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Abstract—We are interested in adding actuation to passive
dynamic walkers to enable them to control their velocity. We
control velocity by using dynamic programming to design control
laws for each desired velocity. We consider three cases: a
simulated planar compass gait walker, a simulated 3D compass
gait walker with roll dynamics, and a simulated planar compass
gait walker with a torso. Each of the walkers have massless
legs. The actions include foot placement, ankle torque, and
desired torso orientation. We use Poincaré sections to define
the state of the model, and thus choose a new action once
per footstep. The optimization criterion is based on the effort
of swinging the limbs, applying torques, and maintaining the
desired velocity. By generating control laws at different desired
velocities and then selecting the appropriate control law we are
able to control velocity in each of these walkers, and smoothly
transition between different velocities. Our results also indicate
how complex nonlinear control laws can be approximated by
gain-scheduled linear control laws.

I. INTRODUCTION

We are interested in adding actuation to passive dynamic

walkers to enable them to control their velocity, place their

feet at desired locations, and handle rough terrain [1]. In this

paper we control velocity in a simulated planar compass gait

walker (Fig. 1) [2], in a simulated 3D compass gait walker with

roll dynamics, and in a simulated planar compass gait walker

with a torso (Fig. 1). Control actions include step length, step

width, ankle torque, and desired torso orientation. Building on

our previous work, we replace manually designed controllers

with control laws developed using dynamic programming [3].

By choosing the criterion optimized by dynamic programming

appropriately, we can design control laws that minimally

interfere with the natural dynamics of the biped.

We also build on our previous work in dynamic program-

ming applied to gait control [4]. We further simplify the model

to have massless legs, and use the location of the system

in a Poincaré section as the state for dynamic programming

purposes (Fig. 2) [5]. These simplifications help us avoid

the “curse of dimensionality” commonly faced by dynamic

programming approaches [6], [7], [8]. For example, for the

compass gait walker, the dimensionality of the state is reduced

from 4 (stance leg angle and angular velocity and swing leg

angle and angular velocity) to 1 (stance leg angular velocity).

Repercussions of these simplifications are that we do not take

into account the dynamic effect of the swinging leg and we

can only choose new control actions once per footstep.

Fig. 1. Planar compass gait walker and planar compass gait walker with
torso.

The success of optimal control approaches depends on the

choice of optimization criteria. Our optimization criteria are

based on a weighted sum of the effort of swinging the limbs,

applying torques, and maintaining the desired velocity. Even

though the legs are massless, we can estimate the effort to

swing legs with mass by taking into account leg accelerations.

By generating control laws at different desired velocities

and then selecting the appropriate control law we are able

to control velocity in each of these walkers, and smoothly

transition between different velocities. Our results also indicate

how complex nonlinear control laws can be approximated by

gain scheduled linear control laws.

II. WHAT IS DYNAMIC PROGRAMMING?

Dynamic programming (in discrete time) is a method to

solve optimal control problems of the following form: find a

control law uk = u(xk) for a system with discrete time dynam-
ics xk+1 = f(xk,uk) that minimizes V (x0) = ∑k=0 c(xk,uk) [6],
[7], [8]. c(x,u) is the one step cost function. In this work we
use a straightforward way to solve the dynamic programming

problem. We discretize the states and actions, and represent the

control laws and value function in tables. We use a procedure

called value iteration to refine the control laws and value
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Fig. 2. Gait cycle and Poincaré section. The red dashed line shows how a
return map is computed. A trajectory is started from a point on the Poincaré
section at TOP, and the intersection of the trajectory with the Poincaré section
at the next TOP is recorded.

function, after generating an initial guess V0(x). Value iteration
involves looping through all the states updating the tabulated

control law u(x):

u(x) = u∗ =min
u

(c(x,u)+V (f(x,u))) (1)

The minimization in Equation 1 is performed by searching

over a discretized set of actions. In this paper we explore

all actions. We are developing more sophisticated search

algorithms for this minimization. Lookups in the tabulated

value function are interpolated using multilinear interpolation.

The tabulated value function is updated by substituting in the

optimal u∗ into the sum of the one step cost and the value
function applied to the optimal next state x∗ = f(x,u∗).

V (x) = c(x,u∗)+V (x∗) (2)

III. PLANAR COMPASS GAIT WALKER

In this section we describe the approach applied to a

compass gait walker. The walker has massless straight legs,

with all mass located at the hips. The trajectory of the robot

is given by the dynamics of a simple inverted pendulum, with

a mass of 1kg, leg length of 1m, and moment of inertia about
the ankle of 1kgm2. Gravity is 9.81m/s2, and the integration
time step for simulation is 1 millisecond.

We use a Poincaré section to define the state of our model

(Fig. 2). We place the section when the stance leg is vertical,

so the hip is at its highest point (TOP). The state at TOP is

just the angular velocity of the stance leg. We will consider

angular velocities at TOP between 0 and 3 radians/second, as

above 3 radians/second the foot lifts off the ground.

We define two actions that are taken at TOP and held

constant through the step cycle until the next TOP. The first

action is to choose a hip angle in the forward (sagittal)

direction (φ in Fig. 1), and thus a landing angle of the swing
leg and corresponding step length. The swing leg pitch angle is

measured relative to the stance leg. We will refer to this action

as the “step angle”. The second action is a constant pitching

torque at whatever ankle is the stance ankle (the same torque

is used before and after the foot transition at impact) (τ in
Fig. 1). The torque is necessary to make up for energy losses

due to impacts, and is also useful to accelerate and decelerate.

We will consider step angles less than one radian and thus leg

angles with respect to vertical of less than half a radian, to

remain within the friction cone and avoid slipping on landing.

We will limit ankle torques to less than 1 Newton-meter in

magnitude so that the center of pressure remains within a foot

of length 20cm.

The one step cost function penalizes the square of the

torques, swing leg acceleration, and deviation from the desired

velocity. Because we are using Poincaré states and actions

that occur only once per footstep, some of these quantities

are approximated. The torque component of the one step cost

function is proportional to the square of the ankle torque

chosen on each step: τ2. The swing leg acceleration is ap-
proximated by considering the swing angle, φ, divided by
the step time, T (from TOP to TOP), squared. The one step
cost function thus has a component proportional to swing

leg acceleration squared: (φ/T 2)2. The body translational
velocity is approximated using 2∗ l ∗sin(φ/2)/T , with l = 1m,
so the velocity component of the one step cost function is

(2 ∗ l ∗ sin(φ/2)/T − v)2 where v is used to design control
laws with different steady state velocities. These penalties are

evaluated at each occurrence of TOP. The swing penalty is

weighted by 0.1 relative to the other penalties:

c(x,u) = 10∗τ2+(φ/T 2)2+10∗(2∗ l ∗sin(φ/2)/T −v)2 (3)
There is a discount factor of 0.99 per step, to allow the value
iteration computation to converge.

Fig. 3 shows the step angle control laws for different desired

velocities, Fig. 4 shows the ankle torque control laws, and

Fig. 5 shows the return maps. Let’s first focus on the red

dashed curves in each of these figures, which were generated

with v = 2.5m/s. The red dashed curve in Fig. 3 shows the
step angle chosen by the control law at each possible stance

leg pitch angular velocity at TOP. The red dashed curve in

Fig. 4 shows the ankle torque chosen by the control law at each

angular velocity as well. Given these two control laws, we can

ask what stance leg pitch angular velocity results at TOP on the

next step, given a current stance leg pitch angular velocity at

TOP on this step. This is known as the return map, and for v=
2.5m/s is shown by the red dashed line in Fig. 5. To find out
what velocity results from the control laws and the resulting

return map, we look for a current stance leg pitch angular

velocity that results in the same pitch angular velocity on the

next step. This can be found by seeing where the return map

intersects the diagonal line x = y, which in this case occurs
at a pitch angular velocity of 1.05 at TOP. If the red dashed

control laws in Fig. 3 and 4 are used continuously, the pitch
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Fig. 3. Step angle for the planar compass gait walker for several desired
pitch angular velocities at TOP.
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Fig. 4. Ankle torque for the planar compass gait walker for several desired
pitch angular velocities at TOP.

angular velocity at TOP equilibrates to this value (shown in

the first and last 5 seconds of Fig. 6).

Figures 3 and 4 show control laws generated with many

values of v, and Fig. 5 shows the corresponding return maps.
The set v = (0.5, 0.75, 1, 1.5, 2, 2.5, 3, 3.5, 4, 5, 6, 7,
8, 9, 10m/s) results in pitch angular velocities at TOP of
(radians/second): (0.29, 0.43, 0.55, 0.75, 0.91, 1.05, 1.17, 1.27,
1.37, 1.51, 1.59, 1.65, 1.7, 1.74, 1.78). The black dots indicate
the equilibrium velocities for each set of control laws and

corresponding return maps. We see that the equilibrium step

angle increases and then decreases with steady state speed,

while the equilibrium ankle torque steadily increases until a

limit is reached. These control laws can either be used directly,

or fit with parameterized curves. The control laws for step
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Fig. 5. Return maps for the planar compass gait walker for several desired
pitch angular velocities at TOP.

angle are nonlinear, especially at small v. The control laws for
ankle torque could be fit by straight lines near the equilibrium

ankle torques for each v, if the saturation at 1Nm is taken
into account. This is an example of how the form of the

nonlinear policies created by dynamic programming can be

used to suggest appropriate simple parametric control laws to

apply.

Fig. 6 shows a simulation where the desired stance leg pitch

angular velocity at TOP is changed periodically by selecting

appropriate control laws. In each case the desired velocity at

TOP is attained within a few steps.

IV. COMPASS GAIT WALKER WITH ROLL

We study the compass gait walker with roll to get some

insight into control laws for lateral foot placement. This also

demonstrates the approach applied to a higher dimensional

problem. The planar compass gait walker only rotates in pitch.

The compass gait walker with roll is a 3D inverted pendulum

and rotates in both pitch (positive is forward) and roll (positive

is to the right side). Since the body mass is concentrated

at a point, yaw movement has no effect and is ignored. In

this version of the compass gait walker we represent body

configuration as if there was a universal joint at the ankle

with pitch first (inner gimbal) and roll second (outer gimbal).

The swing leg has a similar arrangement at the hip, with pitch

as the inner gimbal and roll as the outer gimbal.

The parameters of the model are the same as the planar

compass gait walker. The walker has massless legs, with all

mass located at a point at the hips. The trajectory of the robot

is given by the dynamics of a simple inverted pendulum, with

a mass, length, and moment of inertia of 1, as before. Gravity

is 9.81, and the integration time step is 1 millisecond.

We use a similar Poincaré section to define the state of our

model. We place the Poincaré section when the stance leg has

zero pitch. The state at TOP is given by the stance leg pitch
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Fig. 6. Simulation results for the planar compass gait walker. Actual (red
solid) and desired (black dashed) stance leg pitch angular velocity are plotted
in the top graph, and the control signals (step angle (red dashed) and ankle
torque (blue solid)) are plotted in the lower graph. Note that in this simulation
the compass gait walker started from standing with an initial stance leg pitch
angular velocity of zero.

angular velocity, the stance leg roll angle, and the stance leg

roll angular velocity. We will consider pitch velocities at TOP

between 0 and 3 radians/second, as above 3 the foot lifts off

the ground. We consider roll angles less than 0.25 radians, and

roll velocities less than 0.5 radians/second, since we expect

much less movement in the roll direction.

We add a roll hip angle (lateral foot placement) to the pitch

hip angle (sagittal foot placement) and ankle torque actions.

We will consider roll hip angles less than 0.5 radians, to

avoid slipping on landing. We add a swing penalty to the one

step cost function of (φroll/T 2)2 on the touchdown hip roll
angle that matches the swing penalty on the pitch hip angle to

prevent high lateral leg accelerations. Otherwise the one step

cost function is the same as the previous case:

c(x,u) = 10∗ τ2+(φ/T 2)2+10∗ (2∗ l ∗ sin(φ/2)/T − v)2
+(φroll/T 2)2 (4)
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Fig. 7. Contour map of lateral foot placement (hip angle in roll direction)
control law slice at pitch velocity = 0.95r/s. The diagonal line is the alpha
direction in the bottom plots.
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Fig. 8. Contour map of lateral foot placement control law slice at roll = 0.

A useful direction for thinking about roll is to consider roll

angles and angular velocities that will result in the inverted

pendulum returning to vertical with no actuation. These are

given by velocity= −α∗ position near the equilibrium where
the natural behavior of the compass gait is an unstable expo-

nential divergence from the equilibrium. α = mass ∗ length ∗
g/I where I is the moment of inertia about the ankle. In (roll,
roll velocity) coordinates the direction (1,−α) takes no effort
to return to the equilibrium, and the direction (α,1) requires
maximal cost. We will refer to the no effort direction (1,−α)
as the α direction.
Figures 7 and 8 show some examples of control laws

for lateral foot placement. Since the state vector is three

dimensional, (pitch velocity, roll, roll velocity), we cannot plot
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the complete control law. Instead we plot a slice by fixing one

of the state variables as indicated in the figure captions. In

Fig. 7 we see that the lateral foot placement dependence on

body roll and roll velocity is almost linear, at a fixed body

pitch velocity. A simple linear control law would probably

work well in this case. In Fig. 8, we see that the lateral foot

placement dependence on body roll velocity is also almost

linear, at a fixed body pitch velocity. However, the “gain”

of the lateral foot placement dependence on roll velocity

increases for pitch velocities below 1r/s. A family of linear

control laws selected by pitch velocity would probably work

well in this case. Again, the form of the nonlinear policies

created by dynamic programming can be used to suggest

appropriate simple parametric control laws to apply.

V. COMPASS GAIT WALKER WITH TORSO

To explore the effect of a torso on control, we added a

torso to the planar compass gait walker (Fig. 1). This adds

torso angle and angular velocity to the state, both of which

are measured with respect to vertical. The total mass of 1kg
of the compass gait walker is split into a hip point mass of

0.5kg and a torso point mass of 0.5kg at height 0.5m above
the hip. We continue to use the Poincaré section when the hip

is at its highest point (TOP). In addition to step angle and

ankle torque, hip torque acting between the stance leg and

the torso is available. However, choosing a new hip torque

once per footstep is not an adequate bandwidth to control the

inverted pendulum formed by the torso. Therefore, the control

action for the torso is a desired torso angle, and a PD servo

controls the torso to that angle with respect to vertical using

hip torque (P gain = 190, D gain = 20). The elements of
the control vector are step angle, ankle torque, and desired

torso angle (ψd). This modification also allows us to reduce
the dimensionality of the state. Assuming accurate tracking

of desired torso angle, torso angular velocity can be dropped

from the state vector, since at TOP the torso angle would have

reached its fixed target.

In addition to optimizing ankle torque, swing leg accelera-

tion, and deviation from a desired velocity, the one step cost

function includes a penalty on the desired torso angle squared,

ψ2d . The modified one step cost function is:

c(x,u) = 10∗ τ2+(φ/T 2)2+10∗ (2∗ l ∗ sin(φ/2)/T − v)2
+100∗ψ2d (5)

Fig. 9 shows a simulation where the desired stance leg pitch

angular velocity at TOP is changed periodically by selecting

the appropriate control laws. The pattern of desired velocities

is similar to that for the compass gait walker with no torso

in Fig. 6 and the pattern of commands in Fig. 9 should be

compared to those of Fig. 6. In each case the desired velocity

at TOP is attained within a few steps. We see that in addition

to the control actions used in the previous case, the torso angle

is also used. The torso walker takes longer to make a step, so

the time window of Fig. 9 is increased. The torso walker also

takes longer steps.

Fig. 10 shows the commands used for steady state walking

at a variety of speeds under two conditions: using the torso

and holding the torso vertical. The case with the torso held

vertical is similar to the previous compass gait walker with

no torso: ankle torque increases with steady state stance leg

pitch angular velocity (black dots in Fig. 4) until it saturates,

and step angle first increases and decreases. (black dots in

Fig. 3). When the torso angle is used as part of the control,

the decrease in step angle at higher values is reduced. The

steady state desired torso angle leans more forward with
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Fig. 9. Simulation results for the planar compass gait walker with a torso.
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higher velocity. In general the controller for the walker with

an adjustable torso can walk faster (maximum stance leg

pitch angular velocity of 2.3r/s vs 2r/s for the fixed torso

case). Fig. 11 shows an example of how torso angle is used

transiently during velocity changes.

VI. DISCUSSION

This paper has presented a method to control velocity by

selecting control laws designed by dynamic programming.

The approach can handle starting from zero velocity, and can

achieve a range of velocities. However, because of the use of

Poincaré states, it is not possible to design a control law for

stopping. The occurrence of TOP states while stopping can be

very intermittent or non-existent, and the ankle torque needs

to be controlled on a continuous basis with high bandwidth.

This problem can be solved by using states with high temporal

resolution. In the case of the compass gait walker the state

could be pitch angle and angular velocity, and the dynamics

used in dynamic programming could have a time step of

milliseconds, rather than the duration of a footstep used in this

paper. We are currently developing such a stopping controller.

This work takes the point of view that gait control is based

on selecting an appropriate controller, such as the stopping

controller, the standing controller, the gait initiation controller,

or constant velocity controllers with different equilibrium ve-

locities. Generalizing this to 3D might require a set of turning

controllers indexed by turn radius and velocity magnitude.

This work also takes the point of view that some variables are

controlled on the millisecond time scale (hip torque) and some

are controlled on the footstep time scale (footstep location,

ankle torque, and desired torso angle). For most variables this

makes sense. However, we see that for stopping and standing,

ankle torque needs to be controlled on the millisecond time

scale. It may be that there is a variable such as energy-to-be-

added that is controlled on the footstep time scale, and drives
lower level controllers that control ankle torque and push off.

This paper has applied dynamic programming to very sim-

plified models with states of up to 3 dimensions. This has

allowed us to explore lateral control and the use of a torso,

in addition to forward velocity. We were forced to ignore leg

dynamics in order to keep the dimensionality low. With the

exponential improvement in current computers, it is not unre-

alistic to apply dynamic programming to higher dimensional

problems. However, other local optimization techniques can

be used which can handle high dimensionality, instead of a

global optimization technique such as dynamic programming.

An alternative approach to controlling steady state gait is

to linearize the dynamics of the Poincaré state and apply

Linear Quadratic Regulator (LQR) design techniques. This

approach would allow very high dimensional control laws

to be designed, and is currently under development by the

authors. Another approach is to use a trajectory optimization

approach, such as DIRCOL [9] or Differential Dynamic Pro-

gramming [10]. Local optimization approaches find a local

optimum, rather than a global optimum. The quality of the

local optimum typically depends on the starting point for the

search. This is not the case for dynamic programming.

There are several features of human walking that we do not

address. One is another way to add energy to the gait, such as

“push off” at the end of each stance. This could be addressed

by adding stance leg length and leg extension velocity to the

state. As discussed previously, this would make the dynamic

programming solution much more expensive. Another feature

of human walking we are missing is double support. This

could also be addressed by including stance leg lengths and

extension velocities in the state. Low level control or passive

properties that make the legs appear to be compliant may allow

the robot to achieve natural double support without explicit

control [11]. We could also make these additional degrees of

freedom functions of other aspects of the state, and thus not

have to consider them during control law design [12].

Our implementation of the compass gait biped with roll

dynamics is not fully three dimensional. It does not include

turning and yaw dynamics, hip spacing, or a distinction

between left and right legs. Future work will include these

aspects.

The control law design done in this paper is deterministic.

We assume that knowledge of imperfect sensors and dynamic

models will not change the form of the control laws. It is pos-

sible, however, that explicit consideration of uncertainty will

cause different control strategies to be adopted. Future work

includes considering variations in ground height, limitations

in where footfalls can occur, slipping, and tripping, and their

effect on control law design. We will also explicitly consider

robustness in terms of the volume of possible initial states,

the size of possible perturbations, and the variation in model

parameters such as robot mass that the control laws can handle.

In work on optimal control, we should always be skeptical

of the optimization criterion used. It is merely an imperfect

mathematical statement of what is desired. If a simulation
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showed walk features that were undesirable, we changed the

weights in the optimization criterion. Thus, the optimization

criteria presented in this paper are the result of some thought

and also some experience and trial and error. In the future, a

more exhaustive search of the space of possible optimization

criteria may provide insight into what the “right” optimization

criteria is.

It was surprising that the control discontinuities due to

physical limits did not cause more effects on the control laws.

These effects included limited foot size limiting ankle torque

and the coefficient of friction limiting step angle. When ankle

torque saturates, step size is decreasing (no torso) or staying

the same (torso). To some extent torso angle compensates for

saturation of ankle torque. Step angle did not saturate for the

optimization criteria we used here.

VII. CONCLUSION

These results show that dynamic programming can be ap-

plied to dynamic walking, despite the curse of dimensionality,

by considering simple models that include the dynamics of

interest, and ignoring other aspects of the dynamics. The

form of the computed control laws can be used to suggest

appropriate parametric control laws. The next step is to apply

these control laws to an actual robot.
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Fig. 11. Simulation results for the planar compass gait walker with a torso for
large velocity changes. Actual (red solid) and desired (black dashed) stance
leg pitch angular velocity are plotted in the top graph, and the control signals
(step angle (red dashed) and ankle torque (blue solid)) are plotted in the
middle graph. The desired (black dashed) and actual (red solid) torso angles
are plotted in the bottom graph. Note the greater use of torso movement during
large velocity changes, as compared to Fig. 9.
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