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Abstract— This paper presents a standing balance controller
that explicitly handles pushes. We employ a library of optimal
trajectories and the neighboring optimal control method to
generate local approximations to the optimal control. We take
advantage of a parametric nonlinear optimization method,
SNOPT, to generate initial trajectories and then use Differential
Dynamic Programming (DDP) to further refine them and get
their neighboring optimal control. A library generation method
is proposed, which keeps the trajectory library to a reasonable
size. We compare the proposed controller with an optimal
controller and an LQR based gain scheduling controller using
the same optimization criterion. Simulation results demonstrate
the performance of the proposed method.

I. INTRODUCTION

Humanoid robots are expected to interact with humans
and complex unstructured environments, so unexpected per-
turbations, such as collisions with people or moving objects,
are inevitable. This paper focuses on balance control during
upright stance with unexpected pushes.

Studies of human standing balance have identified two
discrete strategies [1]. One is the ankle strategy, in which
all joints except for the ankle are fixed and torque about the
ankle joint is used to compensate for the perturbation. The
other is the hip strategy, in which torque about the hip joint
is used to accelerate the torso and move the Center of Mass
(CoM). If the perturbation is very large, a step has to be
taken [2], [3]. In this paper, only balance without stepping
is addressed.

Bio-mechanically motivated controllers, such as [4], and
intuitive controller designs, such [5], [6] have been studied.
In [7], [8], optimal control and state estimation is used to
explain selection of control strategies used by humans. The
system is linearized and Linear Quadratic Regulators are
designed for each perturbation. A form of gain scheduling
is employed to account for nonlinearities caused by control
and bio-mechanical constraints.

We use a trajectory library [9] to represent an optimal con-
troller. In [10], it was shown that multiple balance recovery
strategies can be generated by a single optimization criterion.
For nonlinear systems, Dynamic Programming (DP) provides
a way to find globally optimal control laws. But for high
dimensional systems, such as a humanoid robot, the com-
putation and even the storage of nonlinear feedback laws
becomes difficult [11]. Parametric nonlinear programming
methods, such as SQP (Sequential Quadratic Programming),
have been used to solve trajectory optimization for finite
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Fig. 1. Two-link robot model.

dimensional problems [12]. Differential Dynamic Program-
ming (DDP), which is a second order gradient technique
for trajectory optimization [13], applies the principle of
optimality in the neighborhood of a nominal trajectory. This
allows the coefficients of a linear or quadratic expansion
of the value function to be computed along the trajectory.
These coefficients may then be used to compute an improved
trajectory and a local approximation to the optimal control
law in its neighborhood, which can be used to compute
an optimal feedback control law [14]. We take advantage
of parametric nonlinear programming methods to generate
initial trajectories, which are then refined by DDP to produce
local control laws and more optimal trajectories.

Most previous work assumes that pushes are instantaneous
and change the joint velocities instantaneously. In practice,
the pushes may last for a while. The proposed controller can
handle instantaneous and continuous pushes.

The rest of the paper is organized as follows. In section II,
the robot model and the optimization criterion are proposed.
Section III describes the neighboring optimal control method.
Section IV proposes the balance controller and the optimal
trajectory library generation method. Simulation results are
provided in section V to demonstrate the validity and the
performance of the proposed method. Conclusions and future
work are discussed in Section VI.

II. ROBOT MODEL

A two-link inverted pendulum model in the sagittal plane
is modeled, as shown in Fig. 1. The parameters are listed in
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TABLE I

PARAMETERS OF THE ROBOT MODEL

l1 (m) 0.661 l2 (m) 0.653
l1cm (m) 0.430 l2cm (m) 0.141
m1 (Kg) 19.474 m2 (Kg) 29.492

MoI1 (Kg.m2) 0.696 MoI2 (Kg.m2) 1.03356

Table I, where l1cm and l2cm are the distances from the center
of mass (CoM) of each link to the joint below, and MoI1
and MoI2 are the momentum of inertia of each link about
its CoM. The ankle angle is bounded by −0.52 < θa < 0.79
radians. The hip angle is bounded by −2.18 < θh < 0.52
radians. θa = 0 and θh = 0 is upright. The ankle velocity
is bounded by −4.6 < θ̇a < 4.6 radians/second. The hip
velocity is bounded by −7.7 < θ̇h < 7.7 radians/second.
The maximum hip torque is ±157 Newton-meters. Ankle
torque is limited to prevent the foot from tilting. We use a
symmetric foot 0.2 meters long in our model. Assuming that
in standing the center of pressure is at the center of the foot,
then the maximum ankle torque is ±50 Newton-meters. A
horizontal push is applied on some point of a link, where p
is the size of push and r is the distance from the point of
action to the joint below.

The one step optimization criterion is the weighted sum of
the squared deviations of the current state from the desired
state and the squared joint torques:

L(x,u) = T (x − xd)
T Q(x − xd) + TuT Ru, (1)

where T is the time step of the simulation (0.01s), xT =
(θa, θh, θ̇a, θ̇h) is the current state, uT = (τa, τh) is the
control vector, xd is the desired state, which is the static
equilibrium state for a specified push, and Q and R are both
currently identity matrices with appropriate dimensions.

III. NEIGHBORING OPTIMAL CONTROL

Given the discrete time dynamics of the robot:

x(k + 1) = f(x(k),u(k), p, r), (2)

where p is the push size, r is the push location; and the
optimal value function

V (x) = L(x,u∗) + V (f(x,u∗)), (3)

where u∗ is the optimal control for the state, x. The
neighboring optimal control is given by [15]:

u(k) = u∗(k) − K∗(k)(x(k) − x∗(k)) (4)

and

K∗(k) = −
∂u∗(x(k))

∂x(k)

∣

∣

∣

x∗(k)
. (5)

In order to compute K∗, the partial derivatives Vx = ∂V
∂x

and Vxx = ∂2V
∂x2 have to be computed along the trajectory.

Given an optimal trajectory, one can integrate V (k), Vx(k),
and Vxx(k) backward in time starting from the end of the
trajectory [13].

The neighboring optimal control law is a local linear
model for the optimal policy in the neighborhood of the
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Fig. 2. Standing balance controller architecture.

optimal trajectory. Therefore, a closed-loop feedback control
solution can be given by:

u(x) = ū − K̄(x − x̄), (6)

where x̄ is the closest state on the optimal trajectory to the
current state, x. ū and K̄ are the optimal control and the
feedback gain matrix corresponding to x̄.

IV. BALANCE CONTROLLER USING A TRAJECTORY

LIBRARY

A. Controller Architecture

The standing balance controller is shown in Fig. 2. In each
time step, the state estimate, x̂, the push size estimate, p̂, and
the push location estimate, r̂ are calculated. During balance
control, a trajectory is chosen according to the distance,
(p, r)W(p, r)T , where W a diagonal weighting matrix. The
range of p is about −80 to +80 and the range of r is
between 0 and 0.653, so W is diag(1, 100) currently. Given
the optimal trajectory and its neighboring optimal control
feedback gains, we get a local linear approximation to the
optimal control law in its neighborhood. According to the
current state estimate, x̂, the closest state on the optimal
trajectory, x̄, along with the corresponding control, ū, and
the feedback gain matrix, K̄ are used. The state distance is
given by xT Dx, where D is diag(1,1,0.1,0.1) currently. The
output of the controller is thus given by:

u = ū − K̄(x − x̄). (7)

B. Trajectory Library on a Uniform Grid of Initial Condi-

tions

Differential Dynamic Programming is a second order
gradient method and it can converge to a better solution if
the starting trajectory is good, otherwise the convergence is
slow or it may even fail. Parametric nonlinear programming
methods have been used to solve trajectory optimization
problems [12]. We find they are generally more robust in
terms of finding a solution than DDP.

SNOPT is a general-purpose system for constrained op-
timization using a sparse sequential quadratic programming
(SQP) method [16]. We use it to generate starting trajectories
for different conditions. For standing balance control, a
selection of initial conditions is considered. For constant
pushes, the initial joint angles and velocities are all zero.
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Fig. 3. The lookup table for constant pushes on the torso.

The push size, p, and the push location, r, are not zero.
For instantaneous pushes, the initial joint velocities are
not zero. The initial joint angles, the push size, and the
push location are all zero. For constant pushes, the robot
eventually leans into the pushes and attains zero joint torque.
In order to balance after the constant pushes are removed,
initial conditions with nonzero joint angles should also be
considered. For each type of push, initial conditions are
generated on a uniform grid. Trajectories are optimized by
SNOPT for each initial condition. For example, we use 10
Newtons as the push magnitude step size, 0.3 meters as the
push location step size, and generate starting trajectories on
a uniform grid for constant pushes on the torso.

We use DDP to refine the trajectories produced by SNOPT
and store the trajectories and their feedback gain matrices in
the library. Given a good starting trajectory, DDP can find a
better solution rapidly.

C. Trajectory Library on an Adaptive Grid of Initial Condi-

tions

It is difficult to determine step sizes during the trajectory
library generation on a uniform grid of initial conditions. If
step sizes are too large, the final controller’s performance is
bad. But if they are too small, the size of trajectory library
becomes too big. We propose a trajectory library on an
adaptive grid of initial conditions.

In order to store trajectories on an adaptive grid of initial
conditions, optimal trajectories are generated and then stored
into a library incrementally based on performance. We have
developed an adaptive grid formulation which adjusts the
cell boundaries so that the deviation from the optimal value
is less than a performance bound. For example, we use 1000
as the performance bound and generate trajectories to handle
constant pushes on the torso. The final library has only 30
trajectories. The result is shown as Fig. 3, in which each
block defines a control region of one optimal trajectory.
During balance control, a trajectory is chosen according to
the lookup table shown in Fig. 3. The middle large region
uses the optimal trajectory for a zero push, which is an
LQR controller since the trajectory remains at the standing
equilibrium.

D. Online State and Push Estimation

We have no sensor for the joint velocities, push size,
and push location, which have to be estimated. We employ
a new state variable, yT = (θa, θh, θ̇a, θ̇h, p, r) and an
observation, zT = (θ̄a, θ̄h, f̄x, f̄z), where θ̄a and θ̄h are noisy
measurements of the ankle angle and the hip angle, f̄x and
f̄z are noisy measurements of the ankle forces, as shown
in Fig. 1. Therefore, the state transition and the observation
model are given by:

y(k + 1) = g(y(k),u(k)) + w (8)

z(k) = h(y(k),u(k)) + v (9)

w ∼ N(0,S) v ∼ N(0,T) (10)

g(y,u) =





f(x(k),u(k), p(k), r(k))
p(k)
r(k)



 (11)

h(y,u) =









θa

θh

fx(y(k),u(k))
fz(y(k),u(k))









, (12)

where f(.) is the dynamics of the robot, the noise terms w
and v are uncorrelated, S and T are covariance matrices.
Diag(0.012, 0.012, 0.012, 0.012, 1, 0.012) and diag(0.012,
0.012, 0.012, 0.012) are used for S and T, respectively. The
state transition model and the observation model are both
nonlinear, so the Extended Kalman Filter is employed [17].
The Extended Kalman Filter linearizes the nonlinear state
transition model and the observation model as

F(k) =
∂g

∂y

∣

∣

∣

∣

ŷ(k−1|k−1),u(k−1)

(13)

H(k) =
∂h

∂y

∣

∣

∣

∣

ŷ(k|k−1),u(k−1)

. (14)

To predict the next state before measurements are taken:

ŷ(k|k − 1) = g(ŷ(k − 1|k − 1),u(k − 1)) (15)

P(k|k − 1) = F(k)P(k − 1|k − 1)FT (k) + S (16)

To update the state after measurements are taken:

zerr = z(k) − h(ŷ(k|k − 1),u(k − 1)) (17)

K(k) = P(k|k − 1)HT (HP(k|k − 1)HT + T)−1 (18)

ŷ(k|k) = ŷ(k|k − 1) + K(k)zerr (19)

P(k|k) = (I − K(k)H)P(k|k − 1), (20)

where K is the Kalman gain matrix and P is the covariance
matrix for the state estimation.

V. SIMULATION RESULTS

In the following simulations, θa, θh, θ̇a, and θ̇h denote the
true values of ankle angle, hip angle, ankle velocity, and hip

velocity. Their estimates are denoted by θ̂a, θ̂h,
ˆ̇
θa, and

ˆ̇
θh.

θ̄a, θ̄h,
¯̇
θa, and

¯̇
θh, τ̄a, τ̄h are elements of the closest state

and its corresponding controls found in the trajectory library.
τa and τh are applied torques at the ankle joint and the hip
joint.
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Fig. 4. The robot under the constant forward push at the head of 42 Newtons. The frames are taken in intervals of 0.3 seconds.

In the first simulation, a constant push of 42 Newtons at
the head in the forward direction is applied. There is no
trajectory for exactly the same push in the library and the
optimal trajectory for a constant push of 39.5 Newtons at
the head is selected. As shown in Figs. 4 and 5, the robot
employs the hip torque to accelerate the torso, bends forward
quickly, and then it leans backward into the push in order
to use gravity to balance the push. Finally, all joint torques
tend to zero. As shown in Figs. 6, 7, and 8, the state and
push estimates quickly approach the true values.

In the second simulation, a large short push at the head of
50 Newtons in the forward direction lasting 0.5 seconds is
tested. As shown in Figs. 9, 10, 11, and 12, the robot uses
the hip torque to accelerate the torso, bends forward, and
finally recovers its posture to be upright. It is also shown
that the state and push estimates quickly approach the true
values. In Fig. 12, the push location estimate is meaningless
when the push size is zero.

The robustness of the proposed controller is tested with
a sequence of random pushes. The test push size sequence
is 15, 45, and 25 Newtons. Trajectories for constant pushes
of 20, 39.5, and 26 Newtons are used. As shown in Figs.
13, 14, 15, and 16, for pushes of sizes and locations not in
the library and changing with time, the robot can still keep
balance.

For different push sizes and push locations on the torso,
the performance of the proposed controller is compared with
that of the optimal controller using the same optimization
criterion. As shown in Fig. 17, the performance of the
proposed controller is close to that of the optimal controller
when there are trajectories in the library for the pushes that
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Fig. 5. The joint torques for 42 Newtons forward push at the head.
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Fig. 6. The joint angles for 42 Newtons forward push at the head.
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Fig. 7. The joint velocities for 42 Newtons forward push at the head.
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Fig. 8. Push size and location estimates for 42 Newtons forward push at
the head.
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Fig. 9. Joint torques for the short forward push at head of 50 Newtons,
lasting 0.5 seconds.
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Fig. 10. Joint angles for the short forward push at head of 50 Newtons,
lasting 0.5 seconds.

are close to the pushes applied. It becomes worse when the
applied pushes are far from what is in the library. Because
the trajectory library is generated based on performance, the
performance degradation is bounded.

We have also designed a gain scheduling controller based
on Linear Quadratic Regulators (LQR). It linearizes the
system about the equilibrium state for each push size and
push location. LQR controllers are then designed according
to the same optimization criterion. According to the push
size and the push location, an appropriate LQR controller is
used. This gain scheduling controller falls down for constant
forward pushes at the head of 36 Newtons. In contrast, the
controller proposed here is able to handle constant forward
pushes up to 55 Newtons.

VI. CONCLUSION AND FUTURE WORK

In this paper, a balance controller based on a trajectory
library is proposed. We demonstrate that a trajectory library
can be used for constrained nonlinear system control, such as
a humanoid robot standing balance control. Taking balance
control as an optimal control problem, the trajectory library
and the neighboring optimal control method are used to
generate local linear approximations to the optimal control.
Differential Dynamic Programming (DDP) is used to gen-
erate the optimal trajectories and the neighboring optimal
control. A nonlinear programming method, SNOPT, is used
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Fig. 11. Joint velocities for the short forward push at head of 50 Newtons,
lasting 0.5 seconds.
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Fig. 12. Push size and location estimates for the short forward push at
head of 50 Newtons, lasting 0.5 seconds.

to generate starting trajectories for DDP refinement, which
makes the convergence rapid.

The proposed trajectory library generation method saves
computation. It makes the final library compact but also
satisfy the performance requirements. The trajectories and
thus the linear approximation to the optimal control law can
be accessed effectively using a lookup table, which make the
proposed controller applicable for real-time control.

In our future work, robots with more links will be studied.
For example, the ’squat strategy’ can be generated if the robot
has knee joints. Actually implementing this algorithm on a
robot is also expected. This will require dealing with floor
compliance and coordinating both legs and feet. Finally, we
would like to extend our model to include a full 3D robot.
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