with the minimum sum of the Euclidean distances
is used as the next step to take. For large libraries, a kd-tree
can be used to speed up this query. Since a plan in the Little
Dog case consists of few, large steps, this was not necessary.

We also implemented a mechanism for improving the li-
brary based on experience. For this, we remember the last
few steps taken. If one of the last steps taken from the li-
brary is selected again, we slow down the execution of this

step. This is results in improving the execution of particu-
larly difficult steps so that they are more likely to succeed.
Additionally, we keep track of how many times a particu-
lar step was selected for a particular trial. If a step is ever
taken more than some number of times, we add a penalty
to the step which is added to its Euclidean distance when
selecting future step. The penalty is chosen such that if the
library is queried from the same state again, it will chose
the second best step instead of the previously selected step.
This also prevents the robot from attempting the same step
indefinitely.

3.4.3 Experiments

We performed several experiments to gauge the effective-
ness of the library approach. In these experiments, we com-
pared using a single-plan sequential execution with replan-
ning to using the trajectory library approach. In both cases,
we use the same safety monitor to check the safety of the
next step and replan as necessary. Experiments were run
on three different terrains (see Fig. 22). For each terrain
board, we started the robot in a number of different start-
ing locations. As planning times of the footstep planner can
vary wildly, even with nearly identical starting positions, we
only look at the number of planning invocations and not at
the time spent planning (total planning times were between
1/6th to 1/4th of the execution times for most boards. Due
to peculiarities of the footstep planner, the total planning
times for the slope board were between 1.2× to 2× the exe-
cution times). As the library approach keeps previous plans,
we expect it to require fewer invocations of the planner.

Additionally, we also compare the time it takes for the
robot to cross the board. As the library can slow down steps
that are executed poorly and even avoid using particular

Fig. 22 Terrains for gauging the advantage of the trajectory library

184 Auton Robot (2010) 29: 169–200

Table 1 Results comparing
sequential execution and library
execution on different terrains

Start Sequential execution Library

Plan. invocations Execution time Plan. invocations Execution time

(a) modular rocks results

1 5 30.2 s 2 25.8 s

2 3 27.4 s 1 25.8 s

3 3 25.3 s 2 25.2 s

4 1 25.0 s 1 23.5 s

5 4 23.0 s 1 22.3 s

sum 16 130.9 s 7 122.6 s

(b) truncated rocks

1 1 28.2 s 1 28.9 s

2 6 30.7 s 5 27.4 s

3 6 31.2 s 1 27.1 s

sum 13 90.1 s 7 83.4 s

(c) slopes

1 6 24.8 s 6 25.8 s

2 6 24.4 s 0 25.5 s

3 5 24.9 s 4 24.6 s

4 3 24.3 s 0 22.6 s

sum 20 98.4 s 10 98.5 s

(d) modular rocks results, different start states

1 4 30.8 s 1 25.2 s

2 6 31.2 s 1 24.2 s

3 4 29.7 s 2 26.4 s

4 2 25.4 s 2 23.4 s

5 4 28.3 s 5 20.2 s

sum 20 145.4 s 11 119.4 s

steps, we expect the execution of the library to be slightly
better.

As can be seen from the results in Table 1, using a trajec-
tory library reduces the number of planning invocations nec-
essary to cross a terrain by roughly a factor of two. Further-
more, execution speed alone, without considering planning
time, is slightly improved. When examining the logging out-
put, we found that the library based executions sometimes
skips steps. This is possible because the planner is using a
fixed sequence of feet in deciding which foot to move next.
However, sometimes it is not possible to move a foot for-
ward so it is stepped in place. In such a case, the trajectory
library can skip a step. Also, it is possible that the robot slips
forwards and a future step becomes executable early.

Finally, the start states used were chosen to allow for sim-
ilar paths and hence synergies between plans. For the mod-
ular rocks board, we also picked a number of start states de-
liberately chosen to be far apart. Although the advantage of
the library is less pronounced in this case when compared to
the original step sequence (see Table 1d vs. Table 1a), there

Fig. 23 The library after executing 5 starts (second experiment) for
the modular rocks terrain

is a still a noticeably positive effect. When looking at the
resulting library in Fig. 23, this is a result of the paths go-
ing over similar parts of the terrain, even when started from
different start positions.

During these experiments, sometimes Little Dog cata-
strophically failed in executing a step and fell over. Neither
replanning or a trajectory library can recover from this. In
our experiments, this happened a small number of times and
those runs were excluded. However, it is conceivable that

Auton Robot (2010) 29: 169–200 185

reflexes can be implemented on Little Dog that interrupt the
execution of a step when failure is imminent and attempt to
return the robot to a stable pose. Most likely, this would re-
quire replanning, or in the case of the library, picking a step
that wasn’t the original successor to the previous step. Us-
ing reflexes to recover from step execution failure will hence
benefit from using a library approach.

3.5 Discussion

The main advantage of a trajectory library is a reduction
in needed computational resources. We can create an initial
policy with as little as one trajectory. In the case of the mar-
ble maze, we avoid computing global policies and instead
use path planning algorithms for creating robust behavior
without the possibility of replanning. In the case of Little
Dog, replanning is possible but undesirable and the use of
the library reduces the need for replanning. The larger the
library is, the less likely replanning is necessary. Due to the
setup of the Little Dog domain, the robot is run over a terrain
multiple times and often similar paths are found by the path
planner, leading to an effective use of previous paths. Sim-
ilarly, in the marble maze the library becomes more robust
the more paths have been added.

By scheduling the creation of new trajectories based on
the performance of the robot or in response to updates of
the model, policies based on trajectory libraries are easy to
update. In particular, since the library can be continually
improved by adding more trajectories, the libraries can be
used in an anytime algorithm (Boddy and Dean 1994): while
there is spare time, one adds new trajectories by invoking a
trajectory planner from new start states. Any time a policy is
needed, the library of already completely planned trajecto-
ries can be used. It is possible to plan multiple paths simul-
taneously for different contingencies or while the robot is
executing the current paths. These paths can be added to the
library and will be used as necessary. Planning simultane-
ously while executing the current plan leads to timing issues
in the case of a sequential execution, as the robot will con-
tinue executing using the previous plan, while a new plan is
created. When the new plan is finished, the robot is likely
no longer near the start of the new plan and the problem of
splicing the new plan into the current plan can be tricky. Es-
pecially in the Little Dog case, in our experience, the foot
step planner can find very different paths even with similar
starting conditions so it is possible that a plan started from
near a state on a previous plan will be very different from
the previous plan and it is not possible to start using the new
plan by the time the planner has finished planning.

A strength of the library approach is the discrete storage
of the policy through state-action pairs. This eases additions
of more or less domain-specific learning from experience.
For example, in both the marble maze and the Little Dog,

we modify the Euclidean distance metric to allow for penal-
izing bad actions. This approach is likely possible in many
domains. Additionally, in Little Dog we slow down steps
that need to be repeated. A similar approach could be used
in the marble maze by decreasing the force/tilt of an action
if it led to failure.

One potential issue that can occur is a scenario in which
the state of the system is the same distance from conflicting
state-action pairs in the library. In this case, the tie can be
broken arbitrarily. It is furthermore conceivable that the sys-
tem continuously switches between state-action pairs from
different trajectories that come from a different topological
class (e.g. avoiding an obstacle by going left vs. by going
right). In our experience, this has not been a problem. The
marble maze is too dynamic of a task as to allow lingering
in such a region for long. In the case of Little Dog, an action
targets an absolute position as a foot hold, which directly
reduces the distances to the next step from that same trajec-
tory. This makes repeated switching between two plans from
different topological classes unlikely and we did not observe
this behavior in any of our experiments. A more principled
approach on how to deal with conflicting data that could be
applicable was recently described in (Chernova and Veloso
2008).

Compared to value function based methods for creating
policies, trajectory planners have the advantage that they
use a time index and do not represent values over states.
Thus they can easily deal with discontinuities in the model
or cost metric. Errors in representing these discontinuities
with a value function can result in the divergence of DP
algorithms. Additionally, no discretization is imposed on
the trajectories—the state space is only discretized to prune
search nodes and for this purpose a high resolution can be
used. On the other hand, path planners use weaker reasoning
than planning algorithms that explicitly take into account the
stochasticity of the problem such as dynamic programming
using a stochastic model. For example in the marble maze, a
deterministic implementation of A∗ will result in plans that
can go arbitrarily close to holes as long as they don’t fall
into the hole given the deterministic model that A∗ uses.
In contrast to that, dynamic programming with a stochastic
model will take into account the probability of falling into
a hole and result in policies that keep some clearance. Un-
fortunately, dynamic programming using stochastic models
is even more computationally intensive than dynamic pro-
gramming with a deterministic model. Similar limitations
apply to Markov Games, where some information becomes
available only in future states and might depend on those
future state. This information is not available at the time of
planning and planners typically do not take into account po-
tential, future information.

Compared to replanning without remembering previous
plans, trajectory libraries not only save computational re-
sources, but also have the advantage of being able to use

186 Auton Robot (2010) 29: 169–200

experience to improve the library. We did this both in the
case of the marble maze as well as in the Little Dog case. In
the first case, state-action pairs were penalized when they
led up to failures. In the case of Little Dog, state-action
pairs were penalized when they were invoked multiple times
in a row. This results in a limited amount of exploration,
as other state-action pairs with potentially different actions
get picked in the same state in the future. However, when
the planner is invoked, it might re-add the same action in
the same state. In order to propagate the information from
execution into the planner, one would have to update the
model or maybe the cost function. Environments which re-
quire complex policies can also result in excessively large
policies. For example, one could image arbitrarily complex
environments in which small changes to the state require dif-
ferent actions. In this case, replanning might be more ap-
plicable as it is not affected by this complexity—it immedi-
ately forgets what the previous plan was.

Finally, it is unclear how to assess the quality of a li-
brary. Some distance-based metrics can be used to assess
the coverage and robustness of the library: given some state,
how far away is it from any state-action pair in the library?
Given some radius around this state, how many state-action
pairs can be found? (This could provide insights into robust-
ness against perturbations.) Alternatively, one could assess
the quality of the library by greedily following the reactive
policy in simulation, assuming a deterministic model and
comparing this to a plan from the exact query state. Some
research into assessing the quality of a library of motions in
the context of synthesizing animations can be found in (Re-
itsma and Pollard 2004). Finally, it is possible to imagine
interference between two different trajectories which have
different solutions (such as two different ways around an
obstacle). However, in general picking an action from one
trajectory will result in a state that’s closer to states on the
same trajectory. This is especially true in the Little Dog case
where low-level controllers try to hit global foot hold lo-
cations. Using optimizers to improve the trajectories in the
library will probably result in more congruent trajectories,
too.

3.6 Summary

We have investigated a technique for creating policies based
on fast trajectory planners. For the marble maze, experi-
ments performed in a simulator with added noise show that
this technique can successfully solve complex control prob-
lems such as the marble maze. However, taking into account
the stochasticity is difficult using A∗ planners which result
in some performance limitations on large mazes. We also
applied this technique on a physical version of the marble
maze. In this case, the performance was limited by the accu-
racy of the model.

In the case of Little Dog, we used a library in order to re-
duce the amount of replanning. Unlike the marble maze, it is
possible to stop and replan in the Little Dog domain. How-
ever, it is desirable to reduce the time spent on replanning.
Furthermore, by remembering steps from previous plans, ex-
perience from previous executions can be remembered in
the library to improve future executions. This is not possible
in the tabula rasa approach of planning from scratch every
time.

It is worth noting a similarity between the policy repre-
sentation introduced here and the intermediate policy used
for transfer in the previous section. In both cases, we use
a library of state-action pairs to find an action for a given
state. However, the intermediate policy representation from
the previous section is based on local state and is used to
seed a new global-state based policy for a new task. On the
other hand, the library from this section is based on global
state and is only used directly as a policy and not for trans-
ferring to new tasks.

4 Transfer of policies based on trajectory libraries3

4.1 Introduction

The previous section introduced policies based on trajec-
tory libraries, which perform lookups into a library of state-
action pairs to determine the correct action to take in a given
state (see Fig. 15). So far, these policies were created in-
place by planners using the problem on hand.

We will now present work that allows transferring an ex-
isting library to a new problem, using ideas that we first used
to transfer policies based on value function (see Sect. 2).
There are several reasons why transferring libraries is use-
ful. For one, as discussed in Sects. 3.3.1 and 3.5, the perfor-
mance of a trajectory library generally improves the denser
it is. Hence, starting with an empty library for a new problem
is undesirable and being able to seed a library from previous
experience is advantageous.

Another reason for transferring existing libraries to a new
problem is that this allows us to consider new sources for
state-action pairs in the library. Instead of only relying on
planners that can be called on the problem at hand, we can
now use domain-specific knowledge to create special pur-
pose behaviors. Using these behaviors, we can solve prob-
lems that were previously unsolvable using existing plan-
ners.

4.1.1 Direct transfer

We propose to transfer library through the use of local fea-
tures, the idea we successfully used in Sect. 2 to transfer

3Partially published in (Stolle and Atkeson 2007a).

Auton Robot (2010) 29: 169–200 187

Fig. 24 Illustration of feature space. On the circled states as examples,
we show how state-action pairs could be specified in terms of local
features such as the relative positions of obstacles and the goal

policies based on value functions. When using features, in-
stead of representing the state of the system using its de-
fault global representation, we use properties that describe
the state of the system relative to local properties of the en-
vironment. For example in a navigational task, instead of
using global Cartesian position and velocity of the system,
we would use local properties such as location of obstacles
relative to the system’s position (Fig. 24). This allows us to
reuse parts of a library in a new solution if the new problem
contains states with similar features. To illustrate the idea of
transferring libraries using local features, we present Algo-
rithm 1.

This direct transfer algorithm is a fairly direct combina-
tion of the ideas from the previous two sections—using lo-
cal features to transfer knowledge and using discrete state-
action pairs as a control policy. This is expected to work
in environments where we can encode enough global infor-
mation into a local representation so that the agent can be-
have according to this local representation and succeed in
obtaining the global goal. In our previous work on transfer-
ring value-based policies (see Sect. 2), we added a direction-
to-goal feature to the local features for the marble maze in
order to ensure goal directed behavior. Otherwise, goal di-
rected behavior would not have been possible by just look-
ing at nearby walls and holes.

4.1.2 Transfer with planning

In the case of more complex environments, such as Little
Dog, it is not always possible to add such a local feature
without solving the actual planning problem. While it is con-
ceivable to add a direction-to-goal feature using a simplified
planner, without taking into account actual foot placements
it is very difficult to produce informative heuristic plans.

Algorithm 1 generic simple transfer algorithm
1: {S is the state space of the system.}
2: {A is the action space of the system.}
3: {F is a local feature space with lf : S → F which maps

a state s ∈ S to a local feature vector f ∈ F . This func-
tion need not be invertible and may map different states
to the same feature vector.}

4: {Al is a local action space with la : S × A → Al which
maps action a ∈ A taken in state s ∈ S to a local action
al ∈ Al and with la−1 : S × Al → A which maps a local
action al taken in state s back to a global action a.}

5: {L is a library of state-action pairs:}
6: L := {〈s1, a1〉, 〈s2, a2〉 · · · 〈sn, an〉}
7: {transfer library to local state representation:}
8: Ll ← ⋃〈lf(si), la(si , ai)〉 ∀〈si, ai〉 ∈ L

9: Lnew ← ∅
10: for t ∼ envnew {sample target states, t ∈ S} do
11: {look up using local representation:}
12: al ← Ll(lf(t))
13: {add action to new library:}
14: Lnew ← Lnew ∪ 〈t, la−1(t, al)〉
Note: both L and Lnew contain state—action pairs 〈s ∈
S,a ∈ A〉, while Ll contains feature—local action pairs
〈f ∈ F,al ∈ Al〉.

Instead of using a library to replace or reduce planning
on a new problem, we would like to use it in conjunction
with the planner, using the library to encode special-purpose
behaviors for situations for which the planner cannot find
suitable plans. This is an evolution of the direct transfer al-
gorithm, extending the use of libraries from reactive poli-
cies to libraries of behaviors that augment a planner. When
transferring such a library to a new problem, it contains pos-
sibilities for behaviors in different parts of the environment
(see Fig. 1(c)). We integrate these into the planning process
to find a goal directed sequence of actions, incorporating be-
haviors from the library only if appropriate (see Fig. 25). In
order to plan with these behaviors, the library needs to also
store the expected state resulting from executing a behavior
from its start state. This transfer algorithm is described in
Algorithm 2.

This algorithm has two key differences when compared
to Algorithm 1. One key difference is that tuples in the li-
brary contain an expected result state. The other key differ-
ence is that instead of sampling the environment regardless
of the available actions, we now perform a targeted search
for states with suitable features in the new environment.

After having found appropriate places for the behaviors
in the new environment, we employ a two-level planning al-
gorithm (see Algorithm 3) to find a sequence of actions and
behaviors that actually lead to the goal. This uses the library
as a library of possibilities of behaviors, finds the behav-
iors useful for achieving a goal and incorporates them in a

188 Auton Robot (2010) 29: 169–200

Fig. 25 Illustration of search through a trajectory library. For the given
start state, we find a sequence of trajectory segments that lead to the
goal

Algorithm 2 generic behavior transfer algorithm
1: {S, A, F with lf and Al with la are defined as in Algo-

rithm 1}
2: {Sl is a local state space with ls : S × S → Sl , mapping

state s′ ∈ S to local state s′
l ∈ Sl based on reference state

s ∈ S and with ls−1 : S × Sl → S, mapping local state
s′
l ∈ Sl back to a global state s′ ∈ S based on a new ref-

erence state s ∈ S.}
3: {L is a library of state-action-state tuples:}
4: L := {〈s1, a1, s

′
1〉, 〈s2, a2, s

′
2〉 · · · 〈sn, an, s

′
n〉}

5: {transfer library to local state representation:}
6: Ll ← ⋃〈lf(si), la(si , ai), ls(si , s′

i)〉 ∀〈si, ai, s
′
i〉 ∈ L

7: Lnew ← ∅
8: for all 〈f,al, s

′
l〉 ∈ Ll do

9: {find target states with similar features:}
10: T ← {t ∈ envnew | lf(t) ≈ f }
11: {transfer behavior to target state and add to new li-

brary}
12: Lnew ← Lnew ∪⋃〈t, la−1(t, al), ls−1(t, s′

l)〉 ∀t ∈ T

Note: both L and Lnew contain state-action-state tuples 〈s ∈
S,a ∈ A, s ∈ S〉, while Ll contains feature-local action-local
state tuples 〈f ∈ F,al ∈ Al, sl ∈ Sl〉. For brevity, we will re-
fer to the state-action-state tuples as behaviors b with initial
state s(b), action a(b) and expected result state s′(b).

plan. The final plan consists of sequences of actions from
the planner (plan(bi, bj)) and actions or behaviors from the
transferred library (a(bi)). After the Related Works section,
we show how we implemented two variants of this algorithm

Algorithm 3 planning through transferred library
1: {create high-level graph:}
2: G := 〈V,E〉
3: {vertices are behaviors from Lnew and empty behaviors

for start bs = b(ss) and goal bg = b(sg) s.t. s(bs) =
s′(bs) = ss and s(bg) = s′(bg) = sg}

4: V := {b(ss), b(sg)} ∪ {b | b ∈ Lnew}
5: {created edges between near behaviors:}
6: E := {〈bi, bj 〉 | ‖s′(bi), s(bj)‖ < c}
7: {we invoke the original planner to compute plans and

weights for each edge}
8: for all 〈bi, bj 〉 ∈ E do
9: plan(bi, bj) ← planner(s′(bi), s(bj))

10: w(bi, bj) ← cost(plan(bi, bj))

11: {perform best-first-search to find a plan through G}
12: planG ←
13: (〈bs, b2〉, 〈b2, b3〉 · · · 〈bn−1, bg〉) = BFS(G,bs, bg)

14: {convert plan into sequence of actions and behaviors}
15: planfinal ←
16: (plan(bs, b2), a(b2),plan(b2, b3), a(b3), . . .

17: . . . , a(bn−1),plan(bn−1, bg))

to Little Dog. Due to research priorities, no case study was
done on the marble maze, which would otherwise lend itself
for a case study on the “Direct Transfer” algorithm.

4.2 Related work

The work presented in this section, like the work on trans-
ferring policies using a generalized policy iteration dynamic
programming procedure in Sect. 2, deals with transfer learn-
ing. As such, much of the related work in Sect. 2.2 applies
here as well. However, since trajectory libraries are explic-
itly represented as state-action pairs, it is much simpler to
express them in a feature space than the value function based
policies from our previous work.

In addition to the aspect of transferring knowledge, the
aspect to learn from demonstration to solve difficult controls
problem is related to (Bentivegna et al. 2006). It explores
learning from observation using local features, and learning
from practice using global state on the marble maze task.
Our approach to learning from demonstration takes a more
deliberate approach, since we perform a search after repre-
senting the learned knowledge in a local feature space. More
recent work on using human input to not only learn, but also
effectively improve control knowledge is presented in (Ar-
gall et al. 2008).

Related work on Little Dog that uses input from a human
teacher to learn value functions for planning based on local
features can be found in Kolter et al. (2008). More similar
related work which learns policies for the AIBO quadruped
robot directly from demonstration using function approxi-

Auton Robot (2010) 29: 169–200 189

Algorithm 4 Little Dog transfer and planning
Transfer library according to Algorithm 2. Find similar
states (line 10) as follows:

– create height profile for every step
– create height profile for a sampling of positions and ori-

entation on the new map
– for each step, find best match; discard if best match is

worse than some threshold.

Find appropriate steps to get from start state ss to the goal
state sg (cf. Algorithm 3)

– add two behaviors, bs and bg with s(bs) = s′(bs) = ss and
s(bg) = s′(bg) = sg

– ∀b, b′, find the Euclidean foot location metric between
s′(b) and s(b′)

– Define the successors of b, succ(b) to be the n b′ with the
smallest distance according to the metric

– Create footstep plans between all s′(b), s(b′), s. t. b′ ∈
succ(b)

– Perform a Best-First-Search (BFS) through the graph
whose vertices are the footsteps b and directional edges
are defined from b → b′ whenever b′ ∈ succ(b)

– The final library consists of all steps b on the path deter-
mined by the BFS as well as all generated footsteps by
the footstep planner on that path.

mation mapping local features to actions was performed in
(Grollman and Jenkins 2008).

4.3 Case study: Little Dog

The domain to which we applied the algorithm is the Little
Dog domain (Fig. 4) described in Sect. 1.2.2. As described
in the previous section, we can use a footstep planner (Chest-
nutt et al. 2005) that finds a sequence of steps going to some
goal location. We then use a heuristic method to compute
body and foot trajectories that move the dog along the foot-
steps output by the planner. On some difficult terrains, we
are unable to create good sequences of foot steps that can be
executed by the heuristic foot step execution.

In order to increase the capability of the robot on diffi-
cult terrain, we use learning from demonstration to navigate
the robot across difficult terrain. We use a joystick together
with inverse kinematics to manually drive the robot across
the terrain and place feet. Sequences of joint angles together
with body position and orientation are recorded and anno-
tated with the stance configuration of the robot. The stance
configuration describes which legs are on the ground and
which leg is in flight. Once the robot has been driven across
the terrain, the data can be automatically segmented into in-
dividual footsteps according to the stance configuration: a
new step is created every time a flight foot returns onto the

ground and becomes a stance foot. As a result, every step
created in this way starts with a stance phase where all four
feet are on the ground. If necessary, we can optionally sup-
press the automatic segmentation.

Once the steps have been segmented, they can be used
immediately on the same terrain without transfer, using the
trajectory library approach from the previous section. Steps
are added to the trajectory library with the global position of
the four feet, as recorded at the beginning of a step, as index.
Recorded steps can also be mixed with heuristic steps com-
ing from the planner. By using a trajectory library to pick
which step to take, the robot can succeed in traversing a ter-
rain even if it slips or if it is just randomly put down near
the start of any step. When a recorded step is picked from
the library, we play back the recorded joint angles. Addi-
tional details, including information about the feedback con-
trollers used and how smoothness constrains are obeyed can
be found in (Stolle 2008).

4.4 Library Transfer 1

4.4.1 Description

Clearly, indexing into the policy based on a global state de-
scription such as global position of the feet, limits it to a
particular task. If the terrain is moved slightly, the steps will
be executed incorrectly. Furthermore, if parts of the terrain
have changed, the policy cannot even adapt to such a simple
change. In order to solve these problems, we use the algo-
rithm for transferring trajectory libraries to different envi-
ronments. The transfer algorithm has to recognize appropri-
ate terrain for applying the demonstrated steps successfully
and effectively. The source of the transfer are multiple tra-
jectories which were recorded when the robot traversed dif-
ferent terrain boards in varying directions.

Referring back to the algorithm definition in Sect. 4.1.2,
the original state space S is the same as used in Sect. 3.4.2:
the global 2d-position of the 4 feet (8-dimensional vec-
tor). The actions space in this case is the discreet set
of recorded behaviors, each consisting of a sequence of
recorded joint angles and body poses. The local feature vec-
tor f is created from the local height profile (Fig. 27) for
each step. The feature-vector is hence a vector of heights:
f = 〈h1,1, h1,2, . . . , hi,j , . . . , hm,n〉. The origin of the local
frame (Fig. 26) for the profile is the centroid of the global
foot positions at the beginning of the step. The x-axis is
aligned with a vector pointing from the XY-center of the
rear feet towards the XY-center of the front feet. The z-axis
is parallel to the global z-axis (aligned with gravity). The
height of the terrain is sampled at 464 positions on a regular
grid (0.35 m × 0.20 m with .012 m resolution) around this
origin to create a length 464 vector. The grid is normalized
so that the mean of the 464 entries is zero. The functions ls

190 Auton Robot (2010) 29: 169–200

Fig. 26 Local frame

and la, used for mapping actions and states into local action-
and state-spaces are also defined using this local frame: The
joint angles in a are preserved as is, while the body poses are
transformed into the coordinate system of the local frame.
In the same way, the function ls maps a global pose into the
local coordinate frame.

For finding states with similar features in a new envi-
ronment, we create local terrain descriptions for a sampling
of all possible positions and rotations around the z-axis on
the new terrain. The rotations around the z-axis are limited
to rotations that have the dog pointing roughly to the right
(θ ∈ [−π/4,π/4]). For every step in the library, we then find
the local frame on the new map that produces the smallest
difference in the feature vector. If this smallest difference is
larger than some threshold, the step is discarded. The thresh-
old is manually tuned to ensure that steps do not match in-
appropriate terrain.

For performance reasons, after creating the feature vec-
tors for the matching of steps, we used principal component
analysis (PCA) to project the vectors into a lower dimen-
sional space. The PCA space was created beforehand by cre-
ating feature vectors for one orientation of all the obstacle
boards we had. The first 32 eigenvectors, whose eigenval-
ues summed to 95% of the total sum of eigenvalues, were

Fig. 27 Local heightmap

chosen as the basis for the PCA space (see Fig. 28 for the
cumulative energy of the first 100 eigenvectors).

Once all steps have been discarded or translated to new
appropriate positions, we perform a search through the li-
brary, as described in Sect. 4.1.2. Due to the relocation, there
is no guarantee that the steps still form a continuous se-
quence. Depending on the size and diversity of the source
library, the steps of the new library will be scattered around
the environment. Even worse, some steps might no longer
be goal directed. The steps now represent capabilities of the
dog. In places where a step is located, we know we can exe-
cute the step. However, it is unclear if we should execute the
step at all or in what sequence. We solve this problem by per-
forming a search over sequences of steps. In order to connect
disconnected steps, we use a footstep planner (Chestnutt et
al. 2005). Given the configuration of the robot at the end
of one step and the beginning of another step, the footstep
planner can generate a sequence of steps that will go from
the first to the latter. The same heuristic walking algorithm
as in the previous section was used for controlling the body

Auton Robot (2010) 29: 169–200 191

Fig. 28 Cumulative energy of the first 100 eigenvectors

Fig. 29 Illustration of topological graph after transfer of library. Each
behavior is a node in the topological graph. The connections (gray
lines) are made using the foot step planner

and the actual leg trajectories while executing footsteps from
the footstep planner.

For the search, we generate a topological graph (see
Fig. 29). The nodes of the graph are the start state and the
goal state of the robot, as well as every step in the trans-
ferred library. Edges represent walking from the end of the
pre-recorded step represented by the start node to the begin-
ning of the pre-recorded step represented by the target node.
The cost of every edge is roughly the number of additional
steps that have to be taken to traverse the edge. If the foot lo-
cations at the end of the source pre-recorded step are close to
the foot locations at the beginning of the target pre-recorded
step of the edge, no additional steps are necessary. In order
to know the number of additional steps, the footstep plan-
ner is used at this stage to connect the gaps between steps
when we generate the topological graph. Since the steps that
are output by the planner are considered risky, we assign a
higher cost to planned steps. (If the planner created reliable
steps, we could just use the planner to plan straight from
the start to the goal.) In order to reduce the complexity of
the graph, nodes are only connected to the n-nearest steps
based on the sum of Euclidean foot location difference met-

Fig. 30 Terrains used to create trajectory library

Fig. 31 Excerpts from the trajectory library. Lines show the actual
trajectories of feet and body (cf. Fig. 5). The dog moves from left to
right

ric. We then use a best-first search through this graph to find
a sequence of footstep-planner-generated and pre-recorded
steps. This sequence is added to the final library.

4.4.2 Experiments

We performed several experiments to verify the effective-
ness of the proposed algorithms. For all experiments we
started with 7 libraries that were created from two differ-
ent terrains. Using a joystick, one terrain was crossed in four
different directions and the other terrain was crossed in three
different directions (two examples can be seen in Fig. 31).
The combined library contained 171 steps.

In order to test transfer using terrain features, we first
looked at transferring the steps from these seven libraries to
one of the original terrains. In theory, the steps from the li-
brary that was created on the same terrain should match per-
fectly back into their original location. Some spurious steps
from the other terrains might also match. This is indeed the
case as can be seen in Fig. 32. The spurious matches are a re-
sult of some steps walking on flat ground. Flat ground looks
similar on all terrains.

When modifying the terrain, we expect the steps to still
match over the unchanged parts. However, where the terrain
has changed, the steps should no longer match. For this ex-
periment we modified the last part of a terrain to include

192 Auton Robot (2010) 29: 169–200

Fig. 32 Library matched against one of the source terrains. Many
steps match the flat parts and the steps created from crossing this ter-
rain match back into their original location as seen by black body-trace
crossing the terrain. (Some crosses do not have foot-traces extending
from them, since they are the starting location for a foot from a step
where one of the other three feet was moving)

Fig. 33 Library matched against new, modified terrain. No steps
match the completely new terrain on the right

new rocks instead of the previously flat part (Fig. 33). The
matching algorithm correctly matches the steps that are pos-
sible and does not incorrectly match steps on the modified
parts.

While the matching correctly identifies where to place
steps in the library, the resulting library needs to be im-
proved, as anticipated. There are large gaps between some
steps. Moreover, some spuriously matched steps do not
make progress towards the goal but can lead the robot away
from it, if they happen to be matched greedily. We now use
the search algorithm described earlier to postprocess the re-
sulting library. The resulting plan should select the right
steps, throwing out the spurious matches. Furthermore, by
invoking the footstep planner to connect possible steps to-
gether, it will also fill in any gaps. This happens correctly
for the modified map (Fig. 34).

Finally, in order to validate the transfer algorithm, we ex-
ecuted the resulting library on the terrain with the modified
end board. A plan, from a slightly different start location but
otherwise identical to Fig. 34, was executed on the robot and
the robot successfully reached the goal, switching between
steps from the source library that were created by joystick
control and the synthetic steps created by the footstep plan-
ner (Fig. 35).

Fig. 34 Result of searching through the library on modified terrain
with the green spot as the goal. For a particular start and goal, only the
relevant behaviors are used and additional steps created by the footstep
planner to the left and right of the familiar rock terrain. (The steps
coming from the footstep planner do not show traces from the starting
places of the feet (crosses), since the foot trajectories are generated on
the fly during execution. The body trajectory for planned steps are only
hypothetical trajectories—the on-line controller is used for the actual
trajectories during execution)

Fig. 35 Little Dog executing the plan

4.5 Library Transfer 2

4.5.1 Description

The previous algorithm has a number of limitations that we
worked on removing in an alternate transfer algorithm. The
improvements were made to specific details of Algorithm 2,
in particular the feature generation lf, the search for new
states with appropriate features for a behavior (line 10) and
the function mapping local actions back to global actions
(la−1).

The search for suitable states in the previous algorithm
was limited to one match for each state-action pair in the
library of behaviors. In the new algorithm, we allow multi-
ple matches of a step in different parts of the terrain. After

Auton Robot (2010) 29: 169–200 193

Fig. 36 Example swept volume
for crossing a barrier. The robot
moves from left to right. This
pictures shows for every point
the lowest any part of the robot
has been at that point while
climbing over a barrier. The
smooth surfaces in the center are
from the bottom of the trunk.
The protrusions downwards on
both sides are caused by the legs
and feet (which touch the
ground while in support). Notice
that near x = 0.2 m, no part of
the robot is very low. This is
where the barrier was placed

a match has been found, we exclude a region around the
match from being matched in the future. We then look for
additional matches, excluding regions around each success-
ful match, until the PCA error becomes larger than some
threshold.

A more significant change was done in the feature gen-
eration and matching algorithm itself. In the first algorithm,
matching was done purely based on sum-of-squared error
of the PCA feature vectors, which does not take into ac-
count the properties of a particular step. In particular for
Little Dog, it is important that the terrain supports the stance
feet and that neither the body nor the flight foot collide with
the terrain. Hence, there are certain variations of the terrain
(lower terrain in parts where the stance feet are not sup-
ported or higher terrain in parts which are not occupied by
any part of the robot) that can be tolerated easily. On the
other hand, if the terrain changes under the feet or changes
so that parts of the body would collide, the match should
no longer be allowed. In order to prevent matches in such
cases, the cut-off on the PCA error has to be very low in the
first algorithm. This precludes matching even if the terrain
is different in tolerable ways.

In this second algorithm, we added additional checks af-
ter a PCA match to verify that a particular match is possible
and does not result in collisions. This allows the use of a
lower dimensional PCA representation with a higher error
cut-off, as the PCA matching only has to recognize where
the terrain has similar characteristics to the original train-
ing terrain. The PCA error is no longer used to judge if the
relocation is valid.

Instead, the new algorithm uses a tiered approach to
check the validity of a possible location. The first check is
based on foot locations and is responsible to ensure that all

feet are supported by the terrain. Before transferring a step,
we compute the location of touchdown and lift-off of all feet
during the step in the coordinates of the local frame of the
step (see Fig. 26). We then look up the height of the terrain
under the foot and compute the height of the foot over the
terrain. When checking a new location, we again compute
the height under each foot, placing the local frame at the
candidate location, and make sure that the height of the foot
over the terrain does not change more than some threshold.
This can be computed very quickly, as only a small number
of foot locations have to be checked.

The foot check is designed to ensure that the feet have
the necessary ground support, however it does not check if
the body would come in collision with the terrain. A sec-
ond, more expensive check is performed to check for col-
lisions if the foot check succeeded. To check for collision,
before performing any matches, we compute the swept vol-
ume that the body sweeps through space during a step (see
Fig. 36). We also compute the clearance (vertical distance)
of the swept volume to the terrain. Due to inaccuracies in
models and positioning, some parts of the swept volume can
have a negative clearance. When checking a possible match,
we recompute the clearance in the new location. If no part
of the swept volume has a clearance that is worse than the
smaller of the original clearance or zero, by some threshold,
we allow the match. Otherwise the match is rejected.

As described in the previous section, the PCA match-
ing is performed on a sampling of possible new reference
frames for the step. For practical reasons, the resolution of
the PCA samples can be too coarse to find a good match. In
order to increase the resolution of the possible matches, we
perform a local search in the vicinity of the PCA match. In

194 Auton Robot (2010) 29: 169–200

this local search, we search a range of positions and orien-
tations (constraint to rotations around Z) around the original
PCA match. For each possible placement of the reference
frame, we first perform the foot check. Then we perform the
swept-volume check on the best matched frame based on the
foot check error. In case of success, the step is immediately
matched.

In case of a failure, it is still possible that a match in the
vicinity of this PCA match is possible, but that it was not
found because the foot error was not informed enough to
find this location. For example, if an obstacle is surrounded
by flat areas and the feet are only placed on the flat areas,
many possible locations will have a good match based on the
foot error, but they might still contain collisions with the ob-
stacle. We look at the variance of the foot errors to determine
if the foot errors were informative for finding a possible
match. If the foot check has high variance, the match based
on the foot check is considered informed and should have
found terrain similar to the original terrain and the failure is
final. However, if the foot check error had little variance, it
is possible that the best match based on the foot error was
not well informed. As a result we again search over nearby
positions and orientations using the collision check instead
of foot checking. If the location with the smallest clearance
violation is above the collision threshold, the failure is final
again. Otherwise the step is relocated to this location. For
a concise description of the second matching algorithm, see
Algorithm 5. The addition of foot-height checks and swept-
volume checks are essentially additions to the feature space
F and appropriate changes to the similarity metric used for
finding similar states.

In addition to the changes to the search and feature space
which allow matches to locations where the terrain is differ-
ent in such a way that the unmodified behavior will succeed,
we also wanted to increase the power of a library of behav-
iors by allowing simple modifications to the behaviors. This
is essentially a more advanced version of la−1. In particu-
lar, we allow each stance foot to move up or down relative
to its original location by a limited amount. The amount by
which each stance moves is determined by minimizing the
foot error metric. However, moving the stance of a foot does
not guarantee the elimination of foot stance error: the foot
stance error is computed based on the position of the foot
relative to the terrain at touch down as well as lift off. Due
to roll of the foot and possible slipping, these two locations
are not usually the same. However, if a stance is moved, both
lift off and touch down are moved together. If the terrain un-
der the foot in the lift off position is lower than in the orig-
inal location, but the terrain at the lift off location is higher,
moving the stance cannot reduce both errors.

Once a delta for every stance throughout a behavior is
determined, the behavior is modified as follows: Recall that
a behavior is specified by a trajectory of desired body posi-
tions and desired joint angles. In order to apply the stance

Algorithm 5 Little Dog alternate transfer
Transfer library according to Algorithm 2. Find similar
states (line 10) as follows:

– create height profile for every step, project into PCA
space

– compute foot heights for touch-down and lift-offs
– create swept volume and clearance
– create height profile for a sampling of poses (Ppca) on the

new map

for all steps do
Pcur ← Ppca

for all ppca ∈ Pcur sorted by PCA error do
if pca_error(ppca) > threshold then

break
P ← nearby(ppca)

p∗ ← arg min
p∈P

foot_error(p)

if foot_error(p∗) < threshold then
if clearance(p∗) > threshold then

relocate_step(p∗)
Pcur ← Pcur − nearby_large(p∗)

else
if variance(foot_error(p ∈ P)) < threshold
then

p∗ ← arg max
p∈P

clearance(p)

if clearance(p∗) > threshold then
relocate_step(p∗)
Pcur ← Pcur − nearby_large(p∗)

deltas, this information is used to compute desired foot po-
sitions in the local reference frame of the step. The stance
deltas are interpolated through time by creating 1-d cubic
splines of deltas between stances (from lift-off to touch-
down). Then the interpolated deltas are applied to the tra-
jectories of the desired foot positions and new joint angles
are computed through inverse kinematics.

A major hurdle in implementing the modifications into
the transfer algorithm is the collision check. Previously, a
particular behavior had one swept volume that could be pre-
computed. However, now every possible location in the lo-
cal search can potentially have a difference swept volume,
as the step is modified to adapt to the terrain. In order to
make collision checking practical, we discretized the deltas
for each stance to some resolution. We then compute swept
volumes separately for the body and each stance-to-stance
segment for every foot. Given a delta configuration, we can
quickly assemble a complete swept volume by computing
the union of these mini-volumes. By caching swept vol-
umes of stance-to-stance segments, we avoid recomputing
of previously computed stance-to-stance swept volumes for
the feet. Furthermore, we also cache complete swept vol-

Auton Robot (2010) 29: 169–200 195

Fig. 37 Terrains for gauging transfer with modifications

Fig. 38 Simple modification to
gap

umes for a full configuration of discretized stance deltas.
This cache is implemented as a Trie with the delta config-
uration as index. This allows essentially constant time ac-
cess to a previously computed swept volume for a particular
discretized delta configuration with a lower overhead than
a hash table, since no hashes have to be computed. Due to
this aggressive caching, we can compute collision checks
for modified behaviors with little penalty over non-modified
steps.

4.5.2 Experiments

In order to gauge the effectiveness of the new transfer al-
gorithm, we choose two kinds of terrains that can be easily
modified, both in ways that don’t require changes to the step
and in ways that do require changes to the step: a large gap
and a tall barrier (see Fig. 37). Currently, our planning al-
gorithms cannot cross the gap or reliably cross the barrier.
In particular, in order to cross the gap, the robot has to fall
forward onto a leg—a behavior that the planner cannot cur-
rently plan for. Using learning from demonstration, the robot
can cross these terrain boards. In order to demonstrate sim-
ple transfer that does not require modification of the original
behavior, we modify the terrains by rotating the flat boards
for the gap terrain (see Fig. 38) and changing the barriers
(see Fig. 39).

When running the transfer algorithm on the modified
terrains, multiple matches are found, as desired, for both
the gap (Fig. 40) as well as the different kinds of barriers
(Fig. 41). After performing the high level search through the
transferred library, as described in Sect. 4.4, the robot suc-
cessfully executes a path made from heuristic steps and the
behaviors matched on the terrain (Figs. 42, 43).

In a second test, we also modified the terrain in ways that
required the behavior to adapt. For this, we raised some of

Fig. 39 Simple modifications to jersey barrier (different shapes,
widths and heights)

Fig. 40 Matches on simple gap
modification

Fig. 41 Matches on simple jersey barrier modification

Fig. 42 Little Dog crossing large gap

Fig. 43 Little Dog climbing over barrier

the terrain as seen in Fig. 44. The new algorithm which al-
lows modifications to the stored behavior again matches the
terrain as expected and the robot executes the modified be-
havior successfully, both in the case of the large, modified
gap (Fig. 45) and the tall barrier (Fig. 46).

196 Auton Robot (2010) 29: 169–200

Fig. 44 Modifications that require changes to the behavior

Fig. 45 Little Dog crossing large gap with height difference using
modified behavior

Fig. 46 Little Dog climbing over barrier with height difference using
modified behavior

4.6 Discussion

We have devised and implemented two algorithms for trans-
ferring stored behaviors to new, modified terrain. The first
algorithm showed that it was possible to use terrain features
to recognize when a step is applicable and where a step is
not applicable. Combined with a high-level search over the
matched steps, a sequence of heuristic, planned steps and
demonstrated behaviors was used to reach the goal. How-
ever, the first algorithm could match steps only once and did
not take into account the properties of a particular step. Its
transfer potential was limited.

We then introduced a second algorithm that improves on
the first algorithm in a number of ways. First of all, it al-
lows a step to be matched multiple times. Because it explic-
itly checks for the applicability of a behavior based on foot
support and collision-freeness, the terrain can be matched
more liberally. However, in our experiments, we found it
difficult to tune the parameters of the top-level PCA match-
ing. In analyzing the principal components, it became clear
that PCA might not be suitable to pick up the kind of ter-

rain features that make a behavior “applicable” in a situa-
tion. In particular, in the case of the jersey barrier, the first
few principal components with the highest energy resulted,
when reprojected into the original space, showed an undu-
lating terrain with no single “barrier” visible. Different low-
level representations such as independent component analy-
sis or wavelet decompositions could be explored as alter-
native representations for picking out “characteristics” that
make a particular behavior appropriate.

A limitation of both algorithms is that given a start state,
the search through the transferred library only yields a single
trajectory. In order to increase the number of trajectories in
the final library, one could perform multiple searches from
different start states. Alternatively, a backwards search from
the goal could be performed and the complete search tree
added to the library. Finally, instead of searching once, it is
possible to continuously search through the library during
execution. Since the search is on a topological graph, this
search would be much faster than the search performed by
a path planning algorithm in the continuous state space. The
gaps between steps are already filled in when creating the
topological graph and do not have to be replanned during
the continuous search process.

A more radical departure from the current algorithm
would be to do away with explicitly finding global states
where the features of the state-action pairs from the origi-
nal library match. Instead, one could greedily match actions
from the library based on local features of the start state and
its vicinity. After executing the action, this can be repeated.
Applying the library greedily based on local features does
not allow for searching and might result in dead-ends. Also,
it will not allow the robot to cross large gaps in the library if
it is not in the vicinity.

Alternatively, one could search for a sequence of steps
leading towards the goal, performing a local search at every
expansion to find one or more suitable successor steps in the
vicinity of the termination of the previous step. However,
this will not work if the local searches fail to find matching
steps because of gaps—large areas where no steps in the
library match. One could extend the local search area until,
in the limit, the complete relevant state space is searched
at every expansion. This would essentially be the algorithm
that is presented here.

Both algorithms have in common that the computa-
tionally expensive operations of computing local features,
matching and collision checking are performed as an off-
line preprocessing step. The next step of planning through
the transferred library of behaviors is also done before exe-
cution, but might need to be redone for multiple executions
from different start states. Finally, during execution, one is
just following a sequence of steps or, if multiple plans are
available, performs state-based look ups in a trajectory li-
brary fashion (see Sect. 3). If a nearest-neighbor look up is
used, this can be performed quite fast.

Auton Robot (2010) 29: 169–200 197

While we believe it is possible to transfer behaviors in
a large variety of domains, it might not always be advanta-
geous to do so. In particular, when it is not possible to cre-
ate useful local features, inappropriate transfer can happen
where a behavior is transferred to a location where it is not
appropriate to execute that behavior. Furthermore, the be-
haviors that are being transferred need to add additional ca-
pabilities to the system. If the behavior can be created from
the action choices available to the planner for the domain,
it might be more efficient to have the planner come up with
them by itself.

4.7 Summary

We introduced a method for transferring libraries of trajec-
tories to new environments. It combines the idea of a li-
brary containing discrete state-action pairs from Sect. 3 with
the idea of using local features to transfer knowledge from
Sect. 2. By enabling libraries of state-action pairs to be trans-
ferred, we can sensibly create libraries of special-purpose
behaviors that can be applied across problem. We use such
libraries to augment planners so that they can solve harder
problems than what they could solve on their own.

Two variations of this algorithm were applied to the Lit-
tle Dog domain using high-dimensional terrain-based local
features which were simplified using PCA. The second vari-
ant used additional domain-specific knowledge to adapt ac-
tions from the library and increase their applicability to a
larger variety of situations. This also revealed limitations of
PCA in determining good features for determining fitness
for transferability of actions.

5 Conclusion

We presented several algorithms that advance the state-of-
the-art in reinforcement learning and planning algorithms.
The first algorithm uses local features to transfer policies
based on value functions. This work is applicable to domains
which can be solved using value-function based dynamic
programming, which generally limits the algorithm to do-
mains with only a moderate number of dimensions. Further-
more, domains with discontinuous models or reward func-
tions may pose further problems for the representation of
the value function. A requirement for transfer, common to
all the work presented here, is that states can be described
using features that allow for generalizing to new environ-
ments.

In order to address the limitations posed by value-
function based dynamic programming, we devised a pol-
icy representation based on trajectories created by (kinody-
namic) programming. Policies based on trajectory libraries
naturally focus on relevant parts of the state space and,

due to their sparse representation, scale to state-spaces with
more dimensions. They are also more adaptive, allowing
them to quickly increase the fidelity of the policy in parts of
the state space that exhibit poor performance. This makes
them more suitable to robotic applications than dynamic
programming, which the first transfer algorithm is based on.

Finally, we devise algorithms for transfer with trajectory
libraries. We briefly introduce a simple direct-transfer al-
gorithm which directly combines the idea of local features
from the dynamic programming based transfer algorithm
with the use of trajectory libraries as control policies. We
then present a more elaborate transfer algorithm for trans-
ferring behaviors in domains with rich environments, where
behaviors have to take into account a large number of fea-
tures from the environment. This is in contrast to many pre-
vious works of motion libraries where environments are as-
sumed to be largely uniform, and most non-uniformities
are considered obstacles that disqualify affected motion
primitives. In contrast to the direct-transfer algorithm,
the transfer-with-planning algorithm is geared towards
smaller libraries with valuable behaviors that need to be well
matched with the states in which they are applied.

6 Future work

There are still some open research questions that future re-
search should address. In particular, alternatives to nearest-
neighbor lookup should be explored. It would be interest-
ing to consider other function approximation techniques, es-
pecially kernel-based methods such as Support Vector Ma-
chines (SVM) or Support Vector Regression (SVR).

Furthermore, the trade-offs between density, coverage
and efficiency of the trajectory library could be analyzed
more carefully. Especially in domains with many dimen-
sions, one might expect a dramatic increase in the size
of the trajectory library necessary to perform well. For-
tunately, query complexity into kd-trees used for nearest-
neighbor lookup only grows logarithmically with the num-
ber of points. Furthermore, methods for improving trajecto-
ries based on trajectory libraries focus on relevant parts of
the state-space which might be much smaller than the total
state-space under consideration. Since trajectories are added
in response to poor performance, we hope that the density
of the library reflects the underlying difficulty of the task.
If the task is easy, we hope that even few trajectories allow
for successful policies, regardless of dimensionality of the
state-space. Finally, SVMs or SVRs could be explored to
represent the policies more compactly.

Another area of future research is the case when look-
ups into a library are performed from states with features
that are not similar to any of the states contained in the li-
brary. When used for transfer, we could simply chose not

198 Auton Robot (2010) 29: 169–200

to transfer knowledge in such states. In the case of trans-
fer for dynamic programming, it would be instructive to see
how our generalized policy iteration algorithm performs rel-
ative to value iteration in such cases. In the case of transfer-
ring trajectory libraries with planning, the problem grace-
fully degrades to solving the problem directly with the path
planner: without transferred behaviors, the high level graph
only contains the start-state and goal-state which has a sin-
gle high-level path connecting the two. In the case of using
a trajectory library as a policy, a query from a state far away
from any state in the library can either be caught explicitly
and cause an invocation of the planner, or will probably re-
sult in failure which will also result in the addition of a new
plan to the library.

Finally, a significant and important area of future work is
formal analysis of the algorithms presented here. It would be
informative to derive convergence guarantees for the gener-
alized policy iteration algorithm presented in Sect. 2. More
importantly, performance guarantees for policies based on
trajectory libraries and convergence guarantees as the den-
sity of the libraries increases would be important results.

Acknowledgements This material is based upon work supported in
part by the National Science Foundation (NSF) under NSF Grant ECS-
0325383 and the Defense Advanced Research Projects Agency Learn-
ing Locomotion Program.

References

Argall, B., Browning, B., & Veloso, M. M. (2008). Learning robot mo-
tion control with demonstration and advice-operators. In Proceed-
ings IEEE/RSJ international conference on intelligent robots and
systems.

Atkeson, C. G. (1994). Using local trajectory optimizers to speed up
global optimization in dynamic programming. In J. D. Cowan,
G. Tesauro, & J. Alspector (Eds.), Advances in Neural Infor-
mation Processing Systems (Vol. 6, pp. 663–670). San Mateo:
Morgan Kaufmann. URL ftp://ftp.cc.gatech.edu/pub/people/cga/
local.html.

Atkeson, C. G., & Morimoto, J. (2003). Nonparametric represen-
tation of policies and value functions: a trajectory-based ap-
proach. In S. Becker, S. Thrun, & K. Obermayer (Eds.), Ad-
vances in Neural Information Processing Systems (Vol. 15,
pp. 1611–1618). Cambridge: MIT Press. URL http://www-2.cs.
cmu.edu/~cga/publications.html.

Bailey, S., Grossman, R. L., Gu, L., & Hanley, D. (1996). A data in-
tensive computing approach to path planning and mode manage-
ment for hybrid systems. In R. Alur, T. A. Henzigner, & E. Sontag
(Eds.), Lecture notes in computer science: Vol. 1066. Hybrid sys-
tems III, Proceedings of the DIMACS workshop on verification
and control of hybrid systems (pp. 485–495). Berlin: Springer.
URL http://www.rgrossman.com/pubs.htm.

Bentivegna, D. C. (2004). Learning from observation using primi-
tives. PhD thesis, Georgia Institute of Technology. URL http://etd.
gatech.edu/theses/available/etd-06202004-213721/.

Bentivegna, D. C., Atkeson, C. G., & Cheng, G. (2006). Learning sim-
ilar tasks from observation and practice. In Proceedings of the
2006 IEEE/RSJ international conference on intelligent robots and
systems (pp. 2677–2683). Beijing, China.

Boddy, M. S., & Dean, T. (1994). Deliberation scheduling for problem
solving in time-constrained environments. Artificial Intelligence,
67(2), 245–285. doi:10.1016/0004-3702(94)90054-X.

Caruana, R. (1993). Multitask learning: a knowledge-based source of
inductive bias. In International conference on machine learning.

Chernova, S., & Veloso, M. (2004a). An evolutionary ap-
proach to gait learning for four-legged robots. In Proceed-
ings of the international conference on intelligent robots and
systems (IROS 2004). URL http://www-2.cs.cmu.edu/~coral/
publications/b2hd-iros04-chernova.html.

Chernova, S., & Veloso, M. (2004b). Learning and using models of
kicking motions for legged robots. In Proceedings of the inter-
national conference on robotics and automation (ICRA 2004).
URL http://www-2.cs.cmu.edu/~coral/publications/b2hd-icra04-
chernova.html.

Chernova, S., & Veloso, M. (2008). Learning equivalent action choices
from demonstration. In International conference on intelligent ro-
bots and systems.

Chestnutt, J., Lau, M., Cheung, K. M., Kuffner, J., Hodgins, J. K.,
& Kanade, T. (2005). Footstep planning for the Honda ASIMO
humanoid. In Proceedings of the IEEE international conference
on robotics and automation. URL http://www.ri.cmu.edu/pubs/
pub_4970.html.

Conner, D. C., Rizzi, A., & Choset, H. (2003). Composition of local
potential functions for global robot control and navigation. In Pro-
ceedings of the international conference on intelligent robots and
systems (IROS 2003) (Vol. 4, pp. 3546–3551). New York: IEEE.
URL http://www.ri.cmu.edu/pubs/pub_4556.html.

Connolly, C., & Grupen, R. (1993). The application of harmonic po-
tential functions to robotics. Journal of Robotic Systems, 10(7),
931–946.

Davies, S. (1997). Multidimensional interpolation and triangulation
for reinforcement learning. In Advances in neural information
processing systems (Vol. 9). San Mateo: Morgan Kaufmann. URL
http://www.autonlab.org/autonweb/showPaper.jsp?ID=davies-
multidimensional.

Fern, A., Yoon, S. W., & Givan, R. (2004). Learning domain-specific
control knowledge from random walks. In Proceedings of the
international conference on automated planning and scheduling
(ICAPS) (pp. 191–199).

Fern, A., Yoon, S., & Givan, R. (2006). Approximate policy itera-
tion with a policy language bias: solving relational Markov de-
cision processes. Journal of Artificial Intelligence Research, 25,
85–118.

Fikes, R. E., Hart, P. E., & Nilsson, N. J. (1972). Learning and execut-
ing generalized robot plans. Artificial Intelligence, 3, 251–288.

Frazzoli, E. (2001). Robust hybrid control for autonomous vehicle
motion planning. Department of aeronautics and astronautics,
Massachusetts Institute of Technology, Cambridge, MA. URL
http://rigoletto.seas.ucla.edu/papers/Year/2001.html.

Friedman, J. H., Bentley, J. L., & Finkel, R. A. (1977). An algo-
rithm for finding best matches in logarithmic expected time.
ACM Transactions on Mathematical Software, 3(3), 209–226.
doi:10.1145/355744.355745, URL http://portal.acm.org/citation.
cfm?doid=355744.355745.

Grollman, D. H., & Jenkins, O. C. (2008). Sparse incremental learn-
ing for interactive robot control policy estimation. In International
conference on robotics and automation (pp. 3315–3320).

Grossman, R., Mehta, S., & Qin, X. (1992). Path planning by query-
ing persistent stores of trajectory segments (Tech. Rep. LAC 93-
R3). Laboratory for Advanced Computing University of Illinois
at Chicago. URL http://www.rgrossman.com/pubs.htm.

Guestrin, C., Koller, D., Gearhart, C., & Kanodia, N. (2003). General-
izing plans to new environments in relational MDPs. In Proceed-
ings of the eighteenth international joint conference on artificial
intelligence.

ftp://ftp.cc.gatech.edu/pub/people/cga/local.html
ftp://ftp.cc.gatech.edu/pub/people/cga/local.html
http://www-2.cs.cmu.edu/~cga/publications.html
http://www-2.cs.cmu.edu/~cga/publications.html
http://www.rgrossman.com/pubs.htm
http://etd.gatech.edu/theses/available/etd-06202004-213721/
http://etd.gatech.edu/theses/available/etd-06202004-213721/
http://dx.doi.org/10.1016/0004-3702(94)90054-X
http://www-2.cs.cmu.edu/~coral/publications/b2hd-iros04-chernova.html
http://www-2.cs.cmu.edu/~coral/publications/b2hd-iros04-chernova.html
http://www-2.cs.cmu.edu/~coral/publications/b2hd-icra04-chernova.html
http://www-2.cs.cmu.edu/~coral/publications/b2hd-icra04-chernova.html
http://www.ri.cmu.edu/pubs/pub_4970.html
http://www.ri.cmu.edu/pubs/pub_4970.html
http://www.ri.cmu.edu/pubs/pub_4556.html
http://www.autonlab.org/autonweb/showPaper.jsp?ID=davies-multidimensional
http://www.autonlab.org/autonweb/showPaper.jsp?ID=davies-multidimensional
http://rigoletto.seas.ucla.edu/papers/Year/2001.html
http://dx.doi.org/10.1145/355744.355745
http://portal.acm.org/citation.cfm?doid=355744.355745
http://portal.acm.org/citation.cfm?doid=355744.355745
http://www.rgrossman.com/pubs.htm

Auton Robot (2010) 29: 169–200 199

Howard, T., & Kelly, A. (2007). Optimal rough terrain trajectory gen-
eration for wheeled mobile robots. International Journal of Ro-
botics Research, 26(2), 141–166. URL http://www.ri.cmu.edu/
pubs/pub_5739.html.

Iba, G. A. (1989). A heuristic approach to the discovery of macro-
operators. Machine Learning, 3, 285–317.

Jacobson, D. H., & Mayne, D. Q. (1970). Differential dynamic pro-
gramming. Amsterdam: Elsevier.

Kavraki, L., Svestka, P., Latombe, J., & Overmars, M. (1996). Prob-
abilistic roadmaps for path planning in high-dimensional config-
uration spaces. IEEE Transactions on Robotics and Automation,
12(4), 566–580. doi:10.1109/70.508439, URL http://ai.stanford.
edu/~latombe/pub.htm.

Kohl, N., & Stone, P. (2004). Machine learning for fast quadrupedal
locomotion. In Proceedings of the nineteenth national confer-
ence on artificial intelligence (pp. 611–616). URL http://www.
cs.utexas.edu/~nate/pubs/b2hd-kohlaaai04.html.

Kolter, J. Z., Abbeel, P., & Ng, A. Y. (2008). Hierarchical apprentice-
ship learning with application to quadruped locomotion. In Neural
information processing systems 20.

Laird, J., Rosenbloom, P., & Newell, A. (1986). Chunking in Soar: The
anatomy of a general learning mechanism. Machine Learning, 1,
11–46.

Lau, M., & Kuffner, J. J. (2005). Behavior planning for char-
acter animation. In SCA ’05: proceedings of the 2005 ACM
SIGGRAPH/Eurographics symposium on computer animation
(pp. 271–280). New York: ACM Press. doi:10.1145/1073368.
1073408.

LaValle, S. M. (2006). Planning algorithms. Cambridge: Cambridge
University Press. URL http://msl.cs.uiuc.edu/planning/, to ap-
pear.

LaValle, S. M., & Kuffner, J. J. Jr. (2001). Randomized kino-
dynamic planning. The International Journal of Robotics Re-
search, 20(5), 378–400. doi:10.1177/02783640122067453, URL
http://ijr.sagepub.com/cgi/content/abstract/20/5/378.

Lee, J., Chai, J., Reitsma, P. S. A., Hodgins, J. K., & Pol-
lard, N. S. (2002). Interactive control of avatars animated
with human motion data. In SIGGRAPH ’02: Proceedings of
the 29th annual conference on computer graphics and in-
teractive techniques (pp. 491–500). New York: ACM Press.
doi:10.1145/566570.566607.

Littman, M. L., Sutton, R. S., & Singh, S. (2002). Predictive repre-
sentations of state. In Advances in neural information processing
systems (Vol. 14, pp. 1555–1561). San Mateo: Morgan Kaufmann.
URL http://www.eecs.umich.edu/~baveja/PSRmainpage.html.

Mahadevan, S. (1992). Enhancing transfer in reinforcement learn-
ing by building stochastic models of robot actions. In
Proceedings of the ninth international conference on ma-
chine learning (pp. 290–299). URL http://www.cs.umass.
edu/~mahadeva/organized-pubs-by-year.html.

Mannor, S., Menache, I., Hoze, A., & Klein, U. (2004). Dynamic ab-
straction in reinforcement learning via clustering. In Proceedings
of the twenty-first international conference on machine learning.

McGovern, A. (2002). Autonomous discovery of temporal ab-
stractions from interaction with an environment. PhD the-
sis, University of Massachusetts Amherst. URL http://www.
cs.ou.edu/~amy/pubs.html.

Munos, R., & Moore, A. (2002). Variable resolution discretization
in optimal control. Machine Learning, 49(2/3), 291–323. URL
http://www.autonlab.org/autonweb/showPaper.jsp?ID=munos-
variable.

Pearl, J. (1985). Heuristics: intelligent search strategies for computer
problem solving. Reading: Addison-Wesley.

Ravindran, B., & Barto, A. G. (2003). SMDP homomorphisms:
an algebraic approach to abstraction in semi Markov decision
processes. In Proceedings of the eighteenth international joint

conference on artificial intelligence. Menlo Park: AAAI Press.
URL http://www.cs.iitm.ernet.in/~ravi/.

Reitsma, P. S. A., & Pollard, N. S. (2004). Evaluating motion
graphs for character navigation. In Proceedings of ACM SIG-
GRAPH/Eurographics 2004 symposium on computer animation.

Rimon, E., & Koditschek, D. E. (1992). Exact robot navigation using
artificial potential fields. IEEE Transactions on Robotics and Au-
tomation, 8(5), 501–518.

Röfer, T. (2005). Evolutionary gait-optimization using a fit-
ness function based on proprioception. In Eighth interna-
tional workshop on robocup 2004. URL http://www.informatik.
uni-bremen.de/~roefer/public_e.htm.

Sermanet, P., Hadsell, R., Scoffier, M., Grimes, M., Ben, J., Erkan,
A., Crudele, C., Muller, U., & LeCun, Y. (2009). A multi-range
architecture for collision-free off-road robot navigation. Jour-
nal of Field Robotics, 26(1), 58–87. URL http://yann.lecun.com/
exdb/publis/index.html.

Şimşek, Ö., & Barto, A. G. (2004). Using relative novelty to identify
useful temporal abstractions in reinforcement learning. In Pro-
ceedings of the twenty-first international conference on machine
learning. URL http://www.cs.umass.edu/~ozgur/.

Stolle, M. (2007). Images of mazes used. URL http://www.cs.cmu.
edu/~mstoll/files/adprl2007-mazes.tar.gz, http://www.cs.cmu.
edu/~mstoll/files/adprl2007-mazes.tar.gz.

Stolle, M. (2008). Finding and transferring policies using stored
behaviors. PhD thesis, Carnegie Mellon University, 5000
Forbes Ave Pittsburgh, PA 15213. URL http://www.cs.cmu.
edu/~mstoll/publications.shtml.

Stolle, M., & Atkeson, C. G. (2006). Policies based on tra-
jectory libraries. In Proceedings of the international con-
ference on robotics and automation (ICRA 2006). URL
http://www.cs.cmu.edu/~mstoll/publications.shtml.

Stolle, M., & Atkeson, C. (2007a). Transfer of policies based on
trajectory libraries. In Proceedings of the international con-
ference on intelligent robots and systems (IROS 2007). URL
http://www.cs.cmu.edu/~mstoll/publications.shtml.

Stolle, M., & Atkeson, C. G. (2007b). Knowledge transfer using lo-
cal features. In Proceedings of the IEEE symposium on approxi-
mate dynamic programming and reinforcement learning (ADPRL
2007). URL http://www.cs.cmu.edu/~mstoll/publications.shtml.

Stolle, M., & Precup, D. (2002). Learning options in reinforce-
ment learning. In Lecture notes in computer science (Vol. 2371,
pp. 212–223). Berlin: Springer. URL http://www.cs.cmu.edu/~
mstoll/publications.shtml.

von Stryk, O. (2001). DIRCOL. http://www.sim.informatik.tu-
darmstadt.de/sw/dircol.html.en, URL http://www.sim.informatik.
tu-darmstadt.de/sw/dircol.html.en.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning:
an introduction. Cambridge: MIT Press. URL http://www.cs.
ualberta.ca/~sutton/book/the-book.html.

Veloso, M. M. (1992). Learning by analogical reasoning in general
problem solving. PhD thesis, Carnegie Mellon University.

Weingarten, J. D., Lopes, G. A. D., Buehler, M., Groff, R. E., &
Koditschek, D. E. (2004). Automated gait adaptation for legged
robots. In International conference in robotics and automation.
New York: IEEE Press.

Winner, E., & Veloso, M. (2002). Automatically acquiring plan-
ning templates from example plans. In Proceedings of AIPS’02
workshop on exploring real-world planning. URL http://www-2.
cs.cmu.edu/~coral/publications/b2hd-02aipsw-elly.html.

Yang, L., & LaValle, S. M. (2004). The sampling-based neighborhood
graph: a framework for planning and executing feedback motion
strategies. IEEE Transactions on Robotics and Automation, 20(3),
419–432.

Yoon, S., Fern, A., & Givan, R. (2008). Learning control knowledge for
forward search planning. Journal of Machine Learning Research,
9, 683–718.

http://www.ri.cmu.edu/pubs/pub_5739.html
http://www.ri.cmu.edu/pubs/pub_5739.html
http://dx.doi.org/10.1109/70.508439
http://ai.stanford.edu/~latombe/pub.htm
http://ai.stanford.edu/~latombe/pub.htm
http://www.cs.utexas.edu/~nate/pubs/b2hd-kohlaaai04.html
http://www.cs.utexas.edu/~nate/pubs/b2hd-kohlaaai04.html
http://dx.doi.org/10.1145/1073368.1073408
http://dx.doi.org/10.1145/1073368.1073408
http://msl.cs.uiuc.edu/planning/
http://dx.doi.org/10.1177/02783640122067453
http://ijr.sagepub.com/cgi/content/abstract/20/5/378
http://dx.doi.org/10.1145/566570.566607
http://www.eecs.umich.edu/~baveja/PSRmainpage.html
http://www.cs.umass.edu/~mahadeva/organized-pubs-by-year.html
http://www.cs.umass.edu/~mahadeva/organized-pubs-by-year.html
http://www.cs.ou.edu/~amy/pubs.html
http://www.cs.ou.edu/~amy/pubs.html
http://www.autonlab.org/autonweb/showPaper.jsp?ID=munos-variable
http://www.autonlab.org/autonweb/showPaper.jsp?ID=munos-variable
http://www.cs.iitm.ernet.in/~ravi/
http://www.informatik.uni-bremen.de/~roefer/public_e.htm
http://www.informatik.uni-bremen.de/~roefer/public_e.htm
http://yann.lecun.com/exdb/publis/index.html
http://yann.lecun.com/exdb/publis/index.html
http://www.cs.umass.edu/~ozgur/
http://www.cs.cmu.edu/~mstoll/files/adprl2007-mazes.tar.gz
http://www.cs.cmu.edu/~mstoll/files/adprl2007-mazes.tar.gz
http://www.cs.cmu.edu/~mstoll/files/adprl2007-mazes.tar.gz
http://www.cs.cmu.edu/~mstoll/files/adprl2007-mazes.tar.gz
http://www.cs.cmu.edu/~mstoll/publications.shtml
http://www.cs.cmu.edu/~mstoll/publications.shtml
http://www.cs.cmu.edu/~mstoll/publications.shtml
http://www.cs.cmu.edu/~mstoll/publications.shtml
http://www.cs.cmu.edu/~mstoll/publications.shtml
http://www.cs.cmu.edu/~mstoll/publications.shtml
http://www.cs.cmu.edu/~mstoll/publications.shtml
http://www.sim.informatik.tu-darmstadt.de/sw/dircol.html.en
http://www.sim.informatik.tu-darmstadt.de/sw/dircol.html.en
http://www.sim.informatik.tu-darmstadt.de/sw/dircol.html.en
http://www.sim.informatik.tu-darmstadt.de/sw/dircol.html.en
http://www.cs.ualberta.ca/~sutton/book/the-book.html
http://www.cs.ualberta.ca/~sutton/book/the-book.html
http://www-2.cs.cmu.edu/~coral/publications/b2hd-02aipsw-elly.html
http://www-2.cs.cmu.edu/~coral/publications/b2hd-02aipsw-elly.html

200 Auton Robot (2010) 29: 169–200

Martin Stolle is a software engi-
neer at Google in Zurich, Switzer-
land. He received B.Sc and M.Sc.
degrees in computer science from
McGill University in 2002 and 2003,
and a Ph.D degree in Robotics from
the Robotics Institute at Carnegie
Mellon University in 2008. His doc-
toral research focused on develop-
ing new policy representations and
transfer learning for robotics appli-
cations. This work was applied to
challenging, dynamic tasks such as
the marble maze and Little Dog.

Christopher Atkeson is a Profes-
sor in the Robotics Institute and
Human-Computer Interaction Insti-
tute at Carnegie Mellon University.
He received the M.S. degree in Ap-
plied Mathematics (computer sci-
ence) from Harvard University and
the Ph.D. degree in Brain and Cog-
nitive Sciences from MIT. He joined
the MIT faculty in 1986 and moved
to the Georgia Institute of Technol-
ogy College of Computing in 1994.
He has been with Carnegie Mellon
University (CMU) since 2000. His
research focuses on humanoid ro-

botics and robot learning by using challenging dynamic tasks such as
juggling. His specific research interests include nonparametric learn-
ing, memory-based learning including approaches based on trajectory
libraries, reinforcement learning, and other forms of learning based on
optimal control, learning from demonstration, and modeling human be-
havior. Dr. Atkeson has received a National Science Foundation Presi-
dential Young Investigator Award, a Sloan Research Fellowship, and a
Teaching Award from the MIT Graduate Student Council.

	Finding and transferring policies using stored behaviors
	Abstract
	Introduction
	Overview
	Experimental domains
	Marble maze
	Little Dog

	Transfer of policies based on value functions
	Introduction
	Related work
	Case study: marble maze
	Local state description
	Knowledge transfer
	Improving the initial policy

	Simulation results
	Discussion
	Summary

	Policies based on trajectory libraries
	Introduction
	Related work
	Case study: marble maze
	Trajectory libraries
	Experiments

	Case study: Little Dog
	Planning and feedback control
	Trajectory libraries
	Experiments

	Discussion
	Summary

	Transfer of policies based on trajectory libraries
	Introduction
	Direct transfer
	Transfer with planning

	Related work
	Case study: Little Dog
	Library Transfer 1
	Description
	Experiments

	Library Transfer 2
	Description
	Experiments

	Discussion
	Summary

	Conclusion
	Future work
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

