
Using Local Trajectory Optimizers To Speed Up GlobalOptimization In Dynamic ProgrammingChristopher G. AtkesonDepartment of Brain and Cognitive Sciences andthe Arti�cial Intelligence LaboratoryMassachusetts Institute of Technology, NE43-771545 Technology Square, Cambridge, MA 02139617-253-0788, cga@ai.mit.edu1/7/94AbstractDynamic programming provides a methodology to develop planners and controllersfor nonlinear systems. However, general dynamic programming is computationallyintractable. We have developed procedures that allow more complex planning andcontrol problems to be solved. We use second order local trajectory optimization togenerate locally optimal plans and local models of the value function and its derivatives.We maintain global consistency of the local models of the value function, guaranteeingthat our locally optimal plans are actually globally optimal, up to the resolution of oursearch procedures.Learning to do the right thing at each instant in situations that evolve over time isdi�cult, as the future cost of actions chosen now may not be obvious immediately, and mayonly become clear with time. Value functions are a representational tool that makes theconsequences of actions explicit. Value functions are di�cult to learn directly, but they canbe built up from learned models of the dynamics of the world and the cost function. Thispaper focuses on how fast optimizers that only produce locally optimal answers can playa useful role in speeding up the process of computing or learning a globally optimal valuefunction.Consider a system with dynamics xk+1 = f(xk;uk) and a cost function L(xk;uk), wherex is the state of the system and u is a vector of actions or controls. The subscript k servesas a time index, but will be dropped in the equations that follow. A goal of reinforcementlearning and optimal control is to �nd a policy that minimizes the total cost, which is thesum of the costs for each time step. One approach to doing this is to construct an optimal1Proceedings, Neural Information Processing Systems, Denver, Colorado, December, 1993, In: Advancesin Neural Information Processing Systems 6, J. D. Cowan, G. Tesauro, and J. Alspector, eds. MorganKaufmann, 1994. 1



Figure 1: Locally optimal trajectories for the pendulum swing up task.value function, V (x). The value of this value function at a state x is the sum of all futurecosts, given that the system started in state x and followed the optimal policy P(x) (choseoptimal actions at each time step as a function of the state). A local planner or controllercan choose globally optimal actions if it knew the future cost of each action. This cost issimply the sum of the cost of taking the action right now and the future cost of the statethat the action leads to, which is given by the value function.u� = arg minu (L(x;u) + V (f(x;u))) (1)Value functions are di�cult to learn. The environment does not provide training exam-ples that pair states with their optimal cost (x; V (x)). In fact, it seems that the optimalpolicy depends on the optimal value function, which in turn depends on the optimal policy.Algorithms to compute value functions typically iteratively re�ne a candidate value functionand/or a corresponding policy (dynamic programming). These algorithms are usually ex-pensive. We use local optimization to generate locally optimal plans and local models of thevalue function and its derivatives. We maintain global consistency of the local models of thevalue function, guaranteeing that our locally optimal plans are actually globally optimal, upto the resolution of our search procedures.1 A SIMPLE EXAMPLE: A PENDULUMIn this paper we will present a simple example to make our ideas clear. Figure 1 shows asimulated set of locally optimal trajectories in phase space for a pendulum being driven bya motor at the joint from the stable to the unstable equilibrium position. S marks the startpoint, where the pendulum is hanging straight down, and G marks the goal point, wherethe pendulum is inverted (pointing straight up). The optimization criteria quadraticallypenalizes deviations from the goal point and the magnitude of the torques applied. In thethree locally optimal trajectories shown the pendulum either swings directly up to the goal(1), moves initially away from the goal and then swings up to the goal (2), or oscillates topump itself and then swing to the goal (3). In what follows we describe how to �nd theselocally optimal trajectories and also how to �nd the globally optimal trajectory.2



2 LOCAL TRAJECTORY OPTIMIZATIONWe base our local optimization process on dynamic programming within a tube surroundingour current best estimate of a locally optimal trajectory (Dyer and McReynolds 1970, Ja-cobson and Mayne 1970). We have a local quadratic model of the cost to get to the goal (V )at each time step along the optimal trajectory (assume a time step index k in everythingbelow unless otherwise indicated):V (x) � V0 + Vxx+ 12xTVxxx (2)A locally optimal policy can be computed using local models of the plant (in this case locallinear models) at each time step along the trajectory:xk+1 = f(x;u) � Ax+Bu+ c (3)and local quadratic models of the one step cost at each time step along the trajectory:L(x;u) � 12xTQx+ 12uTRu+ xTSu+ tTu (4)At each point along the trajectory the optimal policy is given by:uopt = �(R+BTVxxB)�1�(BTVxxAx+ STx+BTVxxc+ VxB+ t)One can integrate the plant dynamics forward in time based on the above policy, andthen integrate the value functions and its �rst and second spatial derivatives backwards intime to compute an improved value function, policy, and trajectory.For a one step cost of the form:L(x;u) � 12(x� xd)TQ(x� xd)+12(u� ud)TR(u� ud) + (x� xd)TS(u � ud)the backward sweep takes the following form (in discrete time):Zx = VxA +Q(x� xd) (5)Zu = VxB+R(u� ud) (6)Zxx = ATVxxA +Q (7)Zux = BTVxxA+ S (8)Zuu = BTVxxB+R (9)K = Z�1uu Zux (10)Vxk�1 = Zx � ZuK (11)Vxxk�1 = Zxx � ZxuK (12)3



Figure 2: Di�erent dynamic programming techniques (see text).3 STANDARD DYNAMIC PROGRAMMINGA typical implementation of dynamic programming in continuous state spaces discretizesthe state space into cells, and assigns a �xed control action to each cell. Larson's stateincrement dynamic programming (Larson 1968) is a good example of this type of approach.In Figure 2A we see the trajectory segments produced by applying the constant action ineach cell, plotted on a phase space for the example problem of swinging up a pendulum.
4



4 USING LOCAL TRAJECTORY OPTIMIZATIONWITH DPWe want to minimize the number of cells used in dynamic programming by making the cellsas large as possible. Combining local trajectory optimization with dynamic programmingallows us to greatly reduce the resolution of the grid on which we do dynamic programmingand still correctly estimate the cost to get to the goal from di�erent parts of the space.Figure 2A shows a dynamic programming approach in which each cell contains a trajectorysegment applied to the pendulum problem. Figure 2B shows our approach, which createsa set of locally optimal trajectories to the goal. By performing the local trajectory opti-mizations on a grid and forcing adjacent trajectories to be consistent, this local optimizationprocess becomes a global optimization process. Forcing adjacent trajectories to be consistentmeans requiring that all trajectories can be generated from a single underlying policy. Atrajectory can be made consistent with a neighbor by using the neighboring trajectory as aninitial trajectory in the local optimization process, or by using the value function from theneighboring trajectory to generate the initial trajectory in the local optimization process.Each grid element stores the trajectory that starts at that point and achieves the lowestcost.The trajectory segments in �gure 2A match the trajectories in 2B. Figures 2C and 2D arelow resolution versions of the same problem. Figure 2C shows that some of the trajectorysegments are no longer correct. In Figure 2D we see the locally optimal trajectories to thegoal are still consistent with the trajectories in Figure 2B. Using locally optimal trajectorieswhich go all the way to the goal as building blocks for our dynamic programming algorithmallows us to avoid the problem of correctly interpolating the cost to get to the goal functionon a sparse grid. Instead, the cost to get to the goal is measured directly on the optimaltrajectory from each node to the goal. We can use a much sparser grid and still converge.5 ADAPTIVE GRIDS BASED ONCONSTANT COSTCONTOURSWe can limit the search by \growing" the volumes searched around the initial and goal statesby gradually increasing a cost threshold Cg. We will only consider states around the goalthat have a cost less than Cg to get to the goal and states around the initial state that havea cost less than Cg to get from the initial state to that state (Figure 3A). These two regionswill increase in size as Cg is increased. We stop increasing Cg as soon as the two regionscome into contact. The optimal trajectory has to be entirely within the union of these tworegions, and has a cost of 2Cg.Instead of having the initial conditions of the trajectories laid out on a grid over the wholespace, the initial conditions are laid out on a grid over the surface separating the inside andthe outside surfaces of the volumes described above. The resolution of this grid is adaptivelydetermined by checking whether the value function of one trajectory correctly predicts thecost of a neighboring trajectory. If it does not, additional grid points are added between theinconsistent trajectories. 5



Figure 3: A: Volumes de�ned by a cost threshold. B: Approximate cost contours based onkey trajectories.During this global optimization we separate the state space into a volume around the goalwhich has been completely solved and the rest of the state space, in which no exploration orcomputation has been done. Each iteration of the algorithm enlarges the completely solvedvolume by performing dynamic programming from a surface of slightly increased cost to thecurrent constant cost surface. When the solved volume includes a known starting point orcontacts a similar solved volume with constant cost to get to the boundary from the startingpoint, a globally optimal trajectory from the start to the goal has been found.6 DP BASED ON APPROXIMATING CONSTANTCOST CONTOURSUnfortunately, adaptive grids based on constant cost contours still su�er from the curse ofdimensionality, having only reduced the dimensionality of the problem by 1. We are cur-rently exploring methods to approximate constant cost contours. For example, constant costcontours can be approximated by growing \key" trajectories. A version of this is illustratedin Figure 3B. Here, trajectories were grown along the \bottoms" of the value function \val-leys". The location of a constant cost contour can be estimated by using local quadraticmodels of the value function produced by the process which optimizes the trajectory. Theseapproximate representations do not su�er from the curse of dimensionality. They require onthe order of TD2, where T is the length of time the trajectory requires to get to the goal,and D is the dimensionality of the state space.6



7 SUMMARYDynamic programming provides a methodology to plan trajectories and design controllersand estimators for nonlinear systems. However, general dynamic programming is compu-tationally intractable. We have developed procedures that allow more complex planningproblems to be solved. We have modi�ed the State Increment Dynamic Programming ap-proach of Larson (1968) in several ways:1. In State Increment DP, a constant action is integrated to form a trajectory segmentfrom the center of a cell to its boundary. We use second order local trajectory opti-mization (Di�erential Dynamic Programming) to generate an optimal trajectory andform an optimal policy in a tube surrounding the optimal trajectory within a cell. Thetrajectory segment and local policy are globally optimal, up to the resolution of therepresentation of the value function on the boundary of the cell.2. We use the optimal policy within each cell to guide the local trajectory optimizationto form a globally optimal trajectory from the center of each cell all the way to thegoal. This helps us avoid the accumulation of interpolation errors as one moves fromcell to cell in the state space, and avoid limitations caused by limited resolution of therepresentation of the value function over the state space.3. The second order trajectory optimization provides us with estimates of the value func-tion and its �rst and second spatial derivatives along each trajectory. This provides anatural guide for adaptive grid approaches.4. During the global optimization we separate the state space into a volume around thegoal which has been completely solved and the rest of the state space, in which noexploration or computation has been done. The surface separating these volumes is asurface of constant cost, with respect to achieving the goal.5. Each iteration of the algorithm enlarges the completely solved volume by performingdynamic programming from a surface of slightly increased cost to the current constantcost surface.6. When the solved volume includes a known starting point or contacts a similar solvedvolume with constant cost to get to the boundary from the starting point, a globallyoptimal trajectory from the start to the goal has been found. No optimal trajectorywill ever leave the solved volumes. This would require the trajectory to increase ratherthan decrease its cost to get to the goal as it progressed.7. The surfaces of constant cost can be approximated by a representation that avoids thecurse of dimensionality.8. The true test of this approach lies ahead: Can it produce reasonable solutions tocomplex problems? 7



AcknowledgementsSupport was provided under Air Force O�ce of Scienti�c Research grant AFOSR-89-0500,by the Siemens Corporation, and by the ATR Human Information Processing ResearchLaboratories. Support for CGA was provided by a National Science Foundation PresidentialYoung Investigator Award.ReferencesBellman, R., (1957) Dynamic Programming, Princeton University Press, Princeton, NJ.Bertsekas, D.P., (1987) Dynamic Programming: Deterministic and Stochastic Models, Prentice-Hall, Englewood Cli�s, NJ.Dyer, P. and S.R. McReynolds, (1970) The Computation and Theory of Optimal Control,Academic Press, New York, NY.Jacobson, D.H. and D.Q. Mayne, (1970) Di�erential Dynamic Programming, Elsevier, NewYork, NY.Larson, R.E., (1968) State Increment Dynamic Programming, Elsevier, New York, NY.

8


