
Nonparametric Model-BasedReinforcement LearningChristopher G. AtkesonCollege of Computing, Georgia Institute of Technology,Atlanta, GA 30332-0280, USAATR Human Information Processing,2-2 Hikaridai, Seiko-cho, Soraku-gun, 619-02 Kyoto, Japancga@cc.gatech.eduhttp://www.cc.gatech.edu/fac/Chris.Atkeson/AbstractThis paper describes some of the interactions of model learningalgorithms and planning algorithms we have found in exploringmodel-based reinforcement learning. The paper focuses on how lo-cal trajectory optimizers can be used e�ectively with learned non-parametric models. We �nd that trajectory planners that are fullyconsistent with the learned model often have di�culty �nding rea-sonable plans in the early stages of learning. Trajectory plannersthat balance obeying the learned model with minimizing cost (ormaximizing reward) often do better, even if the plan is not fullyconsistent with the learned model.1 INTRODUCTIONWe are exploring the use of nonparametric models in robot learning (Atkeson et al.,1997b; Atkeson and Schaal, 1997). This paper describes the interaction of modellearning algorithms and planning algorithms, focusing on how local trajectory opti-mization can be used e�ectively with nonparametric models in reinforcement learn-ing. We �nd that trajectory optimizers that are fully consistent with the learnedmodel often have di�culty �nding reasonable plans in the early stages of learning.The message of this paper is that a planner should not be entirely consistent withthe learned model during model-based reinforcement learning. Trajectory optimiz-ers that balance obeying the learned model with minimizing cost (or maximizingreward) often do better, even if the plan is not fully consistent with the learnedmodel.



Figure 1: A: Planning in terms of trajectory segments. B: Planning in terms oftrajectories all the way to a goal point.Two kinds of reinforcement learning algorithms are direct (non-model-based) andindirect (model-based). Direct reinforcement learning algorithms learn a policy orvalue function without explicitly representing a model of the controlled system (Sut-ton et al., 1992). Model-based approaches learn an explicit model of the system si-multaneously with a value function and policy (Sutton, 1990, 1991a,b; Barto et al.,1995; Kaelbling et al., 1996). We will focus on model-based reinforcement learning,in which the learner uses a planner to derive a policy from a learned model and anoptimization criterion.2 CONSISTENT LOCAL PLANNINGAn e�cient approach to dynamic programming, a form of global planning, is to uselocal trajectory optimizers (Atkeson, 1994). These local planners �nd a plan foreach starting point in a grid in the state space. Figure 1 compares the output ofa traditional cell based dynamic programming process with the output of a plan-ner based on integrating local plans. Traditional dynamic programming generatestrajectory segments from each cell to neighboring cells, while the planner we usegenerates entire trajectories. These locally optimal trajectories have local policiesand local models of the value function along the trajectories (Dyer and McReynolds,1970; Jacobson and Mayne, 1970). The locally optimal trajectories are made con-sistent with their neighbors by using the local value function to predict the valueof a neighboring trajectory. If all the local value functions are consistent with theirneighbors the aggregate value function is a unique solution to the Bellman equationand the corresponding trajectories and policy are globally optimal. We would likeany local planning algorithm to produce a local model of the value function so wecan perform this type of consistency checking. We would also like a local policyfrom the local planner, so we can respond to disturbances and modeling errors.Di�erential dynamic programming is a local planner that has these characteris-tics (Dyer and McReynolds, 1970; Jacobson and Mayne, 1970). Di�erential dy-namic programming maintains a local quadratic model of the value function alongthe current best trajectory x�(t):V (x; t) = V0(t) + Vx(t)(x � x�(t))T + 0:5(x� x�(t))TVxx(t)(x � x�(t)) (1)



as well as a local linear model of the corresponding policy:u(x; t) = u�(t) +K(t)(x � x�(t)) (2)u(x; t) is the local policy at time t, the control signal u as a function of state x.u�(t) is the model's estimate of the control signal necessary to follow the currentbest trajectory x�(t). K(t) are the feedback gains that alter the control signals inresponse to deviations from the current best trajectory. These gains are also the�rst derivative of the policy along the current best trajectory.The �rst phase of each optimization iteration is to apply the current local policyto the learned model, integrating the modeled dynamics forward in time and seeingwhere the simulated trajectory goes. The second phase of the di�erential dynamicprogramming approach is to calculate the components of the local quadratic modelof the value function at each point along the trajectory: the constant term V0(t), thegradient Vx(t), and the Hessian Vxx(t). These terms are constructed by integratingbackwards in time along the trajectory. The value function is used to produce anew policy, which is represented using a new x�(t), u�(t), and K(t).The availability of a local value function and policy is an attractive feature ofdi�erential dynamic programming. However, we have found several problems whenapplying this method to model-based reinforcement learning with nonparametricmodels:1. Methods that enforce consistency with the learned model need an initialtrajectory that obeys that model, which is often di�cult to produce.2. The integration of the learned model forward in time often blows up whenthe learned model is inaccurate or when the plant is unstable and the cur-rent policy fails to stabilize it.3. The backward integration to produce the value function and a correspond-ing policy uses derivatives of the learned model, which are often quite inac-curate in the early stages of learning, producing inaccurate value functionestimates and ine�ective policies.3 INCONSISTENT LOCAL PLANNINGTo avoid the problems of consistent local planners, we developed a trajectory opti-mization approach that does not integrate the learned model and does not requirefull consistency with the learned model. Unfortunately, the price of these modi�-cations is that the method does not produce a value function or a policy, just atrajectory (x(t), u(t)). To allow inconsistency with the learned model, we representthe state history x(t) and the control history u(t) separately, rather than calculatex(t) from the learned model and u(t). We also modify the original optimizationcriterion C =Pk c(xk;uk) by changing the hard constraint that xk+1 = f (xk;uk)on each time step into a soft constraint:Cnew =Xk �c(xk;uk) + �jxk+1 � f (xk;uk)j2� (3)c(xk;uk) is the one step cost in the original optimization criterion. � is the penaltyon the trajectory being inconsistent with the learned model bxk+1 = f (xk;uk).jxk+1� f (xk;uk)j is the magnitude of the mismatch of the trajectory and the modelprediction at time step k in the trajectory. � provides a way to control the amountof inconsistency. A small � reects lack of con�dence in the model, and allows



Figure 2: TheSARCOS robotarm with a pen-dulum gripped inthe hand. Thependulum axisis aligned withthe �ngers andwith the fore-arm in this armcon�guration.the optimized trajectory to be inconsistent with the model in favor of reducingc(xk;uk). A large � reects con�dence in the model, and forces the optimized tra-jectory to be more consistent with the model. � can increase with time or with thenumber of learning trials. If we use a model that estimates the con�dence level ofa prediction, we can vary � for each lookup based on xk and uk. Locally weightedlearning techniques provide exactly this type of local con�dence estimate (Atkesonet al., 1997a).Now that we are not integrating the trajectory we can use more compact repre-sentations of the trajectory, such as splines (Cohen, 1992) or wavelets (Liu et al.,1994). We no longer require that xk+1 = f (xk;uk), which is a condition di�cult toful�ll without having x and u represented as independent values on each time step.We can now parameterize the trajectory using the spline knot points, for example.In this work we used B splines (Cohen, 1992) to represent the trajectory. Otherchoices for spline basis functions would probably work just as well. We can use anynonlinear programming or function optimization method to minimize the criterionin Eq. 3. In this work we used Powell's method (Press et al., 1988) to optimize theknot points, a method which is convenient to use but not particularly e�cient.4 IMPLEMENTATION ON AN ACTUAL ROBOTBoth local planning methods work well with learned parametric models. However,di�erential dynamic programming did not work at all with learned nonparametricmodels, for reasons already discussed. This section describes how the inconsistentlocal planning method was used in an application of model-based reinforcementlearning: robot learning from demonstration using a pendulum swing up task (Atke-son and Schaal, 1997). The pendulum swing up task is a more complex version ofthe pole or broom balancing task (Spong, 1995). The hand holds the axis of thependulum, and the pendulum rotates about this hinge in an angular movement(Figure 2). Instead of starting with the pendulum vertical and above its rotationaljoint, the pendulum is hanging down from the hand, and the goal of the swing uptask is to move the hand so that the pendulum swings up and is then balancedin the inverted position. The swing up task was chosen for study because it is adi�cult dynamic maneuver and requires practice for humans to learn, but it is easyto tell if the task is successfully executed (at the end of the task the pendulum isbalanced upright and does not fall down).We implemented learning from demonstration on a hydraulic seven degree of free-



-5.0

-4.0

-3.0

-2.0

-1.0

0.0

1.0

p
e
n

d
u

lu
m

 a
n

g
le

 (
ra

d
ia

n
s
)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

3rd trial
2nd trial
1st trial (imitation)
human demonstration

-0.3

-0.2

-0.1

-0.0

0.1

0.2

0.3

0.4

0.5

h
a
n

d
 p

o
s
it

io
n

 (
m

e
te

rs
)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

secondsFigure 3: The hand and pendulum motion during robot learning from demonstra-tion using a nonparametric model.dom anthropomorphic robot arm (SARCOS Dextrous Arm located at ATR, Fig-ure 2). The robot observed its own performance with the same stereo vision systemthat was used to observe the human demonstrations.The robot observed a human swinging up a pendulum using a horizontal handmovement (dotted line in Figure 3). The most obvious approach to learning fromdemonstration is to have the robot imitate the human motion, by following thehuman hand trajectory. The dashed lines in Figures 3 show the robot hand motionas it attempts to follow the human demonstration of the swing up task, and thecorresponding pendulum angles. Because of di�erences in the task dynamics forthe human and for the robot, this direct imitation failed to swing the pendulumup, as the pendulum did not get even halfway up to the vertical position, and thenoscillated about the hanging down position.The approach we used was to apply a planner to �nding a swing up trajectorythat worked for the robot, based on learning both a model and a reward functionand using the human demonstration to initialize the planning process. The datacollected during the initial imitation trial and subsequent trials was used to builda model. Nonparametric models were constructed using locally weighted learningas described in (Atkeson et al., 1997a). These models did not use knowledge of themodel structure but instead assumed a general relationship:_�k+1 = model(�k ; _�k; xk; _xk; �xk) (4)where � is the pendulum angle and x is the hand position. Training data fromthe demonstrations was stored in a database, and a local model was constructedto answer each query. Meta-parameters such as distance metrics were tuned usingcross validation on the training set. For example, cross validation was able toquickly establish that hand position and velocity (x and _x) played an insigni�cantrole in predicting future pendulum angular velocities.The planner used a cost function that penalizes deviations from the demonstrationtrajectory sampled at 60Hz:c(xk;uk) = (xk � xdk )T(xk � xdk ) + uTkuk (5)



where the state is x = (�; _�; x; _x), xd is the demonstrated motion, k is the sampleindex, and the control is u = (�x). Equation 3 was optimized using B splines torepresent x and u. The knot points for x and u were initially separately optimizedto minimize (xk � xdk )T(xk � xdk ) (6)and (uk � udk )T(uk � udk ) (7)The tolerated inconsistency, � was kept constant during a set of trials and setat values ranging from 100 to 100000. The exact value of � did not make muchdi�erence. Learning failed when � was set to zero, as there was no way for thelearned model to a�ect the plan. The planning process failed when � was set toohigh, enforcing the learned model too strongly.The next attempt got the pendulum up a little more. Adding this new data to thedatabase and replanning resulted in a movement that succeeded (trial 3 in Figure 3).The behavior shown in Figure 3 is quite repeatable. The balancing behavior at theend of the trial is learned separately and continues for several minutes, at whichpoint the trial is automatically terminated (Schaal, 1997).5 DISCUSSION AND CONCLUSIONWe applied locally weighted regression (Atkeson et al., 1997a) in an attempt to avoidthe structural modeling errors of idealized parametric models during model-basedreinforcement learning, and also to see if a priori knowledge of the structure of thetask dynamics was necessary. In an exploration of the swingup task, we found thatthese nonparametric models required a planner that ignored the learned model tosome extent. The fundamental reason for this is that planners amplify modelingerror. Mechanisms for this ampli�cation include:� The planners take advantage of any modeling error to reduce the cost ofthe planned trajectory, so the planning process seeks out modeling errorthat reduces apparent cost.� Some planners use derivatives of the model, which ampli�es any noise inthe model.Models that support fast learning will have errors and noise. For example, in orderto learn a model of the complexity necessary to accurately model the full robotdynamics between the commanded and actual hand accelerations a large amountof data is required, independent of modeling technique. The input would be 21dimensional (robot state and command) ignoring actuator dynamics. Because thereare few robot trials during learning, there is not enough data to make such a modeleven just in the vicinity of a successful trajectory. If it was required that enoughdata is collected during learning to make an accurate model, robot learning wouldbe greatly slowed down.One solution to this error ampli�cation is to bias the nonparametric modeling toolsto oversmooth the data. This reduces the bene�t of nonparametric modeling, andalso ignores the true learned model to some degree. Our solution to this problemis to introduce a controlled amount of inconsistency with the learned model intothe planning process. The control parameter � is explicit and can be changed as afunction of time, amount of data, or as a function of con�dence in the model at thequery point.



ReferencesAtkeson, C. G. (1994). Using local trajectory optimizers to speed up global opti-mization in dynamic programming. In Cowan, J. D., Tesauro, G., and Alspector,J., editors, Advances in Neural Information Processing Systems 6, pages 663{670.Morgan Kaufmann, San Mateo, CA.Atkeson, C. G., Moore, A. W., and Schaal, S. (1997a). Locally weighted learning.Arti�cial Intelligence Review, 11:11{73.Atkeson, C. G., Moore, A. W., and Schaal, S. (1997b). Locally weighted learningfor control. Arti�cial Intelligence Review, 11:75{113.Atkeson, C. G. and Schaal, S. (1997). Robot learning from demonstration. InProceedings of the 1997 International Conference on Machine Learning.Barto, A. G., Bradtke, S. J., and Singh, S. P. (1995). Learning to act using real-timedynamic programming. Arti�cial Intelligence, 72(1):81{138.Cohen, M. F. (1992). Interactive spacetime control for animation.Computer Graph-ics, 26(2):293{302.Dyer, P. and McReynolds, S. (1970). The Computational Theory of Optimal Control.Academic, NY.Jacobson, D. and Mayne, D. (1970). Di�erential Dynamic Programming. Elsevier,NY.Kaelbling, L. P., Littman, M. L., and Moore, A. W. (1996). Reinforcement learning:A survey. Journal of Arti�cial Intelligence Research, 4:237{285.Liu, Z., Gortler, S. J., and Cohen, M. F. (1994). Hierarchical spacetime control.Computer Graphics (SIGGRAPH '94 Proceedings), pages 35{42.Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1988).Numerical Recipes in C. Cambridge University Press, New York, NY.Schaal, S. (1997). Learning from demonstration. In Mozer, M. C., Jordan, M., andPetsche, T., editors, Advances in Neural Information Processing Systems 9, pages1040{1046. MIT Press, Cambridge, MA.Spong, M. W. (1995). The swing up control problem for the acrobot. IEEE ControlSystems Magazine, 15(1):49{55.Sutton, R. S. (1990). Integrated architectures for learning, planning, and reactingbased on approximating dynamic programming. In Seventh International Ma-chine Learning Workshop, pages 216{224. Morgan Kaufmann, San Mateo, CA.http://envy.cs.umass.edu/People/sutton/publications.html.Sutton, R. S. (1991a). Dyna, an integrated architecture for learning, planningand reacting. http://envy.cs.umass.edu/People/sutton/publications.html, Work-ing Notes of the 1991 AAAI Spring Symposium on Integrated Intelligent Archi-tectures pp. 151{155 and SIGART Bulletin 2, pp. 160-163.Sutton, R. S. (1991b). Planning by incremental dynamic programming. In EighthInternational Machine Learning Workshop, pages 353{357. Morgan Kaufmann,San Mateo, CA. http://envy.cs.umass.edu/People/sutton/publications.html.Sutton, R. S., Barto, A. G., and Williams, R. J. (1992). Reinforcement learning isdirect adaptive optimal control. IEEE Control Systems Magazine, 12:19|22.


