
Efficient Robust Policy Optimization (Long Version)

Christopher G. Atkeson (version 31)

May 31, 2012

Abstract

The goal of this paper is to provide efficient algorithms to calculate first and second order gra-

dients of the cost of a control law with respect to its parameters, to speed up policy optimization.

The approach achieves robustness by simultaneously designing one control law for multiple mod-

els with potentially different model structures, which represent model uncertainty and unmodeled

dynamics. We argue that providing explicit examples of possible unmodeled dynamics during the

control design process is easier for the designer and is more effective than providing simulated

perturbations to increase robustness, as is currently done in machine learning. Our approach sup-

ports the design of deterministic nonlinear and time varying controllers for both deterministic and

stochastic nonlinear and time varying systems, including policies with internal state such as ob-

servers or other state estimators. We highlight the benefit of control laws made up of collections

of simple policies where only one simple policy is active at a time. Controller optimization and

learning is particularly fast and effective in this situation because derivatives are decoupled.

1 INTRODUCTION

Parametric modeling error and unmodeled dynamics are a problem for model-based control law (pol-

icy) design and learning algorithms, such as dynamic programming or most forms of trajectory opti-

mization. A heuristic approach to robust control law design is to optimize a policy by evaluating its

performance in simulation on a distribution of possible models [5,6,8,15,25,29,33,35,40,44,48,52].

This paper describes how to make this design approach more efficient by propagating gradients back-

ward along simulated trajectories.

Our contribution to the output feedback controller optimization community is a method to design

time varying and nonlinear optimal output feedback as well as feedforward input for time varying

and nonlinear plants. We present a robust control design approach that handles multiple models with

different structures (for example, number of state variables). Our method also handles policies with

internal state, allowing the simultaneous design of robust control laws and state estimators. Our ad-

ditional contribution to the machine learning community is to emphasize that uncorrelated additive or

multiplicative noise is a poor proxy for unmodeled dynamics. The challenging aspect of unmodeled

dynamics is that small errors are correlated across time, leading to large effects. We also emphasize

the benefits of analytic first and second order gradients, and the benefits of Newton (second order)

algorithms for model-based policy optimization. We highlight the benefit of control laws made up of

collections of simple policies where only one simple policy is active at a time.

This paper focuses on designing control laws for systems with discrete time dynamics, as the algo-

rithms are largely the same for systems with continuous time dynamics, and our robots typically learn
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discrete time models. We have found many of the tasks we want to do are largely deterministic rather

than stochastic, so we focus our discussion here on how to design deterministic nonlinear and poten-

tially time varying discrete time control laws. For cases where the multiple models all have the same

state vector, the common policy is u = ππ(x,p), where u is a vector of controls of dimensionality Nu,

x is the state vector of the controlled system (dimensionality Nx), and p is a policy parameter vector

of dimensionality Np that describes the policy ππ(). This approach attempts to handle unmodeled dy-

namics including time delays, bandwidth or power limits on actuation, unmodeled vibrational modes,

and non-collocated sensing found in lightweight robot arms such as inflatable arms [43], robots with

series elastic actuation, satellites with booms or large solar panels, and large space structures.

A Simple Example

We present our method applied to a simple example. We then compare our method to a perturbation-

based approach applied to second order unmodeled dynamics and an unknown delay. Consider a

nominal linear plant which is a double integrator with the following discrete time dynamics (mass =
1,T = 0.001s):
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The state vector x consists of the position p and velocity v, and the feedback control law has the

structure u = Kx = kpp + kvv. An optimal Linear Quadratic Regulator (LQR) is designed for the

nominal double integrator plant with a one step cost function of L(x,u) = 0.5(xTQx+uTRu). In this

example

Q =

(
1000 0

0 1

)
R =

(
0.001

)
(2)

resulting in feedback gains of K = [973 54].
The true plant is the nominal plant with the following unmodeled dynamics: a second order low

pass filter is added on the input with a cutoff of 10 Hz. The transfer function for the unmodeled

dynamics is ω2/(s2+2γωs+ω2), with a damping ratio γ = 1 and a natural frequency ω = 20π. There
is no resonant peak and the unmodeled dynamics acts as a well behaved low pass filter. However,

the unmodeled dynamics drive the true plant unstable when the feedback gains designed using the

nominal plant model are used. Figure 1 shows simulations of these conditions: the blue dot-dashed

line is the nominal plant with the original gains [973 54], and the black dotted line shows the true plant
with the original gains, which is unstable.

One way to design a robust control law is to optimize the parameters of a control law (in this case

the position and velocity feedback gains) by evaluating them on several different models. The control

law is simulated for a fixed duration D on each of M models for S initial conditions, and the cost of

each trajectory, V m(xs,p), is summed for the overall optimization criterion, using the above L(x,u):

C =
M

∑
m=1

S

∑
s=1

w(m,s)V m(xs,p) (3)

w(m,s) is a weight on each trajectory. It is useful to normalize the weights so that ∑M
m=1∑S

s=1w(m,s) =
1/N where N is the total number of time steps of all trajectories combined. We use the V() notation

in what follows to indicate a value function. We will suppress the m subscript on V to simplify our
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Figure 1: Simulations of the simple example: p1 is the LQR gains [973 54]; p2 is the optimized policy

gains [148 16].

results. We assume that each trajectory is created using the appropriate model and use the appropriate

model dynamics to calculate derivatives of V in what follows. First and second order gradients are

summed using the same weights w(m,s) as were used on the trajectories.
Optimizing u = Kx for the nominal model and the nominal model with an added input filter with

ω = 10π and γ = 0.5, with initial conditions (1,0), results in feedback gains of [148 16]. These gains
are also stable for the true plant (ω = 20π,γ = 1). Figure 1 shows simulations of these conditions: The

magenta dashed line shows the nominal plant with the gains optimized for multiple models. and the

red solid line shows the true plant with the same gains. The multiple model gains are less aggressive

than the original gains, and the true plant is stable and reasonably well damped.

A model with the same model structure as the true plant does not have to be included in the set

of models used in policy optimization. Optimizing using the nominal double integrator model and the

nominal model with an input delay of 50 milliseconds results in optimized gains of [141 18], which
provide about the same performance on the true plant as the previous optimized gains. In addition, the

new gains are stable for double integrator plants with delays up to 61 milliseconds, while the original

gains of [973 54] are stable only for delays up to 22 milliseconds. We note that the nominal double

integrator model, the nominal model with an input filter, and the nominal model with a delay all have

different model structures (number of state variables for example), which a multiple model policy

optimization approach should handle.

We compare our approach to the heuristic of adding simulated perturbations to make the policy

more robust. We use the method of common random numbers [19] (which has been reinvented many

times and is also known as correlated sampling, matched pairs, matched sampling, and Pegasus [32])

to optimize the policy. An array of random numbers is created, and that same array is used to perturb

each simulation of the nominal system, typically by adding noise to the plant input u, while optimiz-

ing policy parameters. On the simple example, we found that the added noise needed to be quite large

(uniformly distributed with limits ±1000Nm on each time step) for the generated controller to work

reliably on the true plant with the input filter with a cutoff of 10 Hz. Additionally, there was only a

narrow window of noise levels that worked reliably, and higher and lower levels of noise produced

unstable controllers quite often. Table 1 shows how adding noise to the input of the double integra-

tor during optimization affects robustness to pure delays in the nominal model, as measured by the
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Noise level (±Nm) Maximum stable delay (msec)

0 22

1 22

10 22

100 22

1000 30

10000 19

100000 16

Table 1: Input noise level vs. robustness.

maximum delay the controller can stabilize. Again, ±1000Nm uniformly distributed noise added to

u on each time step provides the most robustness. However, this maximum robustness is less than

that provided by optimizing with multiple models. We have found in general that added noise is not a

reliable proxy for unmodeled dynamics. The challenging aspect of unmodeled dynamics is that small

errors are correlated across time, leading to large effects.

2 RELATED WORK

[41] surveys the early history of dealing with unmodeled dynamics in control theory. Loop transfer

recovery and H∞ design are prominent techniques for designing linear robust control systems. One

approach to handling the effect of contact on unmodeled dynamics is to use passivity and/or impedance

control. These arguments typically assume the control signal produces forces or torques or the actuator

dynamics are perfectly known; and the sensors and actuators are collocated or the dynamics between

the control signals and sensors are perfectly known [1]. In our case, with both our soft robots and

our humanoid robot, control signals typically control pneumatic or hydraulic valves which are “third

order” in that they affect the derivative of a force or torque, rather than generate a force or torque

directly, and the multi-stage valves typically have internal dynamics with power sources (so they

definitely aren’t passive) as well. In the case of tendon driven systems the dynamics of the tendons are

affected by the loading. Our sensors and actuators are not collocated, and in fact with inflatable robots

the actuation can be distributed over a wide area, so the “point” of actuation is not well defined. In the

case of our hydraulic systemwe have to use force control to make it compliant, and our implementation

of impedance control was severely limited by the structural resonances of the various metal parts,

including the force sensors themselves, and play in the bearings. Even “passive” controller designs

and impedance control are affected by unmodeled dynamics. Restrictions on the unmodeled dynamics

that they take a particular form or are passive or minimum phase are unrealistic.

[2] surveys the progress in dealing with unmodeled dynamics in adaptive control. There are

several reasons why optimal control is a more useful foundation for what we are trying to do than

adaptive control. Unlike most of adaptive control, we are not trying to follow a reference model

but trying to optimize a criteria. This has been referred to as adaptive optimal control [13]. We are

dealing with severely nonlinear systems and quick transient tasks, rather than trying to regulate a

linear or linearizable system to a steady state. It is unlikely that there will be enough data or excitation

to identify a system during each phase of a task, either directly or indirectly. We must integrate

information across repeated attempts to execute related tasks. We will borrow ideas from adaptive

control such as separation of time scales, limiting the number of adaptable parameters, adaptation dead

zones, persistence of excitation, turning off any model identification when the input is not rich enough,
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adding in small system identification signals, limiting the controller bandwidth, adding hysteresis

on model switching, and taking into account that changing the controller can change an identified

model as well. We must be mindful that “1) there are always unmodeled dynamics at sufficiently high

frequencies (and it is futile to try to model these dynamics) and 2) the plant cannot be isolated from

unknown disturbances (e.g., 60 Hz hum) even though these may be small” [2]. In our case disturbances

such as impacts during locomotion or manipulation can be quite large.

There is a strong relationship between this work and Differential Dynamic Programming (DDP),

which propagates value function information backward in time along a trajectory, and chooses optimal

actions and feedback gains at each time step [14, 20]. The optimization of global parameters α and

the general form of the value function update equations in [14] were an inspiration for this work. Our

work suggests alternative forms of DDP, such as optimizing a trajectory-based policy discussed in

Sections 5 and 8 and a version which uses multiple models simultaneously.

Soon after the development of the linear quadratic regulator, the research area of output feedback

controller optimization was created to handle the case when full state feedback was not available,

and an observer or state estimator was not used [21, 28, 34, 50, 52]. Output feedback optimization

computes the optimal control law for linear models when the structure of the control law is fixed.

See Appendix A for more discussion of output feedback controller optimization. We note that it is

difficult to apply linear matrix inequality (LMI) or polytopic model-based optimal output feedback

techniques to multiple models with different model structures since it is not clear how to interpolate

between these models [52]. One can embed the multiple models in a much more complex single model

so that structural differences become parametric differences, but that greatly complicates the design

process. For linear systems one can interpolate models in the frequency domain, but it is not clear

how to generalize frequency domain interpolation to nonlinear models with different structures. Varga

showed how to apply multiple models to output feedback controller optimization where all models

have the same state vector [52].

Policy optimization (aka policy search/refinement/improvement/gradient) is of great interest in

reinforcement learning (RL) [6, 25, 27, 32, 49]. Typically a stochastic policy is used to provide “ex-

ploration” or from our point of view perform numeric differentiation to find the dependence of the

trajectory cost on the policy parameters. See Appendix B for more discussion of stochastic policies

in reinforcement learning. Gradient learning algorithms such as backpropagation applied to a lattice

network model of the trajectory-based computations or backpropagation through time applied to a re-

current network model result in similar gradient equations to this work [39, 55, 56, 62]. See Appendix

C for more on backpropagation. One area of reinforcement learning that is also closely related to

this work is that of adaptive critics [11, 26, 27, 30, 36, 45, 53, 58]. Function approximation is used to

represent both a policy ππ(x,p) as we do and a parametrized global value function V̂ (x,ωω). Gradient
descent and other optimization techniques are used to learn p and ωω. Our approach tries to avoid mak-

ing a commitment to a global structure and parametrization for V (x) or Vx(x) by using local quadratic
models for V (x) (or equivalently local linear models for Vx(x)). See Section 13 for more on adaptive

critics. Lewis and Vrabie develop first order analytic gradient equations for the special case when

the policy is linearly parametrized [27]. Kolter developed a first order analytic gradient that propa-

gates derivatives forward in time for deterministic policy optimization, which, because it does not take

advantage of value functions, is in general less efficient than our approach (Appendix D) [25].

The term multiple models means different things in different fields. We use it to mean alternative

plants that could exist. In machine learning it often means multiple model structures that are selected

or blended to fit data. In control theory it has been used both for alternative global models and local

models that divide up the state space [57]. In Multiple Model Adaptive Control and Multiple Model
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Adaptive Estimation (MMAC and MMAE) instead of computing one policy based on multiple models

as is done in this paper, a policy is computed for each possible model. An adaptive algorithm learns

to select or combine the individual policies.

3 ANALYTIC GRADIENTS

A wide variety of optimization algorithms can be used to optimize the policy parameters p. The goal
of this paper is to provide efficient algorithms to calculate first and second order gradients of the to-

tal trajectory cost of a control law with respect to its parameters, to speed up policy optimization.

We describe how to propagate analytic gradients backward along simulated trajectories. The gradi-

ent algorithms presented are intended to be used in a controller design process, so we assume one

step cost functions and policy structure are known. Nominal models for the process are known or

learned. In this section we will consider policy optimization problems using multiple discrete time

models where there is no discounting, full state feedback is available, all the models use the same state

vector, the policies are static, and there is no opponent. Later sections will discuss extensions to the

basic approach. We will show how to calculate the first and second order cost gradients for a single

trajectory. The total derivatives for a set of models and trajectories are the sum of the derivatives for

each trajectory.

3.1 First Order Gradient

A first order gradient descent algorithm updates the policy parameters in the following way:

∆p = −ε
M

∑
m=1

S

∑
s=1

w(m,s)VT
p (xs,p) (4)

where ∆p is the update, ε is a step size, and Vp = ∂V/∂p. Vp and other derivatives of scalars are row

vectors.

We will use a finite horizon to a fixed point in time to evaluate the policy. In this case the Bellman

Equation (principle of optimality [10]) becomes:

V k(x,p) = L(x,ππ(x,p))+V k+1(F(x,ππ(x,p)),p) (5)

where L(xi,ui) is the known one step cost function, xi+1 = F(xi,ui) are the system dynamics equations

appropriate for each model, and

V k(x,p) = φ(xD)+
D−1

∑
i=k

L(xi,ui) (6)

is the cost of the remaining trajectory generated by starting at xk and using the policy ui = ππ(xi,p).
φ(x) is a terminal cost function evaluated at the end of the trajectory. We note that the one step cost

function L() and terminal cost function φ() may depend on the model m, and also the initial state (s
index). We will not include this possibility in what follows, but it is straightforward to add it. The

derivativeVp in (4) isV 0
p , and we will use the notationVp andV 0

p interchangeably. i and k are temporal

indices and can appear as either subscripts and superscripts as needed for readability.
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To calculate the first order gradient we will approximate the dynamics, one step cost, policy, and

value function V () with first order Taylor series approximations:

F(x,u) = F̄+Fx∆x+Fu∆u

L(x,u) = L̄+Lx∆x+Lu∆u

ππ(x,p) = π̄π+ππx∆x+ππp∆p

V (x,p) = V̄ +Vx∆x+Vp∆p (7)

where we follow the conventions of [14] in that x, u, and p subscripts indicate partial derivatives

evaluated with the appropriate arguments at that time point along the trajectory. Derivatives of scalars

(Lx, Lu,Vx, andVp) are row vectors. Derivatives of vectors are matrices whose rows are the derivatives

of the components of the original vector. Fx is an Nx ×Nx matrix, Fu is Nx ×Nu, ππx is Nu ×Nx, and

ππp is Nu ×Np.

In this case, the derivatives of the Bellman Equation are:

V k
x = Lk

x +Lk
uππk

x +V k+1
x (Fk

x +Fk
uππk

x) (8)

V k
p = (Lk

u +V k+1
x Fk

u)ππ
k
p +V k+1

p (9)

In what follows we will suppress the k superscripts on the right hand sides of these equations since

every symbol not indexed by k + 1 is indexed by k. V 0
p is calculated by using these equations to

propagate V and its derivatives backward in time along the trajectory. We are making extensive use

of the chain rule. Depending on how the policy optimization is formulated, V D and its derivatives can

be those of a terminal cost function, or they can be zero if there is no terminal cost function. For a

terminal cost function φ(x), V D
x = φx. Since φ() is independent of the policy parameters, V D

p = 0.

(4) can be used in many ways in optimization. Backward passes to calculate ∆p can alternate with

forward passes that generate new trajectories by using the new policy and integrating the appropriate

dynamics forward in time for each model. Trajectory segments can be generated, as in multiple shoot-

ing [47]. Trajectories can be represented parametrically and an optimization procedure can be used to

make the trajectories consistent with the new policy and appropriate dynamics, as in collocation [12].

3.2 Second Order Gradient

Approximate second order gradients (Hessians) are useful for remedying the deficiencies of first order

gradient descent [38]. A second order gradient descent algorithm updates the policy parameters in the

following way:

∆p = −
(

M

∑
m=1

S

∑
s=1

w(m,s)Vpp(xs,p)

)−1 M

∑
m=1

S

∑
s=1

w(m,s)VT
p (xs,p) (10)

where Vpp = ∂2V/∂p∂p.
To calculate the second order gradient we will approximate the dynamics, one step cost, policy,

and value function V () with second order Taylor series approximations:

F(x,u) = F̄+Fx∆x+Fu∆u+0.5∆xTFxx∆x+∆xTFxu∆u+0.5∆uTFuu∆u

L(x,u) = L̄+Lx∆x+Lu∆u+0.5∆xTLxx∆x+∆xTLxu∆u+0.5∆uTLuu∆u

ππ(x,p) = π̄π+ππx∆x+ππp∆p+0.5∆xTππxx∆x+∆xTππxp∆p+0.5∆pTππpp∆p

V (x,p) = V̄ +Vx∆x+Vp∆p+0.5∆xTVxx∆x+∆xTVxp∆p+0.5∆pTVpp∆p (11)
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We follow the conventions of [14] in that the second derivatives of vectors (Fxx, Fxu, Fuu, ππxx, . . .) are
third-order tensors. A quadratic form including the second derivative of a vector such as ∆xTFxu∆u is

a vector whose jth component is the quadratic form using the second derivative of the jth component

of the original vector: ∆xTF
j
xu∆u. Another useful formula is the product of a row vector v, a matrix

A, the third order tensor (ππxp for example), and another matrix B which is:

v(AππxpB) = ∑
j

v j(Aππ
j
xpB) (12)

We note that cross derivatives are independent of the order in which the derivatives are taken, so

Lux = LT
xu, Vpx = VT

xp, F
j
ux = (F

j
xu)

T, and ππ
j
px = (ππ

j
xp)

T.

This results in the following recursion for the second order derivatives of V :

V k
xx = Lxx +Lxuππx +(Lxuππx)

T +ππT
x Luuππx +Luππxx +(Fx +Fuππx)

TV k+1
xx (Fx +Fuππx)

+V k+1
x (Fxx +Fxuππx +(Fxuππx)

T +ππT
x Fuuππx +Fuππxx) (13)

V k
xp = Lxuππp +ππT

x Luuππp +Luππxp +(Fx +Fuππx)
TV k+1

xx Fuππp +(Fx +Fuππx)
TV k+1

xp

+V k+1
x (Fxuππp +ππT

x Fuuππp +Fuππxp) (14)

V k
pp = ππT

pLuuππp +Luππpp +(Fuππp)
TV k+1

xx Fuππp +(Fuππp)
TV k+1

xp +((Fuππp)
TV k+1

xp )T +V k+1
pp

+V k+1
x (ππT

pFuuππp +Fuππpp) (15)

V 0
pp is calculated by using these equations to propagate V and its derivatives backward in time, again

making extensive use of the chain rule. V D() can also be that of a terminal cost function, or zero. For a

terminal cost function φ(x),V D
x = φx andV D

xx = φxx. Since φ() is independent of the policy parameters,

V D
p ,V D

xp, andV D
pp are zero. Often the second derivative matrix is regularized (made positive definite) by

adding a diagonal matrix λI, with λ chosen by a Levenberg Marquardt or Trust Region algorithm [38]:

∆p = −
(

λI+
M

∑
m=1

S

∑
s=1

w(m,s)V 0
pp

)−1 M

∑
m=1

S

∑
s=1

w(m,s)(V 0
p )T (16)

There are actually a wide variety of ways to use first and second order gradients in optimization [38],

and our methods to calculate gradients can be used in many of them.

3.3 Discounting

It is often useful to apply a discount factor γ to the Bellman Equation:

V k(x,p) = L(x,ππ(x,p))+ γV k+1(F(x,ππ(x,p)),p) (17)

This is easily handled by modifying the above algorithms, either by multiplying each occurrence of

V k+1 and its derivatives in the above derivative propagation equations by γ, or equivalently, including
the discounting as a separate step interleaved with the above derivative propagation equations: V k =
γV k, V k

x = γV k
x , V k

p = γV k
p , V k

xx = γV k
xx, V k

xp = γV k
xp, and V k

pp = γV k
pp.

3.4 Constraints

Constraints can be handled using Lagrange multipliers or penalty functions [14,20]. Although penalty

functions may be more convenient from a programming point of view (only the one step and terminal
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cost functions are modified), Lagrange multiplier approaches allow constraints to be met exactly. Since

actions are generated by the policy as a function of state, constraints on actions can be transformed into

constraints on states. We will show how to handle a violated terminal state constraint ϕ(x(t f )) = 0

on a single trajectory using Lagrange multipliers and first order gradient methods. Handling state

constraints at other times is done in a similar way. Generalizing this approach to multiple models and

trajectories is straightforward. Because the policy parameters can have complex effects on constraint

violations, it is useful to introduce a constraint value functionW k(x,p) (and a corresponding Lagrange
multiplier ν) for each active constraint. The constraint value function is propagated in a way similar

to the V value function equations except there is no one step cost:

W k(x,p) = W k+1(F(x,ππ(x,p)),p) (18)

W D is ϕ(x(t f )). The first order gradient propagation equations are:

W k
x = W k+1

x (Fx +Fuππx) (19)

W k
p = W k+1

x Fuππp +W k+1
p (20)

W D
x is ϕx(x(t f )) and W D

p = 0.

The Hamiltonian is

H(x0,p,ν) = V 0(x0,p)+νW 0(x0,p) (21)

The derivative of the Hamiltonian with respect to p (which is zero at the optimal point) gives the

modified first order gradient update:

∆p = −ε(V 0
p (x0,p)+νW 0

p (x0,p))T (22)

ν is chosen to extremize the Hamiltonian, in that setting the derivative of the Hamiltonian with respect

to ν to zero gives

W 0(x0,p) = 0 (23)

which enforces the desired constraint.

4 LINEAR QUADRATIC BILINEAR REGULATOR

This section describes how to handle problems where full state feedback is not available, and discusses

a special case that is useful to compare to Optimal Output Feedback (OOF) and also Linear Quadratic

Regulator control design. The plant is linear (second derivatives of F are zero), the one step cost func-

tion is a pure quadratic, the policy is bilinear in x and p: u = KCx, and the state x = 0 is an equilibrium

point. The gain matrix K contains the adjustable policy parameters and acts on a measurement vector

(output) y = Cx of dimensionality Ny. To better relate to the existing literature on OOF and LQR de-

sign, we will use the notation A = Fx, B = Fu, Q = Lxx, S = Lxu, and R = Luu. These quantities and

C are time invariant and independent of x. The value function is quadratic in x and p. This defines the

Linear Quadratic Bilinear Regulator (LQBR). Although linear policy design methods from the output

feedback controller optimization community are in general more efficient (this depends on problem

parameters such as M, D, S, Np, Nx, and Nu, see Appendix A) [52] we present this case to help the

reader understand our approach and to prepare the reader for the nonlinear and time varying examples
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we present (Sections 5 and 8). Unlike the LQR case, Lx, Lu, and Vx are non-zero since the trajectories

along which these quantities are evaluated start at non-zero states. The policy parameter vector p is

the rows of K concatenated into a vector. ππx = KC, ππxx = 0, and ππpp = 0. The first order derivative

propagation equations are:

V k
x = Lx +LuKC+V k+1

x (A+BKC) (24)

V k
p = (Lu +V k+1

x B)ππp +V k+1
p (25)

and the second order derivative propagation equations are:

V k
xx = Q+SKC+(SKC)T +(KC)TRKC+(A+BKC)TV k+1

xx (A+BKC) (26)

V k
xp = Sππp +(KC)TRππp +Luππxp +(A+BKC)TV k+1

xx Bππp +(A+BKC)TV k+1
xp

+V k+1
x Bππxp (27)

V k
pp = ππT

pRππp +(Bππp)
TV k+1

xx Bππp +(Bππp)
TV k+1

xp +((Bππp)
TV k+1

xp )T +V k+1
pp (28)

where

ππk
p =





yTk 0T . . . 0T

0T yTk . . . 0T

· · . . . ·
0T 0T . . . yTk



 (29)

and 0T is a row vector of Ny zeros. The ππp matrix has Nu rows and Np = NuNy columns. The product of

a vector v of length Nu and ππxp is given by the Nx by Np matrix: vππxp = (v1C
T v2C

T . . . vNuCT). (4) or
(16) can be used to update K. (26) is the standard LQR discrete time algebraic Riccati equation when

S = 0 (no cross terms in the one step cost function) and C is an identity matrix (full state feedback).

Implementation Results

To verify the LQBR policy optimization algorithm and explore timing, we implemented first and

second order policy optimization using both numeric (using finite differences of trajectory costs) and

our analytic derivatives on the following system:

A =





1 T 0 0

0 1 T 0

0 0 1 T
0 0 0 1



 B =





0 0 0

T 0 0

0 T 0

0 0 T





where T = 0.001, C is an identity matrix, and L(x,u) = 0.5(xTx + uTu), Since we have full state

feedback, the policy (gain matrix K) has 12 free parameters. We can use LQR design to identify the

optimal gain matrix:

K =




−0.9612 −1.5849 −0.6312 −0.1138
−0.2717 −0.6299 −1.2674 −0.5064
−0.0187 −0.1132 −0.5052 −1.3196



 (30)

We tested optimization of K starting with the elements of K all equal to -1 (a stabilizing controller)

along a trajectory starting at x = (1,0,0,0)T. The starting cost of this trajectory is 1187 and the

optimal cost is 850. Table 2 reports the computational cost and timing of each approach to reach a cost

10



Method Time Derivatives Trajectories

First order numeric 1.18s 101 1433

First order analytic 0.35s 100 207

Second order numeric 0.65s 4 529

Second order analytic 0.28s 4 14

Table 2: LQBR implementation timing comparison.

of 852. This cost threshold was chosen because all approaches were able to attain this cost. In Table 2,

Time reports wall clock time, Derivatives reports the number of gradient or Hessian calculations, and

Trajectories reports the number of trajectories integrated forward. All approaches varied the length of

the trajectory during optimization with a maximum trajectory length of 15000 steps. Integration of a

trajectory forwards in time is cut off early if the cost is larger than the current best cost, or if a good

estimate of the total cost has already been attained (future costs will be small). ε and λ are adapted

during the optimization to find steps that improve the cost. We see that for both first and second

order approaches using analytic derivatives is faster than using numeric derivatives. An order analysis

suggests that analytic approaches will scale better in the LQBR case than numeric approaches. The

cost of computing the numeric first order gradient is proportional to N2
x Np. The cost of analytically

computing Vx is proportional to N2
x Nu and the cost to compute Vp is proportional to NxNuNp. For

the LQBR case Np = NxNu, so the first order numeric gradient approach scales as N3
x Nu and the

corresponding analytic approach scales as N2
x N2

u . For small Nu the analytic approach has a factor of

Nx advantage, but for large Nu ≈ Nx the orders are the same. The cost of computing the numeric

second order gradient is proportional to N2
x N2

p . The most expensive matrix multiply in the analytic

second order gradient computation comes in computing Vpp and is proportional to NuN2
p . For small

Nu the analytic approach seems to have much better scaling, Nu < N2
x , and since Nu will typically be

smaller than Nx we expect the analytic approach to typically scale better than the numeric approach.

The second order analytic approach can be further improved by taking advantage of sparsity in ππp.

We see from Table 2 that for this policy optimization problem second order approaches are faster than

the corresponding first order approaches because the number of derivative calculations is much less.

5 LOCALLY CONSTANT POLICIES

A case of particular interest to machine learning is control laws made up of collections of simple

policies. Such control laws where only one simple policy is active at any one time lead to especially

efficient policy update rules, relative to those of more complex global policies. In addition, simple

policies that are locally constant in state space lead to further reductions in computational cost.

There are several ways to generate such policy collections. We can divide the state space up into

a grid or some other tessellation and place a simple policy in each cell (Figure 2E). We can also place

simple policies along a trajectory or at random locations in state space [4] and use nearest neighbor

operations to find the closest simple policy based on an appropriate distance metric. We can implement

a time varying policy where at each time step k the kth simple policy is used.

The key reason why using simple policies one at a time leads to efficient derivative computations

is that updating the active policy j is decoupled from updating other policies. For simple policy j first

11



order gradient descent updates its parameters in the following way:

∆p j = −ε j
M

∑
m=1

S

∑
s=1

w(m,s)VT
p j (31)

Note that the step size ε can now depend on the simple policy being updated (this is especially useful

if adaptive step size algorithms are used). Since only simple policies that are actually used are updated

this leads to a reduction in computational cost.

The second order gradient descent update typically has a very large reduction in computational

cost. The second derivative with respect to policy parameters Vpp or Hessian matrix is block diagonal.

Policy parameters of different simple policies do not interact, since only one policy operates on each

time step and Vx and Vxx are used to decouple the current policy optimization from optimization of

simple policies used in the future. Second order policy updates can be handled independently for each

simple policy. Second order gradient descent updates the jth simple policy in the following way:

∆p j = −
(

λ jI+
M

∑
m=1

S

∑
s=1

w(m,s)Vp jp j

)−1 M

∑
m=1

S

∑
s=1

w(m,s)VT
p j (32)

Inverting several small Hessian matrices is typically much less expensive than inverting a single large

Hessian matrix. Note that the regularization parameter λ can now depend on the simple policy being

updated, which is useful if the Hessians have negative eigenvalues of various magnitudes.

Locally constant policies provide additional simplifications. On time step k a single locally con-

stant policy (the jth policy) is used. This policy simply specifies the current action to take: uk =
ππ j(xk,p j) = p j. The derivative of the policy with respect to state ππx is zero. We formulate the policies

so that the outputs are parametrized directly and the derivative of the policy with respect to the param-

eters ππp is an identity matrix of appropriate dimension. The derivative propagation equations along a

trajectory are:

V k
x = Lx +V k+1

x Fx (33)

V k
xx = Lxx +FT

xV k+1
xx Fx +V k+1

x Fxx (34)

For the policy currently in use (policy j):

V k
p j = Lu +V k+1

x Fu +V k+1
p j (35)

V k
xp j = Lxu +FT

xV k+1
xx Fu +FT

xV k+1
xp j +V k+1

x Fxu (36)

V k
p jp j = Luu +FT

uV k+1
xx Fu +FT

uV k+1
xp j +(FT

uV k+1
xp j )T +V k+1

p jp j +V k+1
x Fuu (37)

For policies not currently in use (policy l):

V k
pl = V k+1

pl (38)

V k
xpl = FT

xV k+1
xpl (39)

V k
plpl = V k+1

plpl (40)

We refer to the above algorithm as Locally Constant Policy Optimization (LCPO).

12



Time Varying Locally Constant Policies and DDP

We can make a strong connection between our policy-iteration-based approach applied to time varying

locally constant policies where the kth simple policy is used only on time step k and value-iteration-

based differential dynamic programming (DDP) [14, 20] applied to multiple models. In DDP with

multiple models, the optimal action on time step k is:

uk = argminu

M

∑
m=1

S

∑
s=1

w(m,s)
(

Lm(xm,s,k,u)+V m,s,k+1(Fm(xm,s,k,u))
)

(41)

Given second order Taylor series approximations for L(),V (), and F(), a second order step to improve

uk is:

∆uk = −
(

λkI+Qk
uu

)−1(
Qk

u

)T

(42)

where

Qk
u =

M

∑
m=1

S

∑
s=1

w(m,s)
(

Lm
u +V m,s,k+1

x Fm
u

)
(43)

Qk
uu =

M

∑
m=1

S

∑
s=1

w(m,s)
(

Lm
uu +(Fm

u )TV m,s,k+1
xx Fm

u +V m,s,k+1
x Fm

uu

)
(44)

For our approach when the kth locally constant policy is used only on time step k, the propagation
equations simplify further. (33) and (34) remain the same, but for the policy currently in use (policy

k) the others become:

V k
pk = Lu +V k+1

x Fu (45)

V k
pkpk = Luu +FT

uV k+1
xx Fu +V k+1

x Fuu (46)

since V k
p j , V k

xp j , and V k
p jp j are all zero for j 6= k.

The following connections between our approach applied to time varying locally constant policies

where the kth simple policy is used only on time step k and DDP applied to multiple models exist.

Due to (45) and (46), Qk
u and Qk

uu are:

Qk
u =

M

∑
m=1

S

∑
s=1

w(m,s)V m,s,k
pk (47)

Qk
uu =

M

∑
m=1

S

∑
s=1

w(m,s)V m,s,k
pkpk (48)

and (32) and (42) are the same update.

We also match a well known special case: for a single model and trajectory and if we are linear in

the controls (Fuu = 0) and if λk = 0 then:

uk = −
(

Qk
uu

)−1(
Qk

u

)T

= −
(

Luu +FT
uV k+1

xx Fu

)−1(
V k+1

x Fu

)T

= −
(

R+BTV k+1
xx B

)−1(
V k+1

x B
)T

(49)
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6 GLOBAL OPTIMIZATION OF LOCALLY CONSTANT POLI-

CIES

By integrating gradient-based (local) optimization with dynamic programming (a global optimizer),

more efficient global optimization of policies may be possible. The use of a grid-based policy (a

locally constant policy) is required. The grid is indexed by state, and the value function is represented

in a corresponding grid. In policy iteration, steps of policy evaluation (5) are interspersed with global

optimization of the grid-based policy parameters (the entries in the grid) [9, 10]. The jth policy grid

entry is:

u j = argminu

(
L(x j,u)+V (F(x j,u))

)
(50)

where V () is the grid-based steady state estimate of the value function for the current overall policy

created by iterating for each value grid entry:

V j = min
u

(
L(x j,u)+V (F(x j,u))

)
(51)

We have proposed optimization using random actions as a particularly efficient way to perform dy-

namic programming [3].

If, in addition, gradient-based local optimization steps ((31) or (32)) are interleaved convergence

may be accelerated. The derivatives (33)–(37) can be propagated along trajectory segments of varying

length, or the derivatives can be explicitly represented in grids corresponding to the policy and value

function grids. Dual Heuristic Programming performs approximate dynamic programming (ADP)

by representing Vx(x) explicitly [11, 27, 30, 36, 45, 53, 58]. We are proposing representing Vx(x) and
Vp(x) on a grid in a first order approach, and in addition Vxx(x), Vxp(x), and Vpp(x) in a second order

approach.

Policy iteration in dynamic programming must be adapted for multiple models [61]. To match our

gradient-based minimization of a weighted sum across models, we envisage optimizing a weighted

average of the cost across models:

u j = argminu ∑
m

w(m)
(
Lm(x j,u)+V m(Fm(x j,u))

)
(52)

There is one policy grid, but a separate V () grid for each model, updated separately:

V m, j = Lm(x j,u j)+V m(Fm(x j,u j)) (53)

We are effectively assuming that a trajectory starts at each grid cell, so the s index in w(m,s) can be

dropped in the above equation.

7 WEIGHTED LOCALLY CONSTANT POLICY OPTIMIZA-

TION

The consequence of using multiple simple policies on each time step by forming a weighted average

of the outputs is that the Hessian matrix may no longer be block diagonal or have a form that reduces

the computational cost of inverting it. If on time step k the jth policy has the weight w j, then the

derivatives of the policy also now have that weighting factor. For locally constant policies ππp is the
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scalar w j times the identity matrix of appropriate dimension. Equations (35), (36), (37) are replaced

by:

V k
p j = w j

(
Lu +V k+1

x Fu

)
+V k+1

p j (54)

V k
xp j = w j

(
Lxu +FT

xV k+1
xx Fu +V k+1

x Fxu

)
+FT

xV k+1
xp j (55)

V k
p jp j = w2

j

(
Luu +FT

uV k+1
xx Fu +V k+1

x Fuu

)
+w j

(
FT

uV k+1
xp j +(FT

uV k+1
xp j )T

)
+V k+1

p jp j (56)

When both policy j and policy l are active at the same time, cross terms between ππp j , ππpl , Vxp j , and

Vxpl arise which destroy the block diagonal nature of the Hessian (Vp jpl 6= 0). For locally constant

policies the derivative propagation equation is:

V k
p jpl = w jwl

(
Luu +FT

uV k+1
xx Fu +V k+1

x Fuu

)
+w j

(
FT

uV k+1
xpl +(FT

uV k+1
xpl )T

)

+wl

(
FT

uV k+1
xp j +(FT

uV k+1
xp j )T

)
+V k+1

p jpl (57)

On time steps where either the jth or lth policy are not used the corresponding equation is:

V k
p jpl = V k+1

p jpl (58)

Note that Vp jpl = Vplp j . In the general case the Hessian is sufficiently full that (16) must be used

to compute the second order update. We refer to this algorithm as Weighted Locally Constant Policy

Optimization (WLCPO). The weights w j and wl provide an interesting perspective on eligibility traces

used in reinforcement learning [49]. w j appears quadratically in (56). In typical reinforcement learning

algorithms eligibility factors typically only appear linearly.

8 LOCALLY LINEAR POLICIES

In this section we consider collections of simple policies where the simple policies are affine rather

than constant: u(x,p) = ū+ K̄C(x− x̄). At time k a single policy is used (the jth affine policy), and

its adjustable parameters are (ū j,K̄ j). We refer to this case as Locally Linear Policy Optimization

(LLPO). The time varying version of this approach where on each time step k the kth affine policy is

used is the policy optimization analog of Differential Dynamic Programming (DDP) [14, 20], which

can be referred to as DDP-PO.

The parameter vector for the jth affine policy p j concatenates ū j and the rows of K̄ j. If the jth
affine policy is used on time step k, ππk

x = K̄ jC as in Section 4. The ππk
p j matrix has Nu rows and

Nu(1+Ny) columns.

ππk
p j =





1 0 . . . 0 yTk 0T . . . 0T

0 1 . . . 0 0T yTk . . . 0T

· · . . . · · · . . . ·
0 0 . . . 1 0T 0T . . . yTk



 (59)

ππk
xx = 0 and ππk

p jp j = 0. The product of a vector v of length Nu and ππk
xp j is given by the Nx by Nu(1+Ny)

matrix: vππxp =
(
0Nu×Nu v1C

T v2C
T . . . vNuCT

)
.
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The derivative propagation equations along a trajectory are:

V k
x = Lx +LuK̄ jC+V k+1

x (Fx +FuK̄ jC) (60)

V k
xx = Lxx +LxuK̄ jC+(LxuK̄ jC)T +(K̄ jC)TLuuK̄ jC

+(Fx +FuK̄ jC)TV k+1
xx (Fx +FuK̄ jC)

+V k+1
x (Fxx +FxuK̄ jC+(FxuK̄ jC)T +(K̄ jC)TFuuK̄ jC) (61)

For the affine policy currently in use (simple policy j):

V k
p j = (Lu +V k+1

x Fu)ππp j +V k+1
p j (62)

V k
xp j = Lxuππp j +(K̄ jC)TLuuππp j +Luππxp j

+(Fx +FuK̄ jC)TV k+1
xx Fuππp j

+(Fx +FuK̄ jC)TV k+1
xp j

+V k+1
x (Fxuππp j +(K̄ jC)TFuuππp j +Fuππxp j) (63)

V k
p jp j = ππT

p jLuuππp j +(Fuππp j)TV k+1
xx Fuππp j

+(Fuππp j)TV k+1
xp j +((Fuππp j)TV k+1

xp j )T +V k+1
p jp j

+V k+1
x (ππT

p jFuuππp j) (64)

For affine policies not currently in use but that have been used (simple policy l):

V k
pl = V k+1

pl (65)

V k
xpl = (Fx +FuK̄lC)TV k+1

xpl (66)

V k
plpl = V k+1

plpl (67)

The update equations (31) and (32) are used.

The generalization to the weighted case where multiple policies are used simultaneously (WLLPO:

Weighted Locally Linear Policy Optimization) is along the same lines as that of WLCPO.

Implementation Results

To verify the LLPO algorithm and explore timing, we implemented both numeric and our analytic first

and second order policy optimization on a pendulum swing up problem with the following dynamics:

A =

(
1−0.5T 2mgl cos(θ)/I T

−Tmgl cos(θ)/I 1

)
B =

(
0.5T 2/I

T/I

)

where x = (θ, θ̇)T and u = (τ), the torque at the base of the pendulum. θ is the pendulum an-

gle with straight down being 0, T = 0.01, the moment of inertia about the joint is I = 0.3342, the
product of mass, gravity, and the pendulum length is mgl = 4.905, C is an identity matrix, and

L(x,u) = 0.5T (0.1θ2 + torque2), We have found the optimal trajectory (cost = 3.5385) using dy-

namic programming (DP) and differential dynamic programming (DDP) (Figure 2A, C, and D). We

can use these solutions to see how the optimal parameters of locally linear policies (ū, position gain

kp, and velocity gain kv) vary along the optimal trajectory (Figure 2B).

We will use this problem to test algorithm timing in the context of numeric and analytical first and

second order gradients on a 500 step trajectory. In the numeric approach we used finite differencing
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Figure 2: A: The optimal trajectory for the pendulum swing up (θ vs. time). B: Optimal parameters

of locally linear policies along the optimal trajectory: (ū, position gain kp, and velocity gain kv).

The corresponding optimal value function (C) and optimal policy (D). E: The optimal policy with

a manually generated tessellation to create approximately linear policies in each cell. The optimal

trajectory is shown as a red line. The value function is cut off above 10 for visibility. Apologies for

the small fonts in E, please use zoom.

Method 10 policies 100 policies 500 policies

First order numeric 0.108 11.3 53

First order analytic 0.098 0.104 0.124

Second order numeric 450 45000 1061000

Second order analytic 0.77 0.89 1.20

Table 3: LLPO implementation timing comparison.

of total trajectory costs to numerically estimate Vp and Vpp. We can vary the number of affine policies

and see how the cost of computing these gradients increases for both approaches (Table 3). Table

entries report time in milliseconds for one calculation of Vp or Vp and Vpp for 10, 100, and 500 local

policies. We see that analytic derivatives become relatively much cheaper to compute as the number of

affine policies increases, since the numeric approaches have to vary all the parameters of all the simple

policies to estimate derivatives, while the analytic approaches only require a number of updates related

to the length of the trajectory and largely independent of the number of simple policies. The cost of the

numeric first order gradient computation is proportional to the number of simple policies, while the

numeric second order gradient computation grows with the square of the number of simple policies.

In the analytic approaches the computational cost of finding the nearest neighbor simple policy and

initializing all simple policies for each new trajectory depend on the number of simple policies. The

cost for updating the policy gradients for simple policies not used on the current time step, inverting

the Hessian matrices, and updating simple policy parameters depend only on the number of simple

policies used, so in the worst case this cost is proportional to the length of each trajectory. Simple

policies that have not been used on the current trajectory do not need to be updated until they are used.

In practice the total cost of the analytic approaches is almost independent of the number of simple

policies available or used.

Using a single simple policy at a time and using analytic derivatives makes optimization and learn-

ing possible for large complex policy optimization problems. In our experience using collections of

simple policies, sometimes the second order analytic approach is faster than the first order analytic

approach because it takes many fewer iterations to converge, and sometimes the first order approach

has a slight edge. Either the solutions found are equivalent, or the second order approach finds a better

solution.
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9 HANDLING MODELS WITH DIFFERENT STATES

So far we have assumed all of the multiple models have the same state vector. What happens to the

above formulas when we wish to optimize over multiple models with different state vectors? Since

we are planning, we assume we know the dynamics of each model: zm
i+1 = Fm(zm

i ,ui). In order to use
the same policy with all models, each model must provide a vector of observations: y = gm(zm) and
the common policy is a function of those measurements: ππ(y,p). In order to use the same one step

cost function L(x,u), each model must provide a way to generate a “nominal” state: x = hm(zm). This
function is unnecessary if the one step cost function is a function of the observation vector L(y,u).
Finally, there must be a way to start each model’s trajectory from an equivalent state zm

0 , given a

nominal starting state x0. The Bellman Equation for each model is:

V m,k(zm,p) = L(hm(zm),ππ(gm(zm),p))+V m,k+1(Fm(zm,ππ(gm(zm),p)),p) (68)

The first order derivative propagation equations are (suppressing the m subscripts):

V k
z = Lxhz +Luππygz +V k+1

z (Fz +Fuππygz) (69)

V k
p = (Lu +V k+1

z Fu)ππp +V k+1
p (70)

The second order derivative propagation equations for Vzz, Vzp, and Vpp are extended in a similar way

(extensive use of the chain rule, see Appendix E). During policy optimization the appropriate model

specific dynamics, observation equation, h(), value function, and derivative propagation equations are
used on each application of a model m to a starting point indexed by s.

10 HANDLING STOCHASTIC SYSTEMS

One approach to handling stochastic systems with uncertain dynamics and noisy measurements is

to sample from realizations of trajectories (a Monte Carlo approach) [20]. Since we already sample

trajectories based on models and initial states, we can re-use all of the machinery we have developed

and use several trajectory realizations for each model and initial state. During policy optimization we

would keep the random noise fixed for each trajectory as in the common random numbers method [19]

(also known as correlated sampling, matched pairs, matched sampling, and Pegasus [32]).

In a situation where the process and measurement noise can be described by first and second

moments (as with Gaussian noise) we can analytically propagate and optimize means and variances.

We will focus on discrete time systems with zero mean process noise w with covariance W and

independent zero mean measurement noise v with covarianceV . This noise is injected into the process

dynamics and measurement functions, so both additive, multiplicative, and more general nonlinear

noise can be handled:

xi+1 = F(xi,ui,wi) = F(xi,ππ(yi,p),wi) (71)

yi = g(xi,vi) (72)

Including an effect of the past command ui−1 on the measurement noise (which would allow sensing

actions such as aiming a sensor) and thus the policy parameters p on the measurement noise is possible

but greatly complicates the formulas below, so we leave it out of this derivation.

We want to minimize the total cost, including the additional cost due to the process and measure-

ment noise. We will use a Kalman Filter to process the noisy measurements. The variance of the error
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in x on time step k before we incorporate the measurement is [21, 23, 28]:

X−(k +1) = (Fx +Fuππygx)X +(k)(Fx +Fuππygx)
T +(Fuππygv)V (Fuππygv)

T +FwW FT
w

+
1

2
trace(F̃xxX +(k)F̃xxX +(k)) (73)

F̃xx = Fxx +FxuFuππygx +(Fuππygx)
TFux +(ππygx)

TFuuππygx

+Fu(g
T
x ππyygx +ππygxx) (74)

where the superscripts − and + indicate the state covariance before and after the measurement has

been incorporated. The measurement update of the Kalman Filter is [23]:

X +(k) = (I−K gx)X−(k) (75)

K = X−(k)gx

(
gxX−(k)gTx +V +

1

2
trace(gxxX−(k)gxxX−(k))

)−1

(76)

Each component of the expected value of the state is offset by:

∆x j = 0.5(trace(F j
xxX +(i))+ trace((F

j
xuππygx +(F

j
xuππygx)

T)X +(i))

+ trace(F
j
uu((ππygx)X +(i)(ππygx)

T +(ππygv)V (ππygv)
T))) (77)

Since this is a planning process and no measurements are available, x+ = x− and we drop the super-

scripts. The cost is offset by:

∆V = 0.5trace(φxx(xD)X +(D))+0.5
D−1

∑
i=1

(trace(LxxX +(i))+ trace((Lxuππygx +(Lxuππygx)
T)X +(i))

+ trace(Luu((ππygx)X +(i)(ππygx)
T +(ππygv)V (ππygv)

T))) (78)

We can optimize the policy by calculating the gradient ofV +∆V with respect to p, taking into account

the effect of the altered nominal trajectory. We will also explore a “dual control” approach where

caution (avoiding risk: the combination of large uncertainty and a large cost Hessian) and probing

(adding exploratory actions where they will do the most good) are combined in a learned policy that

achieves high performance by only learning as much about the models as is necessary [23].

11 HANDLING DYNAMIC POLICIES

Dynamic policies are found in state estimators (as in LQG design), online system identification, adap-

tive control, reinforcement learning, feedback linearization, disturbance decoupling, and central pat-

tern generators (CPGs) in biology. We have also assumed so far that policies are static and have no

internal state. One way to extend our approach to dynamic policies with state is to augment the model

state with the additional policy state x̃: z = (xT x̃T)T. A dynamical equation for z must be defined

which will probably be a function of the policy parameter vector p: zk+1 = F (zk,uk,p). A suitable

observation equation y = g(z) must be defined. The new observation vector will probably include the

old observation vector and all the policy state variables. The mapping to the one step cost function

x = h(z) is easy to define since z can be truncated to provide x. Starting at a z0 corresponding to x0 is

straightforward if the policy state x̃ can be initialized to zero, a known value, or random values. After

adding appropriate process and measurement noise, we can use the results of the previous two sections

to optimize p.
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State estimation such as the Kalman filter found in LQG control design is a common example of the

use of state in a policy, and a useful way to handle stochastic systems. In this case the Kalman gain K f
is added to the policy parameters to be optimized. The additional state is x̂, the state estimate which

at time k includes measurements up to and including time k. In this case the augmented dynamics

zk+1 = F (zk,uk,p) are:

(
x

x̂

)k+1

=

(
F(x,u)+wk
F(x̂,u)+K f (C(F(x,u)−F(x̂,u))+ vk)

)
(79)

g() and h() are as defined in the previous paragraph. The initial state estimate can be generated in

many ways, including just setting it to zero. It may be useful to augment the one step cost function

with a term that penalizes deviations of the state estimate from the actual state.

Keeping the actual state and the policy state separate may lead to more efficient optimization

algorithms. In this case the policy dynamics are given by x̃ = ψψ(x, x̃,p). The policy is u = ππ(x, x̃,p).
The Bellman Equation is now:

V k(x, x̃,p) = L(x,ππ(x, x̃,p))+V k+1(F(x,ππ(x, x̃,p)),ψψ(x, x̃,p),p) (80)

The first order derivative propagation equations are:

V k
x = Lx +Luππx +V k+1

x (Fx +Fuππx)+V k+1
x̃

ψψx (81)

V k
x̃ = Luππx̃ +V k+1

x Fuππx̃ +V k+1
x̃

ψψx̃ (82)

V k
p = Luππp +V k+1

x Fuππp +V k+1
x̃

ψψp +V k+1
p (83)

The second order derivative propagation equations involve application of the chain rule in a similar

fashion (Appendix F).

12 SIMPLIFYING POLICIES

In many cases it is useful to bias the computed policies. Often individual policy parameters are biased

to be zero unless there is substantial evidence they should be non-zero. This is particularly useful

when using large numbers of simple local policies. There are several ways to do this. One way we

will consider is to add a cost function on the policy parameters: L(p). In this case the first order

gradient equations are modified in the following way:

∆p = −ε

(

Lp +
M

∑
m=1

S

∑
s=1

w(m,s)VT
p (xs,p)

)

(84)

The second order gradient equations are modified in the following way:

∆p = −
(

Lpp +λI+
M

∑
m=1

S

∑
s=1

w(m,s)Vpp

)−1(

Lp +
M

∑
m=1

S

∑
s=1

w(m,s)VT
p

)

(85)

One example of a suitable cost function is the L2 norm L(p) = pTp. Another is the L1 norm which

sums the components of p: ∑
Np

j |p j|.
A second approach to simplifying policies is to limit the dimension of the update. One can collect a

number of updates after several gradient steps, and use those updates to define a basis. Future updates
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can be projected into that subspace, limiting the possible policies. A similar approach is to limit the

dimensionality of the Hessian matrix:

Qpp = Lpp +λI+
M

∑
m=1

S

∑
s=1

w(m,s)Vpp (86)

in (85). We can decompose Qpp into UDUT using an eigenvalue/eigenvector decomposition, where D

is diagonal with the eigenvalues d j as diagonal elements. If the desired dimensionality of the update

is n, the largest n eigenvalues can be inverted, while the inverse of all other eigenvalues can be set to

zero in D−1. Then Q −1
pp = UD−1UT. Another approach is to add basis vectors to the allowed policy

subspace while removing others as the policy optimization proceeds, based on the space spanned by

the largest n elements of δp or the eigenvectors corresponding to the largest n eigenvalues of Qpp.

A third approach to simplifying policies is to use dimensionality reduction. For example, in the

linear regulator case a policy might have the form P2KrP1 which leads to plant dynamics ẋ = (A +
BP2KrP1C)x. A is the full plant dynamics, B is the effect of inputs on the task, C indicates how

the task observables depend on the state, the Pi project the observables and actuation into a reduced

dimensionality space, and Kr is the reduced dimensional feedback control in that space. We will

explore the hypothesis that this dimensionality reduction formulation is a useful way to learn a new

task: choose an important direction and control that first. Alternatives are to reduce the model A to

a lower dimensional model Ar and design a low dimensional controller Kr for that, or reduce a full

dimensional controller K to a lower dimensional controller Kr. We believe searching for a lower

dimensional policy while simultaneously varying the definition of the lower dimensional space is a

more efficient and effective approach to learning a task.

13 GLOBAL OPTIMIZATION OF GENERAL POLICIES

In Section 6, we discussed combining our gradient-based policy optimization, which finds locally

optimal policies, with dynamic programming. This hybrid approach can globally optimize grid-based

policies (Figure 2C and D). For more general parametrized policies a similar approximate dynamic

programming approach [11,26,27,30,36,45,53,58] does not necessarily find globally optimal policies,

but it does help avoid many bad local minima. Performing local gradient-based policy optimization

along an explicit trajectory may greatly reduce the need for an accurate global model of the value

function, and allow quite approximate function optimization methods to be used to in approximate

dynamic programming (ADP). The hybrid method may work well with an inaccurate global model

of the value function V () but accurate local models of its derivatives. We will explore this hybrid

approach in future work.

In Heuristic Dynamic Programming (HDP), a form of policy iteration, the parameters ωω of a

value function approximation V (x,ωω) are trained using supervised learning to match the right hand

side of the Bellman Equations L(xi,ππ(xi,p)) + V̂ (F(xi,ππ(xi,p)),ωω) evaluated with the current ωω.
The parameters p of a policy ππ(p) are trained using supervised learning with targets from min-

imizing u = argminu(L(x,u) +V (F(x,u),ωω). These targets are created assuming arbitrary u are

possible and without respect to the parametrization of the policy. In local versions of HDP gradi-

ent approaches are used to train ω and p, and only a local minimum is found. [55] discusses com-

puting a derivative of the right hand side of the Bellman Equation with respect to the policy pa-

rameters p to facilitate the minimization: Qk
p = Luππp +VxFuππp + Qk+1

p which matches our first or-

der gradient (9). Dual Heuristic Programming (DHP) learns Vx directly by training using the right
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hand side of (8) as the target [11, 27, 30, 36, 45, 53, 54, 58]. Globalized DHP (GDHP) combines

HDP by training a global representation of V (x,ωω) and DHP by including Vx as part of the train-

ing algorithm. Action dependent versions of HDP (ADHDP) and DHP (ADDHP) learn Q functions

Q(x,u,w,p) = L(x,u) +V k+1(F(x,ππ(x,p)),w), Qx(), and Qu() instead of value functions V () and

Vx(). We are proposing representing Vx(x) and Vp(x) on a grid in a first order approach, and in addi-

tion Vxx(x), Vxp(x), and Vpp(x) in a second order approach.

[18, 31, 42] train adaptive critics along trajectories (as we do), rather than at a set of training

points. [18, 31] use a set of initial conditions, as we do. [18, 42] use gradient equations from Pon-

tryagin’s minimum principle-based trajectory optimization, which focus on taking the derivative of

the Hamiltonian with respect to state and action, and leave out terms involving ππx, ππp, and Vp. [31]

takes advantage of special forms of the dynamics (linear in the control) and one step cost function

(quadratic in the control). For the LQR case the value function is a global quadratic function which is

learned on each iteration of policy iteration. [31] also explores using radial basis functions to represent

V (x). [7, 31, 37] analyze convergence issues and provide convergence proofs.
We propose two methods to approximate the value function in “global” optimization of the policy

using u = argminu(L(x,u)+V (F(x,u),ωω). The first is to use the collection of local quadratic models

of the value function at each point along each trajectory. These models do not have to be trained in the

usual machine learning sense, as V , Vx, and Vxx can be computed for each trajectory point by a single

sweep backwards along each trajectory. We could use a nearest neighbor approach with a distance

metric that potentially depended on the query state to find the most appropriate local model. We could

also use weighted combinations of predictions of various local value function models, with weights

depending on distances of the trajectory point to the query. The second value function approximation

approach is to use a global value function approximation, for example sigmoidal neural nets or radial

basis functions. The “global” policy optimization step can be interspersed with gradient-based local

optimization of the policy using the approaches previously described in this paper.

14 ADAPTIVE GRIDS/PARAMETRIZATIONS

In addition to fixed parametrization of the policy, we will explore adaptive grids and parametrizations.

[17] reviews recent work in adaptive grids and parametrizations for value function representation.

Figure 2E shows a manually generated tessellation of the state space for pendulum swing up. Each

cell has an approximately linear policy. We will look for automatic ways to create such an adaptive

grid, using various tessellation approaches including kd-trees. An advantage of our gradient-based

policy optimization is that it provides several indicators as to where and how to subdivide a cell. One

approach is to split cells whose gradients Vp are different at different locations. The magnitude of Vpx

provides an indicator of this, and the Vpx matrix provides an indication of the best direction to split a

cell (to minimize Vp discrepancy in the new cells).

We can only represent the policy in detail at states that are actually visited by the trajectories. One

way to create new features is to start with constant or linear features of one variable, and then combine

them into polynomials or create new features in the collection by applying nonlinearities such as exp(),

log(), sqrt(), sin(), cos(), ... This is reminiscent of the Group Method of Data Handling (GMDH, also

known as polynomial neural networks) [16]. The number of hidden units and layers in sigmoidal

neural networks or radial basis function networks can also be varied. Another way to discover useful

cells, features and parametrizations is to look for ways in which the inputs to the policy can be factored

into independent subsets. [59,60] have shown that walking can be simplified in this way, for example.

All of these operations can be applied simultaneously (each cell can have a different set of features or
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parametrization, and cells can be split and merged as well as have their representation changed). It is

possible that representing the policy at several levels of resolution is useful, either with several grids

with different resolution or using wavelets. We can also explore using multiple temporal resolutions,

where trajectories of varying lengths are simulated to estimate policy gradients. We will also explore

whether simultaneously applying these techniques to value functions will be useful.

We have proposed optimization using random actions as a particularly efficient way to perform dy-

namic programming [3]. We will explore performing random actions using cell-based representations

by replacing a cell’s local policy by a random policy during dynamic programming and using that

random policy until a trajectory leaves the cell. It may be the case that this accelerates convergence to

a better local optimum or helps avoid bad local optimum.

15 RECEDING HORIZON CONTROL/MPC

The multiple model optimization criterion (3) and our gradient approaches to efficiently optimizing

it can be used in implementing Receding Horizon Control (RHC, also known as Model Predictive

Control or MPC). We can implement RHC/MPC time varying locally constant policies that apply a

new control vector on each time step. We can implement a policy with very few parameters, such as

K of an LQBR approach. We can also use variable temporal resolution policies, in which the first NRHC

steps each have their own control vector, but after that a policy with many fewer parameters such as

LQBR is used until the end of the horizon. At the end of the horizon, an appropriate terminal cost

function should be used. We note that on each control iteration the optimized control vectors can be

shifted forward in time and the optimized LQBR policy (K) can be initialized to what it was on the

last control step to provide a warm start and speed up optimization. We also expect that the terminal

cost function can be learned or updated based on value functions from previous optimizations.

Adaptive Multiple Model Policy Optimization

We expect that during RHC/MPC, we can adapt the weights of the multiple models used in the opti-

mization criterion (3). Models that accurately predict the next state can have their weights increased,

while models that poorly predict future states can have their weights reduced. It is likely that some

regularization will be required so that the system does not focus on only one model and reject all

others.

16 MODEL FOLLOWING

So far we have focused on optimizing a policy. We note that we can also use gradients to achieve

model following or model reference control. If the desired model is xi+1 = md(xi,ui), then we modify

the original one step cost function with

L̃(x,u) = L(x,u)+(F(x,u)−md(x,u))TQ̃(F(x,u)−md(x,u)) (87)

This approach can be used to perform pole placement, for example.
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17 CONTINUOUS TIME POLICY OPTIMIZATION

Continuous time approaches are extensively used in the output feedback controller optimization liter-

ature, and [27] explores them in adaptive dynamic programming. The continuous time version of our

approach is very similar to our discrete time version. It is most useful when the duration of the trajec-

tory or terminal time depends on reaching a goal set or is part of the optimization. Instead of discrete

time dynamics xk+1 = F(xk,uk) we have continuous time dynamics ẋ = f(x,u). The value function

corresponding to the policy ππ(x,p) is generated by a cost increment function l(x,u) integrated along

the trajectory generated by the policy:

V (x(t),p, t) = φ(x(t f ), t f )+
Z t f

t
l(x(τ),ππ(x(τ),p))dτ (88)

where x(t) is the state at time t on the trajectory and t f is the final time of the trajectory. φ(x, t) is

the terminal cost function. Differentiating (88) with respect to t and noting that t is the start of the

integration interval so −V̇ () = l() results in:

0 = V̇ (x,p, t)+ l(x,ππ(x,p))

= Vt(x,p, t)+Vx(x,p, t)f(x,ππ(x,p))+ l(x,ππ(x,p)) (89)

since the total derivative V̇ (x,p, t) is given by the sum of the partial derivatives with respect to

time [14].

Taking the partial derivative of (89) with respect to x results in:

0 = Vtx +Vxxf+Vx(fx + fuππx)+ lx + luππx (90)

We note that the total derivative V̇x = Vxt +Vxxf and that Vxt = Vtx since V and t are scalars. This gives
us a first order gradient propagation equation for Vx:

−V̇x = Vx(fx + fuππx)+ lx + luππx (91)

We compute −V̇x since we integrate backwards in time to find Vx(t).
Taking the partial derivative of (89) with respect to p results in:

0 = Vtp + fTVxp +Vxfuππp + luππp (92)

We note that the total derivative V̇p = Vtp + fTVxp. This gives us a first order gradient propagation

equation for Vp:

−V̇p = Vxfuππp + luππp (93)

We compute −V̇p since we integrate backwards in time to find Vp(t) and Vp in (4) is Vp(0)
The handling of a free terminal time in DDP is closely related to our approach [14, 20]. We first

must calculate the effect of changing the policy parameters on the endpoint xp(t f ) of the trajectory,

which is given by a homogeneous linear Volterra integral equation of the second kind (integrated along

the trajectory x(t)):

xp(t) =
Z t

0
((fx(τ)+ fu(τ)ππx(τ))xp(τ)+ fu(τ)ππp(τ))dτ (94)

This equation is the continuous time version of Kolter’s forward integration (Appendix D) [25].
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To see the effect of a variable trajectory duration, let’s first consider the case where the terminal

cost function determines the trajectory duration. For each choice of policy parameters the following

first order gradient descent update evaluated at (t i
f ,x(t i

f )) is used to refine the trajectory duration

(t i+1
f = t i

f +∆t) [14]:

∆t = −ε(l +φxf+φt) (95)

Another way to determine t f is to simply monitor the sum of the terminal cost of the current state

and the current trajectory cost and end the trajectory when this value is minimized. The first order

dependence of t on the policy parameters is given by (all terms evaluated at t f ):

tp =
(
(−φx + lx + fTφxx +φxfx +φtx)xp +(lu +φxfu)ππp

)
/(φxf) (96)

The corresponding first order change in the terminal location is

x
f
p = xp(t f )+ f(t f )tp (97)

The change in the trajectory cost due to the change in duration is the change in
R

l and the change in

the terminal cost φ:

Vtp = (l(t f )+φt(t f ))tp +φx(t f )x
f
p (98)

This effect should be included inVp in (4) in first order gradient descent to optimize policy parameters.

Another useful case is where a terminal constraint ϕ(x(t), t) = 0 determines the duration of the tra-

jectory t f . This constraint can also be maintained by the process that integrates the dynamics forward

in time given the policy. The first order change in the trajectory duration is (all terms evaluated at t f ):

tp = −ϕxxp

ϕxf
(99)

and the corresponding first order change in the terminal location is

x
f
p = xp(t f )+ f(t f )tp (100)

The change in the trajectory cost due to the change in duration is the change in l() and the change in

the terminal cost φ:

Vtp = (l(t f )+φt(t f ))tp +φx(t f )x
f
p (101)

This effect should be included inVp in (4) in first order gradient descent to optimize policy parameters

for this case as well.

Discontinuous dynamics and dynamics with multiple phases (in contact or not in contact, for

example) can be handled similarly to a terminal constraint [14,20]. In this case a manifold ϕd(x(t), t)=
0 determines when the dynamics undergoes a discontinuity td . This transition can be detected by the

process that integrates the dynamics forward in time given the policy. The effect of changing the policy

parameters on the transition point xp(td) of the trajectory is given by (94). The first order change in

the transition time is (all terms evaluated at td):

tp = −ϕd
xxp

ϕd
xf

(102)
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and the corresponding first order change in the transition state is

xd
p = xp(td)+ f(td)tp (103)

The change in the trajectory cost due to the change in transition time is the change in l() and the

change in the terminal cost φ:

Vtp = (l−(td)− l+(td)+φ−t (td)−φ+
t (td))tp +(φ−x (td)−φ+

x (td))xd
p +ψd(xd, td) (104)

where l−() and f−() are the cost increment and dynamics function before the transition, l+() and

f+() are the cost increment and dynamics function after the transition, and ψd(xd, td) is a transition

cost function. This effect should be included in Vp in (4) in first order gradient descent to optimize

policy parameters for each transition. If a discontinuity of the dynamics is approached closely but

not crossed, gradient-based approaches do not know the discontinuity is nearby. [51] describe ways to

smooth discontinuities so that gradient-based optimization is aware of near-miss discontinuities.

Second order gradient update equations are given by taking higher derivatives of (89).

−V̇xx = lxx + lxuππx +(lxuππx)
T +ππT

x luuππx + luππxx (105)

+Vxx(fx + fuππx)+(Vxx(fx + fuππx))
T

+Vx(fxx + fxuππx +(fxuππx)
T +ππT

x fuuππx + fuππxx)

−V̇xp = lxuππp +ππT
x luuππp + luππxp (106)

Vxxfuππp +(fx + fuππx)
TVxp

+Vx(fxuππp +ππT
x fuuππp + fuππxp)

−V̇pp = ππT
pluuππp + luππpp (107)

+(fuππp)
TVxp +((fuππp)

TVxp)
T

+Vx(ππ
T
pfuuππp + fuππpp)

18 CREATING MODELS AND MINIMAX POLICIES

We can use the policy optimization machinery we have developed to optimize worst case models

(make them as difficult as possible for the current policy). This allows us to automatically create

difficult models in the set of models used for training on the next iteration. We can think of this as

automatically creating policies for opponents. Assume a policy defined by p has been optimized. This

policy combined with the current set of models M creates a new set of models Mp. A policy that

maximizes rather than minimizes V can now be optimized using parameters r and the model set Mp.

This worst case policy needs to be limited in some way. Ways to do this include limiting the maximum

command that can be used (|u| < umax) or saturating the command vector (uactuali = tanh(ui)).
Typically a regularization term penalizing the magnitude of u such as uTu/2 is added to the cost,

leading to the following additional terms: ππTππx inVx, ππTππp inVp, ππT
x ππx +ππTππxx inVxx, ππT

x ππp +ππTππxp

in Vxp, and ππT
pππp +ππTππ f pp in Vpp, Once the worst case policy converges, this policy is combined with

the original set of models M to create replacement or additional models Mr, which are used on the

next iteration to optimize p.

We average performance over multiple models. It may be more appropriate to take a minimax

approach and optimize the worst performance on a particular model and starting state, and in the

model-creation process it probably makes more sense to train the worst case policies in a minimax
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fashion [6, 8, 35]. Minimax approaches may introduce problems for gradient algorithms, as the tra-

jectory with the worst performance may switch from one iteration to another, causing the gradient to

reverse direction on each iteration and slow down convergence.

19 INVERSE OPTIMAL CONTROL

For applications in machine learning it is useful to be able to find a one step cost function and terminal

cost function for which a given policy is optimal. We add a parameter vector r to these functions. We

might want to optimize an overall cost function that matches outcomes at selected states:

C1(r) = ∑
j

w j|F(x j,ππ(x j,p(r)))−x
j
d|2 (108)

We could also match actions:

C2(r) = ∑
j

w j|ππ(x j,p(r))−u
j
d|2 (109)

Another method is to provide cost targets Vd:

C3(r) = ∑
j

w j|V (x j,p(r))−V j
d |2 (110)

A two level optimization can be used in which, at the top level, the one step and terminal cost functions

are optimized by tuning r, and an inner optimization finds the corresponding optimal policy parameters

p.

For each of these criteria, computing the top-level cost gradient with respect to r involves comput-

ing the gradient pr = ∂p/∂r. The following cross derivatives are useful:

V k
xr = Lxr +ππT

x Lur +(Fx +Fuππx)
TV k+1

xr (111)

V k
pr = ππT

p(Lur +FT
uV k+1

xr )+V k+1
pr (112)

V D
xr and V D

pr are the corresponding derivatives of the terminal cost function. After a change in r, p is

re-optimized to set Vp = 0. This results in

pr = −Vpr

Vpp
(113)

20 CONVERGENCE OF THE POLICY PARAMETER VEC-

TOR

There are several convergence questions. One question is whether an optimized policy “works”, which

usually means that trajectories reach a goal or enter a goal set and remain there. In general, proving

this is difficult, especially for periodic trajectories like walking. For systems with a zero cost goal or

a finite duration we can use the value function for the policy as a Lyapunov function. We can also

analyze whether linearizations of the dynamics and policy as matrices form a contraction mapping,

or try to compute the equivalent of a Lyapunov exponent. The next sections addresses the questions

of “When will the goal be stable?” and “Over what volume of initial states and model variations will
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an optimized policy work?” This section addresses whether the policy parameter vector p converges

during optimization. We have previously discussed using dynamic programming as part of the opti-

mization process, which would assist convergence of p. In the tabular policy case, p would converge

to a global optimum.

When gradient-based policy optimization is used alone, the best we can hope for is convergence

to a local minimum. The quality and abundance of local minima is difficult to assess because it

depends on the selection of models, initial states, and trajectory durations, and it involves possibly

nonlinear plants and policies and non-quadratic cost functions. The assumptions required for output

feedback controller optimization to converge give us a guide as to when to expect our approach to

converge to a local minimum (Appendix A) [50], as does analyzing the convergence properties of

policy iteration with parametric policies [37] and parametric dynamic programming (ADP) [7]. It is

an empirical problem as to what policy formulations lead to acceptable vs. unacceptable local minima

during policy optimization. We can use model-based policy design approaches like DP, DDP, and LQR

based on the nominal model to get good initial guesses for policies. It may be the case that “unscented”

techniques that combine information across multiple trajectories may do a better job avoiding bad local

minima [22] and handling model discontinuities such as look up tables, dead zones, saturations, and

hysteresis [40] than our approach of calculating derivatives along a single trajectory.

21 IS THE GOAL STABLE?

We will describe a test of whether a point goal is stable for a range of parametric modeling errors in

the discrete time case. The goal is given by x̄ and deviations from the goal on the kth step are given

by x̃k = xk − x̄. We need to be able to interpolate between models, so they must all have the same

structure and differ only in values of a model parameter vector m. The nominal model is given by

m̄, and m̃ is a parametric modeling error (m̃ = m− m̄). The parametric modeling error may reflect

uncertainty in idealized parameters such as a mass or length, or uncertainty in the form of bounds on

a Taylor series representation of the modeling error (slope, curvature, ...). m̃ is constant across time.

The problem of an offset error in the dynamics is a serious obstacle to showing convergence. In

practice we rely on a demonstration that the actual system comes to rest with no terminal oscillations

at some point. If there is no such fixed point, we refer to the policy as being “unstable” from a

practical point of view. The fixed point will typically not be the goal point chosen in advance due

to an offset error in the model. We will assume that a goal which is an equilibrium will be found or

defined by adjusting the cost function or action definition when the policy is actually used, and any

modeling error at the goal will be eliminated either by system identification, integral control, or some

form of learning. We will make the restrictive requirement that model variation does not change this

equilibrium point. In this case it is reasonable to assume that modeling error is zero at the goal. The

derivative of the dynamics with respect to state can be affected by modeling error, however.

We define a new dynamics function

G(x̃,m̃) = F(x,ππ(x,p),m̃)− x̄ (114)

and the convergence test is whether the singular values of dG are all less than one in magnitude, where

dG is a linearization of G(x̃,m̃) with respect to x̃. If we start with a second order Taylor series model

of G(x̃,m̃), dG = Gx + m̃TGmx. Finding at what value of m̃ the maximum singular value of dG

becomes 1 or -1 establishes the range of possible modeling errors represented using m̃ that preserve

convergence to a goal point.
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22 ESTIMATING BASINS OF ATTRACTION

If we have a trajectory that has the desired behavior for a particular model, initial state, and optimized

policy parameter vector, we would like to know for what range of nearby models and initial states

the policy will work. Establishing accurate bounds is computationally more expensive than originally

computing the locally optimal policy, in that dynamic programming must be used to find an opponent

policy of worst case modeling errors. A “locally optimal” estimate of the bound can be found using

gradient techniques.

In this section we assume a nominal trajectory x̄k, and deviations from the nominal trajectory are

given by x̃k = xk − x̄k. We define a dynamics function Gk(x̃k) = F(xk,ππ(xk,p))− x̄k+1. We will

represent nonparametric modeling error as an additive deterministic quantity w:

x̃k+1 = Gk(x̃k)+wk (115)

w() is bounded:

wTW(x̃)w ≤ B(x̃) (116)

In what follows we do not require the modeling error to be zero at a goal point. In the more general

case where the bound depends on the state, B and W would take x̄ as a second argument.

We will outline how to find a basin of attraction for a discrete time policy. For finite time horizon

planning, we do not expect convergence all the way to the goal. To establish a basin of attraction we

first establish a threshold on the magnitude of the error at the end of the planning interval:

x̃TDMDx̃D ≤ εD (117)

This terminal bound may be part of the definition of the task, or it defines a known basin of attraction

for a longer time interval. As εD goes to zero and D goes to ∞ this analysis will connect up with the

singular value convergence test of the previous section.

At this point we have defined a trajectory optimization problem for an opponent with dynamics

given by (115) and constraints given by (116) and (117). The opponent chooses the x̃k (or equivalently

x̃0 and wk) and the objective of the opponent is to maximize x̃T0M0x̃0. This problem can be solved

using dynamic programming, which would establish the complete basin of attraction in state space

given the bound on the modeling error B.
It is also possible to use gradient approaches to find a basin of attraction, but one must check for

voids within the established boundary and islands of convergence outside the established boundary.

The limiting boundary in any direction is established in the following way. Define a starting error

along a line x̃0 = δv. Define a policy wk. Use the policy optimization techniques in this paper to

maximize x̃T0M0x̃0 by optimizing δ and the wk. We note that each stage of the trajectory optimization

problem is a quadratically constrained quadratic program and QCQP techniques can be employed to

accelerate the search.

To demonstrate a larger basin of attraction, a set of nominal trajectories must be used. The basins

of attraction of each trajectory must overlap to cover the space.

We can also use the same approaches to define a basin of attraction in terms of parametric modeling

error, as in (114), or combine both nonparametric and parametric modeling error. Finding the basin of

attraction would consist of finding the volume in a space defined by x̃0 and m̃ that reach the goal set,

as well as the worst case sequences of x̃k.
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23 DISCUSSION

The most important barrier to using policy optimization is the need to choose a structure for the policy.

Popular choices include potentially time varying linear policies K(t)x, affine policies u(t) + K(t)x,
tabular policies (grids), tabular affine policies, and policies that are linear in p: pT(t)φφ(x) where φφ(x)
is a vector of basis functions. A set of generic basis functions that is linear in the parameters is radial

basis functions with fixed centers and shapes. Unfortunately, it is not obvious how to design basis

functions based on the characteristics of the problem being solved. Policies that are nonlinear in

p include sigmoidal neural networks. We note that policy structures whose basis functions overlap

(radial basis functions and sigmoidal neural nets, for example) suffer from interference: training in

one part of state space can degrade knowledge in other parts of the state space. Basis functions that

do not overlap, such as tables, do not have this problem. We also note that basis functions that do

not overlap are much faster to train using second order gradient methods. Policy gradient approaches

make the choice of policy structure more important since they can only find locally optimal policies

which depend on the choice of policy structure, as compared to the globally optimal policies found

by dynamic programming (when it can be used). A future area of research is to find ways to use the

machinery presented here to efficiently explore alternative model structures and parametrization. For

example, it seems possible to create multi-resolution policies where the representational and training

resources grow in appropriate parts of the state space as planning proceeds. It also seems possible to

use a generate and test approach, in which new features are hypothesized during planning (usually as

the combination of existing features or features from a library) and either used or discarded on the

basis of how they reduce the total cost.

When considering computer architectures that offer many cores or computational pipelines, it is

important to note that both numeric (finite difference) and analytic gradient-based policy optimization

algorithms are embarrassingly parallel. Each trajectory can be processed on a different processing

element. Numeric finite difference approaches are embarrassingly parallel on a finer scale, in that

each forward integration of a trajectory with a particular set of policy parameters can be processed in

parallel. Analytic approaches need to compute Vx and Vxx for a trajectory first, then Vxp, and then Vp

and Vpp, so a little more care is needed to implement parallelism at the single trajectory level, but it is

still relatively easy to do with some additional memory cost.

Future work will address how to best choose the distribution of models used in the design process

based on experience with the system to be controlled, how to pick initial states, and how to weight the

models and initial states during training. We have discussed automatically creating worst case models.

As this is a controller design approach we can easily make sure the training set is rich enough that

persistence of excitation issues are avoided.

There are claims in the reinforcement learning literature that there are situations where a stochastic

policy is superior to a deterministic policy [46]. For continuous states and actions most of these claims

evaporate when the deterministic policy is allowed to have internal memory or state, such as a clock,

counter, observer, or state estimator. Reasons to use a stochastic policy include making it difficult

for an opponent to model your policy, and generating more interesting behavior in entertainment

applications.

24 CONCLUSION

We presented a policy optimization approach that achieves robustness by simultaneously designing for

multiple models. We developed analytic first and second order derivatives for efficient control law de-
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sign using gradient-based algorithms. The gradient-based approach allows handling of nonlinear and

time-varying models and policies, multiple models with different model structures, and policies with

internal state. We described a generalization of LQR design: the Linear Quadratic Bilinear Regulator

(LQBR) and presented some implementation and timing results, with a comparison to a perturbation-

based policy optimization approach. We emphasized that uncorrelated additive or multiplicative noise

is a poor proxy for unmodeled dynamics in control law design. We highlighted the benefit of con-

trol laws made up of collections of simple policies where only one simple policy is active at a time.

Controller optimization and learning is particularly fast and effective in this situation because second

derivatives are decoupled.

25 Appendix A: More on Optimal Output Feedback

We focus on a deterministic time invariant discrete time linear plant and optimal output feedback with

no internal state or dynamics in the feedback controller and make the same assumptions and use the

same notation as Section 4 on LQBR design [34]. In addition, a zero mean Gaussian distribution of

initial states is assumed whose variance is X0 = E(x0x
T
0 ). (26) can be manipulated into (assuming

S = Lxu = LT
ux = 0)

Vupdate = Q+(KC)TRKC (118)

+(A+BKC)TV k
xx(A+BKC)−V k−1

xx

with Vupdate = 0 at convergence. The optimal feedback gain matrix K is found by defining a Hamilto-

nian (optimization criterion) H = trace(VxxX0)+ trace(ΛVupdate). Λ is a Nx by Nx matrix of Lagrange

multipliers. The first term of the Hamiltonian reflects the average cost of a trajectory, and the second

term is a constraint that a steady state Vxx has been reached. Setting the derivative of H with respect

to the Lagrange multipliers Λ to 0 gives Vupdate = 0. Setting the derivative of H with respect to Vxx to

0 gives the equation:

Λ = (A+BKC)Λ(A+BKC)T +X0 (119)

Setting the derivative of H with respect to K to 0 gives the equation:

0 = (BTVxxB+R)KCΛTCT +BTVxxAΛTCT (120)

Solving for K in the above results in

K = −(BTVxxB+R)−1BTVxxAΛCT(CΛCT)−1 (121)

Solving (118), (119), and (120) or (121) simultaneously gives K, Vxx, and Λ [28, 34]. Conditions for

this approach to output feedback controller optimization to work are 1) an initial stabilizing policy

needs to be known (“output stabilizable”), 2) R = Luu is positive definite, 3) Q = Lxx is positive

semidefinite, 4) (
√

Q,A) is detectable, 5) the measurement matrix C has full row rank, and 6) X0 is

positive definite.

We note that if C is square and invertible, K does not depend on Λ or X0, and the LQR equations

are obtained:

K = −(BTVxxB+R)−1BTVxxAC−1 (122)
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Vxx = Q+AVxxAT (123)

−ATVxxB(BTVxxB+R)−1BTVxxA

Another useful result is how the design equations change if there is additive zero mean process

noise with variance P and independent additive zero mean measurement noise with variance M. In

this case the steady state output feedback controller design equations become [21, 28]:

X = (A+BKC)X(A+BKC)T +BKMKTBT +P (124)

K = −(BTVxxB+R)−1BTVxxAXCT(CXCT +M)−1 (125)

(118) remains the same. X is the steady state variance of the state driven by the process and mea-

surement noise filtered through the controller. [34] discusses how policies with internal state (state

estimators and observers for example) can be handled by optimal output feedback controller optimiza-

tion approaches.

26 Appendix B: More on Reinforcement Learning

To support comparison of our approach and a stochastic RL approach [24], we will use a stochastic

policy with Nu = 1 that simply adds noise to a deterministic policy: u = ππ(x) = Kx+δ with δ having

a N(0,σ2) distribution. In what follows ππp = xT. One stochastic policy gradient algorithm gives:

Vp ≈
D−1

∑
i=0

δi

σ2
V i(xi)ππp (126)

Other forms of stochastic policy gradient use only the cost of the entire trajectory, and subtract a

baseline cost from that [24]:

Vp ≈
(

D−1

∑
i=0

δi

σ2
ππp

)
(
V 0(x0)−Vb

)
(127)

The formula above only uses the total cost of the trajectory to estimate the derivative Vp, while (126)

uses the additional information of the effect of the added noise on each step of the trajectory. Neither

approach uses a terminal cost function.

Our first order deterministic gradient approach calculates the dependence of the cost of each step

of the trajectory on the current state: V k
x . It then uses information about the dependence of the cost on

the control Lu and the dependence of the next state on the control Fu. We use the Q function notation

of RL: Qi(xi,ui) = L(xi,ui)+V i+1(F(xi,ui)), where V i(xi,p) = Qi(xi,ππ(xi,p)). Our version of (126)
is:

Vp =
D−1

∑
i=0

(Lu +V i+1
x Fu)ππp =

D−1

∑
i=0

Qi
uππp (128)

which ignores the effect of any terminal cost function. We are using the chain rule:

∂Q
∂p

=
∂Q
∂u

∂u

∂p
= Quππp (129)
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Figure 3: Left: One time step represented as a network. Right: Lattice network representation of

computations for full trajectory.

For our approach and the stochastic approach to get similar answers the following approximation

needs to be valid:

Qi
u ≈ δi

σ2
V i(xi) (130)

This approximation makes sense in that averaging δiV i(xi) is a way of detecting the correlation of δi
and the trajectory cost V i(xi) given ui was perturbed by δi. The stochastic policy gradient learning

rule (126) is an approximate way to numerically estimate the derivative Qu.

27 Appendix C: More on Backpropagation

Figure 3 shows how first order gradient trajectory optimization can be represented as a lattice network.

Note that while the state x evolves forward in time, the value function V evolves backward in time.

This bidirectional network can be “trained” or solved using backpropagation techniques developed for

neural networks [56].

28 Appendix D: Kolter’s Forward First Order Gradient

Given a trajectory has been integrated forward in time using xk+1 = F(xk,ππ(xk, p)), the starting point

for Kolter’s approach [25] is the equation

V (x0,p) =
D−1

∑
k

L(xk,ππ(xk,p))+φ(xD) (131)

Given ∂x0/∂p = x0p = 0, the following recursion defines the dependence of x on p at each time step:

xk+1
p = Fxxk

p +Fuππxxk
p +Fuππp (132)

The partial derivative of the contribution to the total cost from the cost on step k is

∂Lk

∂p
= Lxxk

p +Luππxxk
p +Luππp (133)

and therefore Vp is given by:

V 0
p = φxxD

p +
D−1

∑
k

∂Lk

∂p
(134)
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In general xk
p will be a full Nx ×Np matrix. In the case where collections of policies are used

one policy at a time, it will be roughly triangular, where all xk after policy j is used are affected by

policy j’s parameters. Assuming Np > Nx > Nu, the most expensive matrix multiply in the forward

propagation has on the order of N2
x Np multiplies, and NxNp values that must be propagated on each

time step. For the second order gradient forward-in-time calculation, NxNp(Np + 1)/2 values must

be propagated, with a most expensive matrix multiply needing on the order of N2
x N2

p multiplies. Our

proposed first order analytic gradient computation propagates Nx +Np values, and the most expensive

matrix multiply uses on the order of NuNp multiplies. Our proposed second order analytic gradient

computation propagates on the order of N2
p values, and the most expensive matrix multiply uses on the

order of NuN2
p multiplies.

29 Appendix E. Multiple Models With Different States: Second

Order Derivative Propagation Equations

V k
zz = hT

z Lxxhz +Lxhzz +hT
z Lxuππygz +(hT

z Lxuππygz)
T

+(ππygz)
TLuuππygz +Lu(g

T
z ππyygz)+(Luππy)gzz

+FT
zV k+1

zz Fz +FT
zV k+1

zz Fuππygz +(FT
zV k+1

zz Fuππygz)
T +(Fuππygz)

TV k+1
zz Fuππygz

+V k+1
z (Fzz +Fzuππygz +(Fzuππygz)

T

+(ππygz)
TFuuππygz +Fu(g

T
z ππyygz)+(Fuππy)gzz) (135)

V k
zp = hT

z Lxuππp +(ππygz)
TLuuππp +Lu(g

T
z ππyp)+FT

zV k+1
zz Fuππp +(Fuππygz)

TV k+1
zz Fuππp

+FT
zV k+1

zp +(Fuππygz)
TV k+1

zp

+V k+1
z (Fzuππp +(ππygz)

TFuuππp +FugTz ππyp) (136)

V k
pz = ππT

pLuxhz +ππT
pLuuππygz +Lu(ππpygz)+(Fuππp)

TV k+1
zz Fz +(Fuππp)

TV k+1
zz Fuππygz

+V k+1
pz Fz +V k+1

pz Fuππygz

+V k+1
z (ππT

pFuz +ππT
pFuuππygz +Fuππpygz) (137)

V k
pp = ππT

pLuuππp +Luππpp +(Fuππp)
TV k+1

zz Fuππp +(Fuππp)
TV k+1

zp +((Fuππp)
TV k+1

zp )T

+V k+1
z (ππT

pFuuππp +Fuππpp)+V k+1
pp (138)

30 Appendix F. Dynamic Policies: Second Order Derivative Prop-

agation Equations

V k
xx = Lxx +Lxuππx +(Lxuππx)

T +ππT
x Luuππx +Luππxx

+(Fx +Fuππx)
TV k+1

xx (Fx +Fuππx)

+(Fx +Fuππx)
TV k+1

xx̃
ψψx +((Fx +Fuππx)

TV k+1
xx̃

ψψx)
T

+ψψT
xV k+1

x̃x̃
ψψx

+V k+1
x (Fxx +Fxuππx +(Fxuππx)

T +ππT
x Fuuππx +Fuππxx)

+V k+1
x̃

ψψxx (139)
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V k
xx̃ = Lxuππx̃ +ππT

x Luuππx̃ +Luππxx̃

+(Fx +Fuππx)
TV k+1

xx Fuππx̃

+(Fx +Fuππx)
TV k+1

xx̃
ψψx̃

+ψψT
xV k+1

x̃x
Fuππx̃

+ψψT
xV k+1

x̃x̃
ψψx̃

+V k+1
x (Fxuππx̃ +ππT

x Fuuππx̃ +Fuππxx̃)

+V k+1
x̃

ψψxx̃ (140)

V k
xp = Lxuππp +ππT

x Luuππp +Luππxp

+(Fx +Fuππx)
TV k+1

xx Fuππp

+(Fx +Fuππx)
TV k+1

xx̃
ψψp

+(Fx +Fuππx)
TV k+1

xp

+ψψT
xV k+1

x̃x
Fuππp

+ψψT
xV k+1

x̃x̃
ψψp

+ψψT
xV k+1

x̃p

+V k+1
x (Fxuππp +ππT

x Fuuππp +Fuππxp)

+V k+1
x̃

ψψxp (141)

V k
x̃x = ππT

x̃ Lux +ππT
x̃ Luuππx +Luππx̃x

+(Fuππx̃)
TV k+1

xx (Fx +Fuππx)

+(Fuππx̃)
TV k+1

xx̃
ψψx

+ψψT
x̃V k+1

x̃x
(Fx +Fuππx)

+ψψT
x̃V k+1

x̃x̃
ψψx

+V k+1
x (ππT

x̃ Fux +ππT
x̃ Fuuππx +Fuππx̃x)

+V k+1
x̃

ψψx̃x (142)

V k
x̃x̃ = ππT

x̃ Luuππx̃ +Luππx̃x̃

+(Fuππx̃)
TV k+1

xx Fuππx̃

+(Fuππx̃)
TV k+1

xx̃
ψψx̃

+ψψT
x̃V k+1

x̃x
Fuππx̃

+ψψT
x̃V k+1

x̃x̃
ψψx̃

+V k+1
x (ππT

x̃ Fuuππx̃ +Fuππx̃x̃)

+V k+1
x̃

ψψx̃x̃ (143)
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V k
x̃p = ππT

x̃ Luuππp +Luππx̃p

+(Fuππx̃)
TV k+1

xx Fuππp

+(Fuππx̃)
TV k+1

xx̃
ψψp

+(Fuππx̃)
TV k+1

xp

+ψψT
x̃V k+1

x̃x
Fuππp

+ψψT
x̃V k+1

x̃x̃
ψψp

+ψψT
x̃V k+1

x̃p

+V k+1
x (ππT

x̃ Fuuππp +Fuππx̃p)

+V k+1
x̃

ψψx̃p (144)

V k
px = ππT

pLux +ππT
pLuuππx +Luππpx

+(Fuππp)
TV k+1

xx (Fx +Fuππx)

+(Fuππp)
TV k+1

xx̃
ψψx

+ψψT
pV k+1

x̃x
(Fx +Fuππx)

+ψψT
pV k+1

x̃x̃
ψψx

+V k+1
px (Fx +Fuππx)

+V k+1
px̃

ψψx

+V k+1
x (ππT

pFux +ππT
pFuuππx +Fuππpx)

+V k+1
x̃

ψψpx (145)

V k
px̃ = ππT

pLuuππx̃ +Luππpx̃

+(Fuππp)
TV k+1

xx Fuππx̃

+(Fuππp)
TV k+1

xx̃
ψψx̃

+ψψT
pV k+1

x̃x
Fuππx̃

+ψψT
pV k+1

x̃x̃
ψψx̃

+V k+1
px Fuππx̃

+V k+1
px̃

ψψx̃

+V k+1
x (ππT

pFuuππx̃ +Fuππpx̃)

+V k+1
x̃

ψψpx̃ (146)
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V k
pp = ππT

pLuuππp +Luππpp

+(Fuππp)
TV k+1

xx Fuππp

+(Fuππp)
TV k+1

xx̃
ψψp

+(Fuππp)
TV k+1

xp

+((Fuππp)
TV k+1

xx̃
ψψp)

T

+ψψT
pV k+1

x̃x̃
ψψp

+ψψT
pV k+1

x̃p

+((Fuππp)
TV k+1

xp )T

+(ψψT
pV k+1

x̃p
)T

+V k+1
pp

+V k+1
x (ππT

pFuuππp +Fuππpp)

+V k+1
x̃

ψψpp (147)
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