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Abstract

Learning a complex dynamic robot maneuver from a
single human demonstration is difficult. This paper
explores an approach to learning from demonstration
based on learning an optimization criterion from the
demonstration and a task model from repeated at-
tempts to perform the task, and using the learned
criterion and model to compute an appropriate robot
movement. A preliminary version of the approach has
been implemented on an anthropomorphic robot arm
using a pendulum swing up task as an example.

1 Introduction

One approach to programming robots is to have them
learn a task by watching the task being performed by
a human or by another robot. The robot can either
mimic the motion of the demonstrator, or learn how
the demonstrator acts in many situations (a policy).
We are interested in exploring techniques for learning
from demonstration in cases where the robot may not
be doing exactly the same task as the demonstrator
and where there are a small number of task demon-
strations available. In these cases exactly imitating
the motion of the demonstrator may not achieve the
task, and there may be too little training data to learn
an adequate policy. This paper explores an approach
based on learning a task model and an optimization
criterion for the task, and using the model and crite-
rion to compute an appropriate policy. A preliminary
version of the approach has been implemented on an
anthropomorphic robot arm using a pendulum swing
up task as an example. This paper describes that ex-
ample implementation, the lessons learned, and the
applicability of various approaches to learning from
demonstration.

Learning from demonstration, also known as “pro-
gramming by demonstration”, “imitation learning”,
and “teaching by showing” is a topic that has received
significant attention in automatic robot assembly over
the last 20 years. Recent reviews include Bakker and
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Kuniyoshi (1996); Dillmann et al. (1996); Hirzinger
(1996) and Ikeuchi et al. (1996). The goal is to re-
place the time-consuming manual programming of a
robot by an automatic programming process, driven
by showing the robot the task performed by an ex-
pert. Approaches include direct teaching (teaching by
showing) in which the robot imitates human motions
or teleoperated motions, directly learning a demon-
strated policy (Widrow and Smith, 1964; Pomerleau,
1991; Nechyba and Xu, 1995; Grudic and Lawrence,
1996), and the approach followed in this paper: learn-
ing the intent of the demonstrator and using that in-
tention model to plan or generate a policy (Friedrich
and Dillmann, 1995; Tung and Kak, 1995; Delson and
West, 1996). Using the same robot as the one used
in this work, learning from demonstration was inves-
tigated by Kawato et al. (1994) and Miyamoto et al.
(1996).

2 The Human Demonstration

The goal of the swing up task is to move the hand
so that a pendulum, initially hanging down, swings
up to the inverted position and then is balanced in
the inverted position (Spong, 1995). The hand holds
the axis of the pendulum, and the pendulum rotates
about this hinge in an angular movement (Figure 1).
A general version of this task allows both horizontal
and vertical hand motion perpendicular to the pen-
dulum axis. However, to simplify the task for this
first implementation, we restricted the hand motion
to a horizontal line with the pendulum axis perpen-
dicular to this line. Humans naturally use both hor-
1zontal and vertical hand motion to do the task, but
can restrict their motion to mostly horizontal hand
motions if asked. Adding additional degrees of free-
dom to the hand motion makes the task easier for
the human demonstrator, but more difficult for the
robot learner, as assessing the demonstrator’s intent,
building a model, and generating a policy are all more
complex. Figure 2 shows the hand motion and pendu-
lum motion from several human demonstrations, and a
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Figure 1: The SARCOS robot arm with a pendulum
gripped in the hand. The pendulum axis is aligned
with the fingers and with the forearm in this arm con-
figuration.

“movie” of one of the human motions. Human motion
was measured using a stereo vision system (QUICK-
MAG) running at a 60Hz sampling frequency. The
pendulum is marked by two colored balls that can be
tracked in real-time. Note that the demonstration fo-
cuses on the variables important to the task, and the
variables relevant only to the human arm such as joint
angles are ignored. Our goal is task level learning from
demonstration, rather than imitating or following pat-
terns of arm movements.

3 Implementing The Task

We implemented learning from demonstration on a
hydraulic seven degree of freedom anthropomorphic
robot arm (SARCOS Dextrous Arm located at ATR,
Figure 1). The robot observed its own performance
with the same stereo vision system that was used to
observe the human demonstrations. The combined vi-
sion and robot control system has about a 0.12s delay
between an event and the response to the perception of
that event. We implemented redundant inverse kine-
matics as well as real time inverse dynamics (An et al.,
1988) to allow the robot to follow desired hand mo-
tions. The inverse kinematics implementation is based
on a modified version of the extended Jacobian method
(Baillieul, 1985). It uses a second order local optimiza-
tion technique, incorporating an optimization criterion
suggested for biological motor control in Cruse and
Bruewer (1987).
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Figure 2: The human hand positions and pendulum
angles for several demonstration swing ups, and pen-
dulum configurations during one of the human demon-
strations. The pendulum starts at # = —m and a suc-
cessful swing up moves the pendulum to # = 0. The
hand motions are quite similar to each other during
the swing up portion of the task, while the pendulum
motions are quite similar to each other throughout the
demonstration.
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We decided to structure this task with two parts:

1. Learning to swing the pole up. The goal of this
subtask is to move the hand so that the pole becomes
upright with a small angular velocity. This motion is
done without feedback (open loop).
2. Learning to balance the pole upright. This
phase of the task is entered when the pole is nearly up-
right with a small angular velocity. Feedback is used to
balance the unstable inverted pendulum. If the pen-
dulum is within the capture region of the feedback
controller the task has been completed successfully.

The most obvious approach to learning from
demonstration is to have the robot imitate the hu-
man motion, by following the human trajectory x(t)
(x is the state of the task and ¢ is time) and apply-
ing the correct commands u(t) (u is the control in-
put to the task). The dashed line in Figure 3 shows
the robot hand motion as it attempts to follow the
human demonstration of the swing up task, and the
corresponding pendulum angles. Figure 3 also shows
a movie of the corresponding motion. Clearly, direct
imitation failed to swing the pendulum up, as the pen-
dulum did not get even halfway up to the vertical po-
sition, and then oscillated about the hanging down
position.

Another approach is to mimic the human response
to each situation (a policy u(x), where u is the action
and x is the task state). This typically requires large
amounts of demonstration data, which is not avail-
able in this case and is usually expensive to collect.
Also, expert human demonstrations tend to have lim-
ited variability (Figure 2) so the training data is too
limited to cover enough states to learn an adequate
policy. The discussion section explores this issue fur-
ther.

The approach we will use is to apply optimal con-
trol to finding a swing up trajectory that works for the
robot, based on learning both a model and and opti-
mization criterion and using the human demonstration
to initialize the optimization process.

¢ Learning a model. The robot learns a model
of the task (Xx41 = f(xxk,ux)) from its attempts to
perform the task.

e Learning an optimization criterion.
The robot learns an optimization criterion
C = 3, r(xx,ux, k) from the demonstration that
ranks performance similar to human performance as
more optimal.

¢ Using the human performance to seed and
limit the optimization process. Most optimization
processes only find local optima, and require an initial
point or trajectory to seed the search. We use the hu-
man demonstration as the initial seed. The existence
of a demonstration focuses the optimization process on
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Figure 3: The hand positions and pendulum angles
during robot learning from demonstration, pendu-
lum configurations during robot imitation of a human
demonstration (1st trial), and pendulum configura-
tions after learning (5th trial).



a small volume of state space, and greatly reduces the
need for exploration.

4 Learning a Model

This paper describes a knowledge-based parametric
approach to learning a model. A knowledge-based
parametric model is based on a priori knowledge of the
physics of the task. A dynamic model of an idealized
pendulum (all mass concentrated at the tip) attached
on a horizontally moving hand is:

Bear = (1 — 1) Ok + oz (sin(6y) + &k cos(8x)/g) (1)

where 6 is the pendulum angle, @ is the pendulum an-
gular velocity, & is the horizontal hand acceleration, a;
is the viscous damping, e, is Ag/l, A is the time step
0.0167s, g is the gravitational acceleration 9.81m/s?
and { is the length of a pendulum 0.35m. Idealized val-
ues for the a based on these parameters are a; = 0.0
and a; = 0.47. Identified values for the o based on
large numbers of robot movements with the pendulum
are a; = 0.0094 and as; = 0.56. Parametric models
were constructed using linear regression in MATLAB.
Note that the real pendulum did not have all of its
mass concentrated at the tip, did not have ideal vis-
cous friction, and the identified pendulum model in-
cluded the robot dynamics between commanded hand
accelerations and actual hand accelerations.

5 Learning to Balance

The robot learned to balance the inverted pendulum
using methods described in Schaal (1997). 30 seconds
of human balancing data allowed the robot to identify
a model of the pendulum dynamics. The RFWR non-
parametric modeling approach was particularly useful
in producing a local linear model of the inverted pen-
dulum dynamics (Schaal and Atkeson, 1996; Atkeson
et al., 1996)

Bry1 = 0.0051zx+0.005824+0.476;+0.9976x+0.052)

(@)

Based on previous work on learning pole balancing

from demonstration (Schaal, 1997) the following one
step cost criterion was minimized:

r(x,u, k) = 12522+ 502% + 12006 + 256° + 1.55% (3)

This optimization criterion produces the following bal-
ance controller, calculated using the discrete linear
quadratic regulator design routine dlqr in MATLAB:

fécommanded = —6.9z - 9.3z + 530 + 969 (4)

whose gains are similar to human gains identified from
the balancing data. The 0.12s visual sensing delay can

be handled in two ways. Either the state of the system
can be augmented by delayed commands, or a predic-
tive controller can be used to predict the state of the
system 0.12s in the future and apply the feedback con-
troller to those states. The former method increases
the complexity of a policy significantly, while the lat-
ter method requires a model to predict the state of
the system. We used a predictive controller to com-
pensate for the delay. The balance controller provided
stringent constraints on the performance of the swing
up controller because the robot workspace limited the
capture region for successful balancing.

6 Learning to Swing Up

Given the failure of direct imitation to swing up the
pendulum, some other approach must be considered.
We used optimal control to automatically design a
swing up trajectory for the pendulum. The robot
learned an optimization criterion C' = 3", r(xk, u, k)
that penalizes deviations from the demonstration tra-
Jjectory:

r(xe, uk, k) = (x — x§)TQ(xk — xg) + ufRuy (5)

where the state is x = (0,9,;0,&:), x4 is the demon-
strated motion, and the control is u = (&£). The
penalty matrices were adjusted to make the robot tra-
Jjectory similar to the human demonstration by increas-
ing the penalty on the deviation in hand position, and
were:

R=(1) (6
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Note that the hand acceleration used in the demon-
stration is not included in the learned criterion. We
found that including it allowed the optimized accelera-
tions to exceed the capabilities of the robot, so setting
the nominal control to zero helped reduce the size of
the planned accelerations.

The first trial (direct imitation of the human mo-
tion) provided data that was used to build a model
of the robot (a3 = 0.0073, a2 = 0.55). Standard sec-
ond order trajectory optimization techniques (Dyer
and McReynolds, 1970) were used to compute a lo-
cally optimal trajectory, using the human trajectory
as the initial trajectory to refine. This optimization
generated a new hand trajectory for the robot to fol-
low. The executed hand motion and the corresponding
pendulum motion are indicated as the 2nd trial in Fig-
ure 3. The hand motion had a larger excursion, and
the pendulum motion came closer to the goal, but did
not reach it.

1709



The model of the robot was re-identified using only
data from the 2nd trial (a; = 0.010, a2 = 0.57). This
trajectory is closer to the data distribution of a suc-
cessful trajectory, so it may more accurately predict
the hand motions necessary to swing the pendulum
up. Again, optimization techniques were used to plan
a new trajectory, using the previously planned tra-
jectory to seed the optimization process. The exe-
cuted hand motion and pendulum motion are indi-
cated as the 3rd trial in Figure 3. The pendulum
motion reached closer to the goal, but again failed to
reach the capture region of the balance controller.

Re-identifying the model using only data from the
3rd trajectory did not result in significantly different
model parameters. Because the model structure was
not capable of fully representing the complexity of the
task dynamics, the planner must compensate for resid-
ual modeling error. There are many possible ways for
the planner to do this compensation. In the data pre-
sented in this paper the planner used binary search
to adjust the viscous drag coeflicient used in plan-
ning so that the planned hand trajectory would add
" more energy to the pendulum, since the energy of the
pendulum was too little for it to reach the inverted
position. The first viscous drag adjustment was to set
(&1 = 0.015). A new optimized trajectory was planned
and executed, resulting in the 4th trial of Figure 3. In
this trial the pendulum reached vertical with an an-
gular velocity of 4rad/sec, which was too high for the
feedback controller to capture, so the pendulum con-
tinued around and then oscillated around the down
position with an angle of 7. The second viscous drag
adjustment was to set (& = 0.0125), which resulted
in the 5th trial of Figure 3. In this trial the pendulum
reached vertical with a low enough angular velocity
that the feedback controller was able to capture it.
Figure 3 shows a movie of this trial. Subsequent tri-
als with the same planned hand trajectory were also
successful. Another modeling error compensation ap-
proach adjusts the desired velocity at the end of the
swing up movement. This gives a similar performance
to the approach presented here.

7 Discussion

The major lesson from this work is that it is difficult
to learn a model well enough or fast enough to success-
fully perform the swing up task after only a few trials.
Therefore, the planner must compensate for signifi-
cant modeling error. The planner adjusted the task
specification to increase the energy pumped into the
pendulum motion. This discussion section addresses
some of the questions raised by this implementation.

7.1 Why did direct imitation of human
motion fail?

In our experiments direct imitation of human motion
failed to swing the pendulum up. There are several
possible reasons for this.

¢ The robot controller is imperfect. The robot
does not exactly reproduce the human motion. We use
a real time inverse dynamics model of the robot arm to
provide feedforward control. This rigid body dynamics
model is identified from actual robot motion (An et al.,
1988). There are many effects it does not account for,
including the dynamics of the hydraulic actuation sys-
tem. Also, we do not take into account the effect of the
pendulum on the robot motion, as in direct imitation
it is assumed that a model of the pendulum dynamics
is not available. Because we use low feedback gains
comparable to human feedback gains, modeling errors
have a substantial effect.

o The task is different. It is not clear that the
response of the pendulum will be the same even if the
robot hand motion matches the demonstrated hand
motion. The robot grip of the pendulum axis is not
exactly the same as the human’s grip and the orien-
tation of the pendulum axis relative to the motion of
the hand is slightly different in the two cases. The hu-
man demonstration included slight deviations from a
straight line and constant hand orientation, which the
robot did not replicate in its movements.

eUnstable tasks often require feedback con-
trol. Open loop imitation of demonstrated motion
will often not suffice to control an unstable system
such as an inverted pendulum, bicycle, or unicycle.
We note that there are vertical hand motions that
will stabilize an inverted pendulum without feedback
control (Blackburn et al., 1992) but in our work the
only robot hand motion is horizontal. A feedback con-
troller must therefore be learned, either directly from
the demonstration data or indirectly as suggested in
this paper.

7.2 Why not learn a policy directly?

As discussed previously, another approach is to learn a
policy directly from demonstration by mimicking the
human response to each situation. There are several
reasons why this is not appropriate for this form of
learning from demonstration.

¢ The robot controller may be imperfect. The
robot may not be capable of exactly replicating human
motion, and the task level learning approach of this
paper may help compensate for the robot’s lower level
execution errors.

e The task may be different. In addition to
the small task differences discussed previously, there
may be large task differences. We have also used hu-
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