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Abstract— We have developed a robust control policy
design method for high-dimensional state spaces by using
differential dynamic programming with a minimax criterion.
As an example, we applied our method to a simulated five
link biped robot. The results show lower joint torques using
the optimal control policy compared to torques generated by
a hand-tuned PD servo controller. Results also show that the
simulated biped robot can successfully walk with unknown
disturbances that cause controllers generated by standard
differential dynamic programming and the hand-tuned PD
servo to fail. Learning to compensate for modeling error
and previously unknown disturbances in conjunction with
robust control design is also demonstrated. We applied the
proposed method to a real biped robot to optimize swing leg
trajectories.

I. INTRODUCTION

Reinforcement learning [7] is widely studied because
of its promise to automatically generate controllers for
difficult tasks from attempts to do the task. However,
reinforcement learning requires a great deal of training
data and computational resources, and sometimes fails
to learn high dimensional tasks. To improve reinforce-
ment learning, we propose using differential dynamic
programming (DDP) which is a second order local tra-
jectory optimization method to generate locally optimal
plans and local models of the value function [2], [4].
Dynamic programming requires task models to learn tasks.
However, when we apply dynamic programming to a
real task, handling inevitable modeling errors is crucial.
In this study, we develop minimax differential dynamic
programming which provides robust nonlinear controller
designs based on the idea of H∞ control [5], [9]. We apply
the proposed method to a simulated five link biped robot
(Fig. 1). Our strategy is to use minimax DDP to find both
a low torque biped walk and a policy or control law to
handle deviations from the optimized trajectory. We show
that both standard DDP and minimax DDP can find a local
policy for a lower torque biped walk than a hand-tuned
PD servo controller. We show that minimax DDP can cope
with larger modeling error than standard DDP or the hand-
tuned PD controller. Thus, the robust controller allows us

to collect useful training data. In addition, we can use
learning to correct modeling errors and model previously
unknown disturbances, and design a new more optimal
robust controller using additional iterations of minimax
DDP. We also evaluate our proposed method on swing
leg optimization task using our real biped robot.

II. DIFFERENTIAL DYNAMIC PROGRAMMING

This section briefly introduces differential dynamic pro-
gramming (DDP), a local trajectory optimization method.
In a dynamic programming framework, we use a value
function to generate optimal trajectories. A value function
is defined as sum of the accumulated future penalty
r(xi,ui, i) and the terminal penalty Φ(xN), given the
current policy or control law:

V (xi, i) = Φ(xN)+
N−1

∑
j=i

r(x j,u j, j), (1)

where xi is the input state, ui is the control out-
put at the i-th time step, and N is the number of
time steps. Differential dynamic programming main-
tains a second order local model of a Q function
(Q(i),Qx(i),Qu(i),Qxx(i),Qxu(i),Quu(i)), where Q(i) =
r(xi,ui, i) + V (xi+1, i + 1), and the vector subscripts
indicate partial derivatives. We use simple notations
Q(i) for Q(xi,ui, i) and V (i) for V (xi, i). We can de-
rive an improved control output unew

i = ui + δui from
argmaxδui

Q(xi + δxi,ui + δui, i). Finally, by using the
new control output unew

i , a second order local model of
the value function (V (i),Vx(i),Vxx(i)) can be derived [2],
[4], and a new Q function computed.

A. Finding a local policy

DDP finds a locally optimal trajectory xopt
i

, the corre-
sponding control trajectory uopt

i
, value function V opt , and

Q function Qopt . When we apply our control algorithm to
a real environment, we usually need a feedback controller
to cope with unknown disturbances or modeling errors.
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Fortunately, DDP provides us a local policy along the
optimized trajectory:

uopt(xi, i) = uopt
i + Ki(xi −xopt

i ), (2)

where Ki is a time dependent gain matrix given by taking
the derivative of the optimal policy with respect to the
state [2], [4]. This property is one of the advantages
over other optimization methods used to generate biped
walking trajectories [1], [3].

B. Minimax DDP

Here, we introduce our proposed optimization method,
minimax DDP, which considers robustness in a DDP
framework. Minimax DDP can be derived as an extension
of standard DDP [2], [4]. The difference is that the
proposed method has an additional disturbance variable w
to explicitly represent the existence of disturbances. This
representation of the disturbance provides the robustness
for optimized trajectories and policies [5].

Then, we expand the Q function Q(x i + δxi,ui +
δui,wi + δwi, i) to second order in terms of δu, δw and
δx about the nominal solution:

Q (xi + δxi,ui + δui,wi + δwi, i) =
Q (i)+Qx(i)δxi +Qu(i)δui +Qw(i)δwi

+
1
2
[δxT

i δuT
i δwT

i ]


 Qxx(i) Qxu(i) Qxw(i)

Qux(i) Quu(i) Quw(i)
Qwx(i) Qwu(i) Qww(i)




 δxi

δui
δwi


 (3)

Here, δui and δwi must be chosen to minimize and
maximize the second order expansion of the Q function
Q(xi + δxi,ui + δui,wi + δwi, i) in (3) respectively, i.e.,

δui = −Q−1
uu (i)[Qux(i)δxi +Quw(i)δwi +Qu(i)]

δwi = −Q−1
ww(i)[Qwx(i)δxi +Qwu(i)δui +Qw(i)]. (4)

By solving (4), we can derive both δu i and δwi. After
updating the control output u i and the disturbance wi with
derived δui and δwi, the second order local model of the
value function is given as

V (i) = V (i+1)−Qu(i)Q−1
uu (i)Qu(i)

− Qw(i)Q−1
ww(i)Qw(i)

Vx(i) = Qx(i)−Qu(i)Q−1
uu (i)Qux(i)

− Qw(i)Q−1
ww(i)Qwx(i)

Vxx(i) = Qxx(i)−Qxu(i)Q−1
uu (i)Qux(i)

− Qxw(i)Q−1
ww(i)Qwx(i). (5)

This equations can be derived by equating coefficients
of identical terms in δxi in the second order expansion
of the value function V (x i + δxi, i) = V (i) +Vx(i)δxi +
1
2 δxT

i Vxx(i)δxi and equation (3) where δu i and δwi are
derived as functions of δx i.

Minimax DDP uses following sequence: 1)Design the
initial trajectories. 2) Compute Q(i), δui, δwi, and V (i)

backward in time by using equations (15) in appendix
A, (4), and (5). 3) Apply the new control output u new =
ui + δui and disturbance wnew = wi + δwi, and store the
resulting trajectory generated by the model. 4) Goto 2)
until the value function converges.

III. OPTIMIZING BIPED WALKING
TRAJECTORIES

A. Biped robot model

In this section, we use a simulated five link biped
robot (Fig. 1:Left) to explore our approach. Kinematic and
dynamic parameters of the simulated robot are chosen to
match those of a biped robot we are currently developing
(Fig. 1:Right) and which we will use to further explore
our approach. Height and total weight of the robot are
about 0.4 [m] and 2.0 [kg] respectively. Table I shows the
parameters of the robot model.
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joint1

joint2,3

joint4

ankle

Fig. 1. Left: Five link robot model, Right: Real robot

TABLE I

PHYSICAL PARAMETERS OF THE ROBOT MODEL

link1 link2 link3 link4 link5
mass [kg] 0.05 0.43 1.0 0.43 0.05
length [m] 0.2 0.2 0.01 0.2 0.2

inertia 1.75 4.29 4.33 4.29 1.75
(×10−4 [kg·m])

We can represent the forward dynamics of the biped
robot as

xi+1 = f(xi)+ b(xi)ui, (6)

where x = {θ1, . . . ,θ5, θ̇1, . . . , θ̇5} denotes the input state
vector, u = {τ1, . . . ,τ4} denotes the control command
(each torque τ j is applied to joint j (Fig. 1:Left). In the
minimax optimization case, we explicitly represent the
existence of the disturbance as

xi+1 = f(xi)+ b(xi)ui + bw(xi)wi, (7)

where w = {w0,w1,w2,w3,w4} denotes the disturbance
(w0 is applied to ankle, and w j ( j = 1 . . .4) is applied
to joint j (Fig. 1:Left)).
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B. Optimization criterion

We use the following objective function, which is de-
signed to reward energy efficiency and enforce periodicity
of the trajectory:

J = Φp(x0,xN)+
N−1

∑
i=0

r(xi,ui, i) (8)

which is applied for half the walking cycle, from one heel
strike to the next heel strike 1.

This criterion sums the squared deviations from a nom-
inal trajectory, the squared control magnitudes, and the
squared deviations from a desired velocity of the center
of mass:

r(xi,ui, i) = (xi −xd
i )

T P(xi −xd
i )+ ui

T Rui

+ (v(xi)− vd)T S(v(xi)− vd), (9)

where xi is a state vector at the i-th time step, xd
i is

the nominal state vector at the i-th time step (taken
from a trajectory generated by a hand-designed walking
controller), v(xi) denotes the velocity of the center of mass
at the i-th time step, and vd denotes the desired velocity
of the center of mass. The term (x i − xd

i )
T P(xi − xd

i )
encourages the robot to follow the nominal trajectory, the
term ui

T Rui discourages using large control outputs, and
the term (v(xi)− vd)T S(v(xi)− vd) encourages the robot
to achieve the desired velocity. We describe the terminal
penalty in appendix B.

We implement minimax DDP by adding a minimax
term to the criterion. We use a modified objective function:

Jminimax = J−
N−1

∑
i=0

wi
T Gwi, (10)

where wi denotes a disturbance vector at the i-th time
step, and the term wi

T Gwi rewards coping with large
disturbances and prevents wi from increasing indefinitely.
This explicit representation of the disturbance w provides
the robustness for the controller [5].

C. Learning the unmodeled dynamics

As in section IV-A, we have verified that minimax DDP
can generate robust biped trajectories and local policies.
The minimax DDP coped with larger disturbances than
standard DDP or the hand-tuned PD servo controller.
However, if there are modeling errors, using a robust
controller which does not learn is not particularly energy
efficient. Fortunately, with minimax DDP, we can collect
sufficient data to improve our dynamics model. Here,
we propose using Receptive Field Weighted Regression
(RFWR) [6] to learn the error dynamics of the biped robot.
In this section we present results on learning a simulated

1To make a periodic trajectory, we use the terminal penalty Φp(x0,xN ),
which depends on the initial state x0, instead of using Φ(xN) in equation
(1).

modeling error (the disturbances discussed in section IV).
We are currently applying this approach to an actual robot.

We can represent the full dynamics as the sum of the
known dynamics and the error dynamics ∆F(x i,ui, i):

xi+1 = F(xi,ui)+ ∆F(xi,ui, i). (11)

We estimate the error dynamics ∆F using RFWR [6]
(appendix C).

This approach learns the unmodeled dynamics with
respect to the current trajectory. The learning strategy
uses the following sequence: 1) Design a controller using
minimax DDP applied to the current model. 2) Apply that
controller. 3) Learn the actual dynamics using RFWR. 4)
Redesign the biped controller using minimax DDP with
the learned model. 5) Repeat steps 1-4 until the model
stops changing. We show results in section IV-B.

IV. SIMULATION RESULTS

A. Evaluation of optimization methods

We compare the optimized controller with a hand-
tuned PD servo controller, which also is the source of the
initial and nominal trajectories in the optimization process.
We set the parameters for the optimization process as
P = 0.25I10, R = 3.0I4, S = 0.3I1, desired velocity vd =
0.4[m/s] in equation (9), P0 = 1000000.0I1 in equation
(17), and PN = diag{10000.0, 10000.0, 10000.0, 10000.0,
10000.0, 10.0, 10.0, 10.0, 5.0, 5.0} in equation (18), where
IN denotes N dimensional identity matrix. For minimax
DDP, we set the parameter for the disturbance reward in
equation (10) as G = diag{5.0, 20.0, 20.0, 20.0, 20.0}
(G with smaller elements generates more conservative but
robust trajectories). Each parameter is set to acquire the
best results in terms of both the robustness and the energy
efficiency. When we apply the controllers acquired by
standard DDP and minimax DDP to the biped walk, we
adopt a local policy which we introduced in section II-A.

Results in table II show that the controller generated
by standard DDP and minimax DDP did almost halve the
cost of the trajectory, as compared to that of the original
hand-tuned PD servo controller. However, because the
minimax DDP is more conservative in taking advantage
of the plant dynamics, it has a slightly higher control cost
than standard DDP. Note that we defined the control cost
as 1

N ∑N−1
i=0 ||ui||2, where ui is the control output (torque)

vector at i-th time step, and N denotes total time step for
one step trajectories.

To test robustness, we assume that there is unknown
viscous friction at each joint:

τdist
j = −µ jθ̇ j ( j = 1, . . . ,4), (12)

where µ j denotes the viscous friction coefficient at joint
j.
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TABLE II

ONE STEP CONTROL COST (AVERAGE OVER 100 STEPS)

PD standard minimax
servo DDP DDP

control cost 7.50 3.54 3.86
(×10−2[(N ·m)2])

We used two levels of disturbances in the simulation,
with the higher level being 3 times larger than the base
level (Table III).

TABLE III

PARAMETERS OF THE DISTURBANCE

µ2,µ3 (hip joints) µ1,µ4 (knee joints)
base 0.01 0.05
large 0.03 0.15

All methods could handle the base level disturbances.
Both the standard and the minimax DDP generated much
less control cost than the hand-tuned PD servo controller
(Table IV). However, only the minimax DDP control
design could cope with the higher level of disturbances.
Figure 2 shows trajectories for the three different methods.
Both the simulated robot with the standard DDP and
the hand-tuned PD servo controller fell down before
achieving 100 steps. The bottom of figure 2 shows part of
a successful biped walking trajectory of the robot with the
minimax DDP. Table V shows the number of steps before
the robot fell down. We terminated a trial when the robot
achieved 1000 steps.

TABLE IV

ONE STEP CONTROL COST WITH THE BASE SETTING (AVERAGED

OVER 100 STEPS)

PD standard minimax
servo DDP DDP

control cost 8.97 5.23 5.87
(×10−2[(N ·m)2])

Hand-tuned PD servo

Standard DDP

Minimax DDP

Fig. 2. Biped walk trajectories with the three different methods

TABLE V

NUMBER OF STEPS WITH THE LARGE DISTURBANCES

PD standard minimax
servo DDP DDP

number of steps 49 24 > 1000

B. Optimization with learned model

Here, we compare the efficiency of the controller with
the learned model to the controller without the learned
model. To learn the unmodeled dynamics, we align 20
basis functions (Nb = 20 in equation (19)) at even intervals
along the biped trajectories. Results in table VI show that
the controller after learning the error dynamics used lower
torque to produce stable biped walking trajectories.

TABLE VI

ONE STEP CONTROL COST WITH THE LARGE DISTURBANCES

(AVERAGED OVER 100 STEPS)

without with
learned model learned model

control cost 17.1 11.3
(×10−2[(N ·m)2])

V. OPTIMIZING SWING LEG TRAJECTORIES:
APPLICATION TO THE REAL BIPED ROBOT

As a starting point to apply our proposed method to a
real biped robot, we are optimizing swing leg trajectories
in the simulator and applying these trajectories to our
real biped robot (Fig. 1). Here, we focus on one leg
(Fig. 3, 5). The goal of the task is to find low control cost
swing leg trajectory starting from a given initial posture
(θ1,θ2) = (15.,0.)[deg] to a given desired terminal posture
(θ d

1 ,θ d
2 ) = (−20.,20.)[deg].

Fig. 3. Swing leg model

A. Optimization criterion

The penalty function for the task consists of the squared
deviations from a nominal trajectory and the squared
control magnitudes:

r(xi,ui, i) = (xi −xd
i )

T P(xi −xd
i )+ ui

T Rui. (13)
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The terminal penalty function is defined as

Φ(xN) = (xN −xd
N)T PN(xN −xd

N), (14)

where xd
N denotes the desired terminal state. Definitions

of the other variables are the same as those in section III-
B. For minimax DDP, we add a reward term −w i

T Gwi to
increase robustness. We set the parameters as P = 0.1I4,
R = 10.0I2, PN = diag{5000.0,5000.0,10.0,10.0}, and
G = 20.0I2. We compared a PD servo controller, standard
DDP and minimax DDP for deviation from the desired
terminal posture and control cost on the real biped robot.

B. Real robot experiment

We applied the optimized trajectories and gains gener-
ated in the simulator to our real biped robot. The length
of the trajectories was fixed at 0.3 sec. Then, the number
of time steps N was fixed at 300 because control time
step was set at 1 msec. Table VII shows the deviation
from the terminal desired posture ∑2

i=1 |θi − θ d
i | at 0.3

sec. Results show that minimum deviation was realized
by using proposed minimax DDP. However, the difference
of the deviation was not significant. Fig. 4 shows an
example of acquired swing leg trajectories generated by
three different methods. Fig. 5 shows an acquired real
robot swing leg trajectory generated by minimax DDP.
Table VIII shows control cost for the swing movement
(definition of the control cost is the same as that in section
IV). Both DDP and minimax DDP generated swing leg
trajectories have much lower control cost than the hand-
designed controller (PD servo) on the real robot.

TABLE VII

DEVIATION FROM TERMINAL DESIRED POSTURE (AVERAGE OVER 10

TRIALS)

PD standard minimax
servo DDP DDP

deviation [deg] 4.79 4.82 3.73

0 0.05 0.1 0.15 0.2 0.25 0.3
−40
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−20

−10

0
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]

PD servo
Standard DDP
Minimax DDP

0 0.05 0.1 0.15 0.2 0.25 0.3
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PD servo
Standard DDP
Minimax DDP

Fig. 4. Example of the swing leg trajectories. Left: hip joint (θ1), Right:
knee joint (θ2)

VI. DISCUSSION

In this study, we developed an optimization method to
generate biped walking trajectories by using differential

TABLE VIII

CONTROL COST FOR THE SWING MOVEMENT USING THE REAL

ROBOT (AVERAGE OVER 10 TRIALS)

PD standard minimax
servo DDP DDP

control cost 3.63 0.93 1.23
(×10−1[(N ·m)2])

dynamic programming (DDP). We considered energy ef-
ficiency and robustness simultaneously in minimax DDP,
and it was important to cope with modeling error. We
showed that 1) DDP and minimax DDP can be applied to
high dimensional problems, 2) minimax DDP can design
more robust controllers than standard DDP, 3) learning
can be used to reduce modeling error and unknown dis-
turbances in the context of minimax DDP control design,
and 4) DDP and minimax DDP can be applied to a real
robot. Both standard DDP and minimax DDP generated
low torque biped trajectories. We showed that the minimax
DDP control design was more robust than the controller
designed by standard DDP and the hand-tuned PD servo.
Given a robust controller, we could collect sufficient data
to learn the error dynamics using RFWR [6] without the
robot falling down all the time. We also showed that after
learning the error dynamics, the biped robot could find
a lower torque trajectory. DDP and minimax DDP could
generate low cost swing leg trajectories for a real biped
robot. In this paper, we experimentally demonstrated the
effectiveness of the proposed algorithm for trajectory op-
timization of the biped robot, however, our initial attempt
to generate continuous locomotion with the proposed
scheme has not yet succeeded. Our initial mechanical
design, in particular, the mechanical structure and power
transmission mechanism of the knee joint need additional
modification. We are currently improving the design and
structure of the leg parts. Experimental implementation of
the proposed algorithm for locomotion is on-going and
will be reported shortly. Using motion captured data from
human walking [8] and scaling the data for the robot
nominal trajectories instead of using a trajectory from the
hand-designed PD servo controller will be considered in
future work.
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APPENDIX

A. Update rule for Q function

The second order local model of the Q function can be
propagated backward in time using:

Qx(i) = Vx(i+1)Fx + rx(i) (15)

Qu(i) = Vx(i+1)Fu + ru(i)
Qw(i) = Vx(i+1)Fw + rw(i)
Qxx(i) = FxVxx(i+1)Fx +Vx(i+1)Fxx + rxx(i)
Qxu(i) = FxVxx(i+1)Fu +Vx(i+1)Fxu + rxu(i)
Qxw(i) = FxVxx(i+1)Fu +Vx(i+1)Fxw + rxw(i)
Quu(i) = FuVxx(i+1)Fu +Vx(i+1)Fuu + ruu(i)
Qww(i) = FwVxx(i+1)Fw +Vx(i+1)Fww + rww(i)
Quw(i) = FuVxx(i+1)Fw +Vx(i+1)Fuw + ruw(i),

where xi+1 = F(xi,ui,wi) is a model of the task dynamics.

B. Terminal Penalty for Biped Walking Task

Penalties on the initial (x0) and final (xN) states are
applied:

Φp(x0,xN) = Φ0(x0)+ ΦN(x0,xN). (16)

The term Φ0(x0) penalizes an initial state where the foot
is not on the ground:

Φ0(x0) = hT (x0)P0h(x0), (17)

where h(x0) denotes height of the swing foot at the initial
state x0. The term ΦN(x0,xN) is used to generate periodic
trajectories:

ΦN(x0,xN) = (xN −H(x0))
T PN(xN −H(x0)), (18)

where xN denotes the terminal state, x0 denotes the initial
state, and the term (xN −H(x0))

T PN (xN −H(x0)) is a
measure of terminal control accuracy. A function H()
represents the coordinate change caused by the exchange
of a support leg and a swing leg, and the velocity change
caused by a swing foot touching the ground.

C. Approximation of Error Dynamics

Estimated error dynamics ∆F̂ is given as

∆F̂(xi,ui, i) =
∑Nb

k=1
α i

kφk(xi,ui, i)

∑Nb
k=1

α i
k

, (19)

φk(xi,ui, i) = β T
k x̃i

k, (20)

α i
k = exp

(
−1

2
(i− ck)Dk(i− ck)

)
, (21)

where, Nb denotes the number of basis function, ck denotes
center of k-th basis function, Dk denotes distance metric
of the k-th basis function, βk denotes parameter of the
k-th basis function to approximate error dynamics, and
x̃i

k = (xi,ui,1, i− ck) denotes augmented state vector for
the k-th basis function.
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