
Efficient Robust Policy Optimization

Christopher G. Atkeson

Abstract—We provide efficient algorithms to calculate first
and second order gradients of the cost of a control law with
respect to its parameters, to speed up policy optimization. We
achieve robustness by simultaneously designing one control law
for multiple models with potentially different model structures,
which represent model uncertainty and unmodeled dynamics.
Providing explicit examples of possible unmodeled dynamics
during the control design process is easier for the designer
and is more effective than providing simulated perturbations
to increase robustness, as is currently done in machine learning.
Our approach supports the design of deterministic nonlinear
and time varying controllers for both deterministic and stochas-
tic nonlinear and time varying systems, including policies with
internal state such as observers or other state estimators. We
highlight the benefit of control laws made up of collections of
simple policies where only one component policy is active at a
time. Controller optimization and learning is particularly fast
and effective in this situation because derivatives are decoupled.

I. INTRODUCTION

Parametric modeling error and unmodeled dynamics are

a problem for model-based control law (policy) design and

learning algorithms, such as dynamic programming and most

forms of trajectory optimization. A heuristic approach to

robust control law design popular in machine learning is to

optimize a policy by evaluating its performance in simulation

on a distribution of possible models [1]–[12]. This paper

describes how to make this design approach more efficient

by propagating analytic gradients backward along simulated

trajectories.

Policy optimization is closely related to optimal output

feedback design. Our contribution to the output feedback

controller optimization community is efficient gradient meth-

ods to design time varying and nonlinear optimal output

feedback as well as feedforward input for time varying and

nonlinear plants. We present a robust control design approach

that handles multiple models with different structures (for

example, number of state variables). Our method also han-

dles policies with internal state, allowing the simultaneous

design of robust control laws and state estimators. A contri-

bution to the machine learning community is to emphasize

that uncorrelated additive or multiplicative noise is a poor

proxy for unmodeled dynamics. The challenging aspect of

unmodeled dynamics is that small errors are correlated across

time, leading to large effects. We also emphasize the benefits

of analytic first and second order gradients, and the benefits

of Newton (second order) algorithms for model-based policy

optimization. We highlight the benefit of control laws made

up of collections of simple policies where only one simple

policy is active at a time.

C. G. Atkeson is with the Robotics Institute, Carnegie Mellon University,
5000 Forbes Avenue, Pittsburgh, PA, USA cga@cmu.edu

This paper focuses on designing control laws for systems

with discrete time dynamics, as the algorithms are similar

for systems with continuous time dynamics, and our robots

typically learn discrete time models. We have found many of

the tasks we want to do are largely deterministic rather than

stochastic, so we focus our discussion here on how to design

deterministic nonlinear and potentially time varying discrete

time control laws. For cases where the multiple models all

have the same state vector, the common policy is u= ππ(x,p),
where u is a vector of controls of dimensionality Nu, x is

the state vector of the controlled system (dimensionality Nx),

and p is a policy parameter vector of dimensionality Np that

describes the policy ππ(). This approach attempts to handle

unmodeled dynamics including time delays, bandwidth or

power limits on actuation, unmodeled vibrational modes, and

non-collocated sensing found in lightweight robot arms such

as inflatable arms [13], robots with series elastic actuation,

satellites with booms or large solar panels, and large space

structures.

A Simple Example

We present our method applied to a simple double in-

tegrator example, with second order unmodeled dynamics

or an unknown delay. We then compare our method to a

perturbation-based robust control design approach. Consider

a nominal linear plant which is a double integrator (mass

= 1) sampled at 1kHz. The state vector x consists of the

position p and velocity v. In this example the feedback

control law has the structure u = Kx = kpp + kvv. An

optimal Linear Quadratic Regulator (LQR) is designed for

the nominal double integrator plant with a one step cost

function of L(x,u) = 0.5(xTQx+ uTRu). In this example

Q = [1000 0;0 1] and R = [0.001] resulting in optimal

feedback gains of K = [−973 −54].
The true plant is the nominal plant with the following

unmodeled dynamics: a second order low pass filter is added

on the input with a cutoff of 10 Hz, which simulates actuator

dynamics. The transfer function for the unmodeled dynamics

is ω2/(s2 + 2γωs+ ω2), with a damping ratio γ = 1 and a

natural frequency ω = 20π. There is no resonant peak and

the unmodeled dynamics acts as a well behaved low pass

filter. However, the unmodeled dynamics drive the true plant

unstable when the feedback gains designed using the nominal

plant model are used. Figure 1 shows simulations of these

conditions: the blue dot-dashed line is the nominal plant

with the original gains [−973 − 54], and the black dotted

line shows the true plant with the original gains, which is

unstable.

One way to design a robust control law is to optimize

the parameters of a control law (in this case the position



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time (s)

P
o

s
it
io

n
 (

m
)

Simple Example Results

 

 

nominal w/ p1
actual w/ p1
nominal w/ p2
actual w/ p2

Fig. 1. Simulations of the simple example. Policy parameters are: p1 =
[−973 −54], p2 = [−148 −16]

and velocity feedback gains) by evaluating them on several

different models. The control law is simulated for a fixed

duration D on each of M models for S initial conditions,

and the cost of each trajectory, Vm(xs,p), is summed for the

overall optimization criterion, using the above one step cost

function L(x,u): C = ∑M
m=1 ∑S

s=1w(m,s)Vm(xs,p), where

w(m,s) is a weight on each trajectory. We will suppress the

m superscript on V to simplify our results. We assume that

each trajectory is created using the appropriate model and

uses the appropriate model dynamics to calculate derivatives

of V in what follows. First and second order gradients are

summed using the same weights w(m,s) as were used on the

trajectories.

Optimizing u=Kx for the nominal model and the nominal

model with an added input filter with ω = 10π and γ = 0.5,
with initial conditions (1,0), results in feedback gains of

[−148 − 16]. These gains are also stable for the true plant

(ω = 20π,γ = 1). Figure 1 shows simulations of these condi-

tions: The magenta dashed line shows the nominal plant with

the gains optimized for multiple models, and the red solid

line shows the true plant with the same gains. The multiple

model gains are less aggressive than the original gains, and

the true plant is stable and reasonably well damped.

A model with the same model structure as the true plant

does not have to be included in the set of models used in

policy optimization. Optimizing using the nominal double

integrator model and the nominal model with an input delay

of 50 milliseconds results in optimized gains of [−141 −

18], which provide about the same performance on the true

plant as the previous optimized gains. In addition, the new

gains are stable for double integrator plants with delays up

to 61 milliseconds, while the original gains of [−973 −54]
are stable only for delays up to 22 milliseconds. We note

that the nominal double integrator model, the nominal model

with an input filter, and the nominal model with a delay all

have different model structures (number of state variables

for example), which a multiple model policy optimization

approach should handle.

We compare our approach to the heuristic used in re-

Noise level (N) Maximum stable delay (msec)

0 22

1 22

10 22

100 22

1000 30

10000 19

100000 16

TABLE I

INPUT NOISE LEVEL VS. ROBUSTNESS.

inforcement learning of adding simulated perturbations to

make the policy more robust. We use the method of common

random numbers [14] (which has been reinvented many

times and is also known as correlated sampling, matched

pairs, matched sampling, and Pegasus [15]) to optimize the

policy. An array of random numbers is created, and that

same array is used to perturb each simulation of the nominal

system, typically by adding noise to the plant input u,

while optimizing policy parameters. On the simple example,

we found that the added noise needed to be quite large

(uniformly distributed with limits ±1000N on each time

step, 100 times the weight of the mass assuming a mass

of 1) for the generated controller to work reliably on the

true plant with the input filter with a cutoff of 10 Hz.

Additionally, there was only a narrow window of noise

levels that worked reliably, and higher and lower levels

of noise produced unstable controllers quite often. Table I

shows how adding input noise to the input of the double

integrator during optimization affects robustness to delays

in the double integrator, as measured by the maximum

delay the controller can stabilize. Again, ±1000N uniformly

distributed noise added to u on each time step provides the

most robustness. However, this maximum robustness is less

than that provided by optimizing with multiple models. We

have found in general that added noise is not a reliable

proxy for unmodeled dynamics. The challenging aspect of

unmodeled dynamics is that small errors are correlated across

time, leading to large effects.

II. RELATED WORK

See [16] for a more extensive discussion of related work.

The term multiple models means different things in different

fields. We use it to mean alternative plants that could exist.

In machine learning it often means multiple model structures

that are selected or blended to fit data. In control theory it

has been used both for alternative global models and local

models that divide up the state space [17]. In Multiple Model

Adaptive Control and Multiple Model Adaptive Estimation

(MMAC and MMAE) instead of computing one policy based

on multiple models as is done in this paper, a policy is

computed for each possible model. An adaptive algorithm

learns to select or combine the individual policies.

Our gradient methods are analogous to reverse mode and

reverse propagation of gradients in automatic/algorithmic

differentiation, and the adjoint method [18], [19]. There is a

strong relationship between this work and Differential Dy-

namic Programming (DDP), which propagates value function

information backward in time along a trajectory, and chooses



optimal actions and feedback gains at each time step [20],

[21]. The optimization of global parameters and the general

form of the value function update equations in [21] were

an inspiration for this work. Our work suggests alternative

forms of DDP, such as optimizing a trajectory-based policy

discussed in Section V and a version which uses multiple

models simultaneously.

Output feedback optimization computes the optimal con-

trol law for linear models when the structure of the control

law is fixed, or when full state feedback is not available, and

an observer or state estimator is not used [1]. Although linear

matrix inequality (LMI) techniques are useful in addressing

robust control design, we note that it is difficult to apply

LMI or polytopic model-based optimal output feedback

techniques to multiple models with different model struc-

tures since it is not clear how to interpolate between these

models [1]. One can embed the multiple models in a much

more complex single model so that structural differences

become parametric differences, but that greatly complicates

the design process. For linear systems one can interpolate

models in the frequency domain, but it is not clear how

to generalize frequency domain interpolation to nonlinear

models with different structures. Varga showed how to apply

multiple models to output feedback controller optimization

where all models have the same state vector [1].

Policy optimization (also known as policy

search/refinement/improvement/gradient) is of great

interest in reinforcement learning (RL) [12]. Typically a

stochastic policy is used to provide “exploration” or from

our point of view perform numeric differentiation to find the

dependence of the trajectory cost on the policy parameters.

Gradient learning algorithms such as backpropagation

applied to a lattice network model of the trajectory-based

computations or backpropagation through time applied

to a recurrent network model result in similar gradient

equations to this work [22]–[25]. One area of reinforcement

learning that is also closely related to this work is that of

adaptive critics [26]–[31]. Function approximation is used to

represent both a policy ππ(x,p) as we do and a parametrized

global value function V̂ (x,ωω). Gradient descent and other

optimization techniques are used to learn p and ωω. Our

approach tries to avoid making a commitment to a global

structure and parametrization for V (x) or Vx(x) by using

local quadratic models for V (x) (or equivalently local linear

models for Vx(x)). Lewis and Vrabie developed first order

analytic gradient equations for the special case when the

policy is linearly parametrized [30]. Kolter developed a first

order analytic gradient that propagates derivatives forward

in time for deterministic policy optimization, which, because

it does not take advantage of value functions, is in general

less efficient than our approach [12], [16]. Kolter’s approach

is analogous to forward mode in automatic/algorithmic

differentiation [18].

III. ANALYTIC GRADIENTS

A wide variety of optimization algorithms can be used

to optimize the policy parameters p. The goal of this

paper is to provide efficient algorithms to calculate first

and second order gradients of the total trajectory cost of

a control law with respect to its parameters, to speed up

policy optimization. We describe how to propagate analytic

gradients backward along simulated trajectories. The gradient

algorithms presented are intended to be used in a controller

design process, so we assume one step cost function and the

policy structure are known. Nominal models for the process

are known or learned. In this section we will consider policy

optimization problems using multiple discrete time models

where there is no discounting, full state feedback is available,

all the models use the same state vector, the policies are

static, and there is no opponent. Later sections and [16]

discuss extensions to the basic approach. We will show how

to calculate the first and second order cost gradients for a

single trajectory. The total derivatives for a set of models and

trajectories are the sum of the derivatives for each trajectory.

A. First Order Gradient

A first order gradient descent algorithm updates

the policy parameters in the following way: ∆p =
−ε∑M

m=1 ∑S
s=1w(m,s)VT

p (xs,p) where ∆p is the update, ε is

a step size, and Vp = ∂V/∂p. Vp and other derivatives of

scalars are row vectors. We will use a finite horizon to a fixed

point in time to evaluate the policy. In this case the Bellman

Equation (principle of optimality [20]) becomes: V k(x,p) =
L(x,ππ(x,p)) +V k+1(F(x,ππ(x,p)),p) where L(xi,ui) is the

known one step cost function, xi+1 = F(xi,ui) are the sys-

tem dynamics equations appropriate for each model, and

V k(x,p) = φ(xD)+∑
D−1
i=k L(xi,ui) is the cost of the remaining

trajectory generated by starting at xk and using the policy

ui = ππ(xi,p). φ(x) is a terminal cost function evaluated at the

end of the trajectory. We note that the one step cost function

L() and terminal cost function φ() may depend on the model

m, and also the initial state (s index). We will suppress

this dependence in what follows, but it is straightforward

to include it. The derivative Vp is V 0
p , and we will use the

notation Vp and V 0
p interchangeably. i and k are temporal

indices and can appear as either subscripts and superscripts

as needed for readability.

To calculate a first order gradient we will approximate

the dynamics, one step cost, policy, and value function V ()
with first order Taylor series approximations. For example,

F(x,u) = F̄+Fx∆x+Fu∆u where we follow the conventions

of [21] in that x, u, and p subscripts indicate partial deriva-

tives evaluated with the appropriate arguments at that time

point along the trajectory. Derivatives of scalars (Lx, Lu, Vx,

and Vp) are row vectors. Derivatives of vectors are matrices

whose rows are the derivatives of the components of the

original vector. Fx is an Nx×Nx matrix, Fu is Nx×Nu, ππx

is Nu×Nx, and ππp is Nu×Np. In this case, the derivatives

of the Bellman Equation are:

V k
x = Lx +Luππx +V k+1

x (Fx +Fuππx) (1)

and

V k
p = (Lu +V k+1

x Fu)ππp +V k+1
p (2)



We are suppressing the k superscripts on the right hand sides

of these equations since every symbol not indexed by k+1

is indexed by k. V 0
p is calculated by using these equations to

propagate V and its derivatives backward in time along the

trajectory. We are making extensive use of the chain rule.

For a terminal cost function φ(x), VD
x = φx. Since φ() is

independent of the policy parameters, VD
p = 0. If there is no

terminal cost function, VD
x = 0.

Equations 1 and 2 can be used in many ways in op-

timization. Backward passes to calculate ∆p can alternate

with forward passes that generate new trajectories by using

the new policy and integrating the appropriate dynamics

forward in time for each model. Trajectory segments can

be generated, as in multiple shooting. Trajectories can be

represented parametrically and an optimization procedure

can be used to make the trajectories consistent with the

new policy and appropriate dynamics, as in collocation. A

pure gradient method will potentially get stuck in bad local

minima. [16] discusses ways to avoid such minima and also

perform global optimization of a policy.

B. Second Order Gradient

Approximate second order gradients (Hessians) are

useful for remedying the deficiencies of first order gradient

descent. A second order gradient descent algorithm

updates the policy parameters in the following way: ∆p =

−
(

∑M
m=1 ∑S

s=1w(m,s)Vpp(xs,p)
)−1

∑M
m=1 ∑S

s=1w(m,s)VT
p (xs,p)

where Vpp = ∂2V/∂p2. To calculate the second order gradient

we will approximate the dynamics, one step cost, policy,

and value function V () with second order Taylor series

approximations. For example: F(x,u) = F̄+Fx∆x+Fu∆u+
0.5∆xTFxx∆x+ ∆xTFxu∆u+ 0.5∆uTFuu∆u. We follow the

conventions of [21] in that the second derivatives of vectors

(Fxx, Fxu, Fuu, ππxx, . . .) are third-order tensors. A quadratic

form including the second derivative of a vector such as

∆xTFxu∆u is a vector whose jth component is the quadratic

form using the second derivative of the jth component of

the original vector: ∆xTF
j
xu∆u. Another useful formula is

the product of a row vector v, a matrix A, the third order

tensor (ππxp for example), and another matrix B which is:

v(AππxpB) = ∑ j v
j(Aππ

j
xpB) We note that cross derivatives

are independent of the order in which the derivatives

are taken, so Lux = LTxu, Vpx = VT
xp, F

j
ux = (F

j
xu)

T, and

ππ
j
px = (ππ

j
xp)

T.

This results in the following recursion in time for the

second order derivatives of V :

V k
xx = Lxx +Lxuππx +(Lxuππx)

T +ππT
xLuuππx +Luππxx

+(Fx +Fuππx)
TV k+1

xx (Fx +Fuππx) (3)

+V k+1
x (Fxx +Fxuππx +(Fxuππx)

T +ππT
xFuuππx +Fuππxx)

V k
xp = Lxuππp +ππT

xLuuππp +Luππxp

+(Fx +Fuππx)
TV k+1

xx Fuππp +(Fx +Fuππx)
TV k+1

xp

+V k+1
x (Fxuππp +ππT

xFuuππp +Fuππxp) (4)

V k
pp = ππT

pLuuππp +Luππpp +(Fuππp)
TV k+1

xx Fuππp

+(Fuππp)
TV k+1

xp +((Fuππp)
TV k+1

xp )T +V k+1
pp

+V k+1
x (πT

pFuuππp +Fuππpp) (5)

V 0
pp is calculated by using these equations to propagate V

and its derivatives backward in time, again making extensive

use of the chain rule. For a terminal cost function φ(x),
VD
x = φx and V

D
xx = φxx. Since φ() is independent of the policy

parameters, VD
p , VD

xp, and VD
pp are zero. Often the second

derivative matrix is regularized (made positive definite) by

adding a diagonal matrix λI, with λ chosen by a Levenberg

Marquardt or Trust Region algorithm:

∆p = −

(

M

∑
m=1

S

∑
s=1

w(m,s)V 0
pp +λI

)−1

M

∑
m=1

S

∑
s=1

w(m,s)(V 0
p )T (6)

There are a wide variety of ways to use first and second

order gradients in optimization, and our methods to calculate

gradients can be used in many of them.

C. Discounting

It is often useful to apply a discount factor γ to the Bellman

Equation: V k() = L() + γV k+1(). This is easily handled by

modifying the above algorithms, either by multiplying each

occurrence of V k+1 and its derivatives in the above derivative

propagation equations by γ, or equivalently, including the

discounting as a separate step interleaved with the above

derivative propagation equations: V k = γV k, V k
x = γV k

x , V
k
p =

γV k
p , V

k
xx = γV k

xx, V
k
xp = γV k

xp, and V k
pp = γV k

pp.

IV. LINEAR QUADRATIC BILINEAR REGULATOR

This section describes how to handle problems where full

state feedback is not available, and discusses a special case

that is useful to compare to Optimal Output Feedback (OOF)

and also Linear Quadratic Regulator control design. The

plant is linear (second derivatives of F are zero), the one

step cost function is a pure quadratic, the policy is bilinear

in x and p: u = KCx, and the state x = 0 is an equilibrium

point. The gain matrix K contains the adjustable policy

parameters and acts on a measurement vector (output) y=Cx

of dimensionality Ny. To better relate to the existing literature

on OOF and LQR design, we will use the notation A = Fx,

B=Fu, Q= Lxx, S= Lxu, and R= Luu. These quantities and

C are time invariant and independent of x. The value function

is quadratic in x and p. This defines the Linear Quadratic

Bilinear Regulator (LQBR). Although linear policy design

methods from the output feedback controller optimization

community are in general more efficient (this depends on

problem parameters such as M, D, S, Np, Nx, and Nu) [1],

[16] we present this case to help the reader understand our

approach and to prepare the reader for the nonlinear and time

varying example we present (Section V). Unlike the LQR

case, Lx, Lu, and Vx are non-zero since the trajectories along

which these quantities are evaluated start at non-zero states.

The policy parameter vector p is the rows of K concatenated



into a vector. ππx =KC, ππxx = 0, and ππpp = 0. The first order

derivative propagation equations are:

V k
x = Lx +LuKC+V k+1

x (A+BKC) (7)

V k
p = (Lu +V k+1

x B)ππp +V k+1
p (8)

and the second order derivative propagation equations are:

V k
xx = Q+SKC+(SKC)T +(KC)TRKC

+(A+BKC)TV k+1
xx (A+BKC) (9)

V k
xp = Sππp +(KC)TRππp +Luππxp +(A+BKC)TV k+1

xx Bππp

+(A+BKC)TV k+1
xp +V k+1

x Bππxp (10)

V k
pp = ππT

pRππp +(Bππp)
TV k+1

xx Bππp +(Bππp)
TV k+1

xp

+((Bππp)
TV k+1

xp )T +V k+1
pp (11)

where

ππk
p =









yTk 0T . . . 0T

0T yTk . . . 0T

· · . . . ·

0T 0T . . . yTk









(12)

and 0T is a row vector of Ny zeros. The ππp matrix has Nu

rows and Np = NuNy columns. The product of a vector v

of length Nu and ππxp is given by the Nx by Np matrix:

vππxp = (v1C
T v2C

T . . . vNuC
T). (1) and (2) or (6) can be

used to update K. (9) is the standard LQR discrete time

algebraic Riccati equation when S= 0 (no cross terms in the

one step cost function) and C is an identity matrix (full state

feedback).

Implementation Results

To verify the LQBR policy optimization algorithm and

explore timing, we implemented first and second order policy

optimization using both numeric (using finite differences of

trajectory costs) and our analytic derivatives on the following

system:

A =









1 T 0 0

0 1 T 0

0 0 1 T

0 0 0 1









B =









0 0 0

T 0 0

0 T 0

0 0 T









where T = 0.001, C is an identity matrix, and L(x,u) =
0.5(xTx+uTu), Since we have full state feedback, the policy
(gain matrix K in u = Kx) has 12 free parameters. We can

use LQR design to identify the optimal gain matrix:

K=





−0.9612 −1.5849 −0.6312 −0.1138
−0.2717 −0.6299 −1.2674 −0.5064
−0.0187 −0.1132 −0.5052 −1.3196



 (13)

We tested optimization of K starting with the elements of

K all equal to -1 (a stabilizing controller) along a trajectory

starting at x= (1,0,0,0)T. The starting cost of this trajectory

is 1187 and the optimal cost is 850. Table II reports the

computational cost and timing of each approach to reach

a cost of 852. This cost threshold was chosen because all

approaches were able to attain this cost. In Table II, Time

reports wall clock time, Derivatives reports the number of

Method Time Derivatives Trajectories

First order numeric 1.18s 101 1433

First order analytic 0.35s 100 207

Second order numeric 0.65s 4 529

Second order analytic 0.28s 4 14

TABLE II

LQBR IMPLEMENTATION TIMING COMPARISON.

gradient or Hessian calculations, and Trajectories reports the

number of trajectories integrated forward. All approaches

varied the length of the trajectory during optimization with

a maximum trajectory length of 15000 steps. Integration of

a trajectory forwards in time is cut off early if the cost is

larger than the current best cost, or if a good estimate of

the total cost has already been attained (future costs will be

small). ε and λ are adapted during the optimization to find

steps that improve the cost. We see that for both first and

second order approaches using analytic derivatives is faster

than using numeric derivatives. An order analysis suggests

that analytic approaches will scale better in the LQBR case

than numeric approaches. The cost of computing the numeric

first order gradient is proportional to N2
xNp. The cost of

analytically computing Vx is proportional to N2
xNu and the

cost to compute Vp is proportional to NxNuNp. For the LQBR

case Np =NxNu, so the first order numeric gradient approach

scales as N3
xNu and the corresponding analytic approach

scales as N2
xN

2
u . For small Nu the analytic approach has a

factor of Nx advantage, but for large Nu ≈ Nx the orders are

the same. The cost of computing the numeric second order

gradient is proportional to N2
xN

2
p . The most expensive matrix

multiply in the analytic second order gradient computation

comes in computing Vpp and is proportional to NuN
2
p . For

small Nu the analytic approach seems to have much better

scaling, Nu < N2
x , and since Nu will typically be smaller

than Nx we expect the analytic approach to typically scale

better than the numeric approach. The second order analytic

approach can be further improved by taking advantage of

sparsity in ππp. We see from Table II that for this policy

optimization problem second order approaches are faster than

the corresponding first order approaches because the number

of derivative calculations is much less.

V. LOCALLY LINEAR POLICIES

A case of particular interest to machine learning are

control laws made up of collections of simple policies.

Such control laws where only one simple policy is active

at any one time lead to especially efficient policy update

rules, relative to those of more complex global policies.

In this paper we consider collections of policies that are

affine: u(x,p) = ū+ K̄C(x− x̄). There are several ways to

generate such collections. We can divide the state space up

into a grid or some other tessellation and place an affine

policy in each cell. We can also place affine policies along

a trajectory or at random locations in state space [32] and

use nearest neighbor operations to find the closest affine

policy based on an appropriate distance metric. At time

k a single policy is used (the jth affine policy), and its

adjustable parameters are (ū j,K̄ j). We refer to this case



as Locally Linear Policy Optimization (LLPO). The time

varying version of this approach where on each time step

k the kth affine policy is used is the policy optimization

analog of Differential Dynamic Programming (DDP) [20],

[21], which can be referred to as DDP-PO.

The key reason why using simple policies one at a time

leads to efficient derivative computations is that updating the

active policy j is decoupled from updating other policies.

The second order gradient descent update typically has a

very large reduction in computational cost. For simple policy

j first order gradient descent updates its parameters in the

following way:

∆p j = −ε j
M

∑
m=1

S

∑
s=1

w(m,s)VT
p j (14)

Note that the step size ε can now depend on the simple

policy being updated (this is especially useful if adaptive

step size algorithms are used). Since only simple policies

that are actually used are updated this leads to a reduction

in computational cost. The second derivative with respect to

policy parameters Vpp or Hessian matrix is block diagonal.

Policy parameters of different simple policies do not interact,

since only one policy operates on each time step and Vx and

Vxx are used to decouple the current policy optimization from

optimization of simple policies used in the future. Second

order policy updates can be handled independently for each

simple policy. Second order gradient descent updates the jth

simple policy in the following way:

∆p j = −

(

M

∑
m=1

S

∑
s=1

w(m,s)Vp jp j +λ jI

)−1

M

∑
m=1

S

∑
s=1

w(m,s)VT
p j (15)

Inverting several small Hessian matrices is typically much

less expensive that inverting a single large Hessian matrix.

Note that the regularization parameter λ can now depend

on the simple policy being updated, which is useful if the

Hessians have negative eigenvalues of various magnitudes.

The parameter vector for the jth affine policy p j concate-

nates ū j and the rows of K̄ j. If the jth affine policy is used

on time step k, ππk
x = K̄ jC as in Section IV. The ππk

p j matrix

has Nu rows and Nu(1+Ny) columns.

ππk
p j =









1 0 . . . 0 yTk 0T . . . 0T

0 1 . . . 0 0T yTk . . . 0T

· · . . . · · · . . . ·

0 0 . . . 1 0T 0T . . . yTk









(16)

ππk
xx = 0 and ππk

p jp j = 0. The product of a vector v of length

Nu and ππk
xp j is given by the Nx by Nu(1+Ny) matrix: vππxp =

(

0Nu×Nu v1C
T v2C

T . . . vNuC
T
)

.

The derivative propagation equations along a trajectory

are:

V k
x = Lx +LuK̄

jC+V k+1
x (Fx +FuK̄

jC) (17)

0 0.5 1 1.5 2 2.5 3 3.5 4
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Optimal trajectory

Time (s)

A
n

g
le

 (
ra

d
ia

n
s
)

0 0.5 1 1.5 2 2.5 3 3.5 4
−10

−8

−6

−4

−2

0

2

4

6

Time (s)

u
: 

N
m

; 
k p

: 
N

m
/r

a
d

; 
k v

: 
N

m
−

s
/r

a
d

Optimal u and feedback gains along opt. traj.

 

 

u
k

p

k
v

Fig. 2. Left: The optimal trajectory for the pendulum swing up (θ vs.
time). Right: Optimal parameters of locally linear policies along the optimal
trajectory: (ū, position gain kp, and velocity gain kv).

V k
xx = Lxx +LxuK̄

jC+(LxuK̄
jC)T +(K̄ jC)TLuuK̄

jC

+(Fx +FuK̄
jC)TV k+1

xx (Fx +FuK̄
jC)

+V k+1
x (Fxx +FxuK̄

jC+(FxuK̄
jC)T

+(K̄ jC)TFuuK̄
jC) (18)

For the affine policy currently in use (simple policy j):

V k
p j = (Lu +V k+1

x Fu)ππp j +V k+1
p j (19)

V k
xp j = Lxuππp j +(K̄ jC)TLuuππp j +Luππxp j

+(Fx +FuK̄
jC)TV k+1

xx Fuππp j

+V k+1
x (Fxuππp j +(K̄ jC)TFuuππp j +Fuππxp j)

+(Fx +FuK̄
jC)TV k+1

xp j (20)

V k
p jp j = ππT

p jLuuππp j +(Fuππp j)TV k+1
xx Fuππp j

+(Fuππp j)TV k+1
xp j +((Fuππp j)TV k+1

xp j )T

+πT
p jV

k+1
x Fuuππp j +V k+1

p jp j (21)

For affine policies not currently in use but that have been

used (simple policy l):

V k
pl

=V k+1

pl
(22)

V k
xpl

= (Fx +FuK̄
lC)TV k+1

xpl
(23)

V k
plpl

=V k+1

plpl
(24)

The update equations (14) or (15) are used.

Implementation Results

To verify the LLPO algorithm and explore timing, we

implemented both numeric and analytic first and second

order policy optimization on a pendulum swing up problem

with the following dynamics: θ̈ = (τ −mgl sin(θ))/I and

one step cost function: L(x,u) = 0.5T (0.1θ2 + τ2), where
x = (θ, θ̇)T, θ is the pendulum angle with straight down

being 0, τ is a torque at the base, T = 0.01, the moment

of inertia about the joint is I = 0.3342, the product of mass,

gravity, and the pendulum length is mgl = 4.905, and C is an

identity matrix. We have found the optimal trajectory (cost

= 3.5385) using dynamic programming (DP) and differential

dynamic programming (DDP) (Figure 2 Left). We can use

these solutions to see how the optimal parameters of locally

linear policies (ū, position gain kp, and velocity gain kv) vary

along the optimal trajectory (Figure 2 Right).



Method 10 policies 100 policies 500 policies

First order numeric 0.108 11.3 53

First order analytic 0.098 0.104 0.124

Second order numeric 450 45000 1061000

Second order analytic 0.77 0.89 1.20

TABLE III

LLPO IMPLEMENTATION TIMING COMPARISON. ENTRIES ARE

MILLISECONDS PER GRADIENT CALCULATION.

We will use this problem to test algorithm timing in the

context of numeric and analytical first and second order

gradients on a 500 step trajectory. In the numeric approach

we used finite differencing of total trajectory costs to nu-

merically estimate Vp and Vpp. We can vary the number of

affine policies and see how the cost of computing Vp and Vpp
increases (Table III). Table entries report time in milliseconds

for one calculation of Vp or Vp and Vpp for 10, 100, and

500 local policies. We see that analytic derivatives become

relatively much cheaper to compute as the number of affine

policies increases, since the numeric approaches have to vary

all the parameters of all the simple policies to estimate

derivatives, while the analytic approaches only require a

number of updates related to the length of the trajectory

and largely independent of the number of simple policies.

The cost of the numeric first order gradient computation

is proportional to the number of simple policies, while the

numeric second order gradient computation grows with the

square of the number of simple policies. In the analytic

approaches the computational cost of finding the nearest

neighbor simple policy and initializing all simple policies for

each new trajectory depend on the number of simple policies.

The cost for updating the policy gradients for simple policies

not used on the current time step, inverting the Hessian

matrices, and updating simple policy parameters depend only

on the number of simple policies used, so in the worst case

this cost is proportional to the length of each trajectory.

Simple policies that have not been used on the current

trajectory do not need to be updated until they are used.

In practice the total cost of the analytic approaches is almost

independent of the number of simple policies available or

used.

Using a single simple policy at a time and using analytic

derivatives makes optimization and learning possible for

large complex policy optimization problems. In our expe-

rience so far using collections of simple policies, sometimes

the second order analytic approach is faster than the first or-

der analytic approach because it takes many fewer iterations

to converge, and sometimes the first order approach has a

slight edge. Either the solutions found are equivalent, or the

second order approach finds a better solution.

Weighted Locally Linear Policy Optimization

The consequence of using multiple simple policies on each

time step by forming a weighted average of the outputs is

that the Hessian matrix may no longer be block diagonal or

have a form that reduces the computational cost of inverting

it. If on time step k the jth policy has the weight w j, then the

derivatives of the policy also now have that weighting factor.

With the lth policy also active, cross terms between ππp j , ππpl ,

Vxp j , and Vxpl arise which destroy the block diagonal nature

of the Hessian (Vp jpl 6= 0). In the general case the Hessian

is sufficiently full that (6) must be used to compute the

second order update. We refer to this algorithm as Weighted

Locally Linear Policy Optimization (WLLPO). The weights

provide an interesting perspective on eligibility traces used

in reinforcement learning. w j appears quadratically in some

terms in the second order Vp jp j update.

VI. HANDLING MULTIPLE MODELS WITH

DIFFERENT STATES

So far we have assumed all of the multiple models have

the same state vector in terms of which variables are in

each element and the size of the state vector. We will

outline what happens to the first order update formulas

(Equations 1 and 2) when we are optimizing over multiple

models with different state vectors zm. Since we are plan-

ning, we assume we know the dynamics of each model:

zmi+1 = Fm(zmi ,ui). In order to use the same policy with all

models, each model must provide a vector of observations:

y = gm(zm) and the common policy is a function of those

measurements: ππ(y,p). In order to use the same one step

cost function L(x,u), each model must provide a way to

generate a “nominal” state: x = hm(zm). This function is

unnecessary if the one step cost function is a function of

the observation vector L(y,u). Finally, there must be a way

to start each model’s trajectory from an equivalent state zm0 ,

given a nominal starting state x0. The Bellman Equation

for each model is: Vm,k(zm,p) = L(hm(zm),ππ(gm(zm),p))+
Vm,k+1(Fm(zm,ππ(gm(zm),p)),p). The first order derivative

propagation equations are (suppressing the m superscripts):

V k
z = Lxhz +Luππygz +V k+1

z (Fz +Fuππygz) (25)

V k
p = (Lu +V k+1

z Fu)ππp +V k+1
p (26)

The second order derivative propagation equations for Vzz,

Vzp, and Vpp are extended in a similar way (extensive use of

the chain rule). During policy optimization the appropriate

model specific dynamics, observation equation, h(), value
function, and derivative propagation equations are used on

each application of a model m to a starting point.

VII. DISCUSSION

See [16] for more discussion of how to handle constraints,

policies with internal state, global optimization of policies,

policy regularization, handling stochastic systems and dy-

namic policies, simplifying policy structures, adaptive grids

and parametrizations, receding horizon control (RHC)/model

predictive control (MPC), model following, continuous time

policy optimization, minimax approaches to policy optimiza-

tion, inverse optimal control, convergence, and how to best

choose the distribution of models used in the design process

based on experience with the system to be controlled, how to

pick initial states, and how to weight the models and initial

states during training.

When considering computer architectures that offer many

cores or computational pipelines, it is important to note that



both numeric and analytic gradient-based policy optimization

algorithms are embarrassingly parallel. Each trajectory can

be processed on a different processing element. Numeric

derivative approaches are embarrassingly parallel on a finer

scale, in that each forward integration of a trajectory with

a particular set of policy parameters can be processed in

parallel. Analytic approaches need to compute Vx and Vxx for

a trajectory first, then Vxp, and then Vp and Vpp, so a little

more care is needed to implement parallelism at the single

trajectory level, but it is still relatively easy to do with some

additional memory cost.

VIII. CONCLUSION

We presented a policy optimization approach that achieves

robustness by simultaneously designing for multiple models.

We developed analytic first and second order derivatives for

efficient control law design using gradient-based algorithms.

The gradient-based approach enables handling of nonlinear

and time-varying models and policies, and multiple models

with different model structures. We described a generaliza-

tion of LQR design: the Linear Quadratic Bilinear Regulator

(LQBR) and presented some implementation and timing

results, with a comparison to a perturbation-based policy

optimization approach. We emphasized that uncorrelated ad-

ditive or multiplicative noise is a poor proxy for unmodeled

dynamics in control law design. We highlighted the benefit

of control laws made up of collections of simple policies

where only one simple policy is active at a time. Controller

optimization and learning is particularly fast and effective in

this situation because second derivatives are decoupled.

IX. ACKNOWLEDGMENTS

This material is based upon work supported in part by

the US National Science Foundation (EEC-0540865, ECCS-

0824077, and IIS-0964581) and the DARPA M3 program.

REFERENCES

[1] A. Varga, “Optimal output feedback control: a multi-model approach,”
in IEEE International Symposium on Computer-Aided Control System

Design, 1996, pp. 327–332.

[2] L. A. Feldkamp and G. V. Puskorius, “Fixed-weight controller for
multiple systems,” in International Conference on Neural Networks,
1997, pp. 773–778.

[3] H. T. Su and T. Samad, “Neuro-control design: Optimization aspects,”
in Neural Systems For Control, O. Omidvar and D. L. Elliott, Eds.
Academic Press, 1997, pp. 259–288.

[4] Y. Piguet, U. Holmberg, and R. Longchamp, “A minimax approach for
multi-objective controller design using multiple models,” International
Journal of Control, vol. 72, no. 7-8, pp. 716–726, 1999.

[5] D. Bagnell and J. Schneider, “Autonomous helicopter control using
reinforcement learning policy search methods,” in IEEE International

Conference on Robotics and Automation, 2001.

[6] R. H. Nyström, J. M. Böling, J. M. Ramstedt, H. T. Toivonen, and K. E.
Häggblom, “Application of robust and multimodel control methods to
an ill-conditioned distillation column,” Journal of Process Control,
vol. 12, pp. 39–53, 2002.

[7] D. V. Prokhorov, “Training recurrent neurocontrollers for robustness
with derivative-free Kalman filter,” IEEE Transactions on Neural

Networks, vol. 17, no. 6, pp. 1606–1616, 2006.

[8] F. J. Bejarano, A. Poznyak, and L. Fridman, “Min-max output integral
sliding mode control for multiplant linear uncertain systems,” in
American Control Conference, 2007, pp. 5875–5880.

[9] M. McNaughton, “CASTRO: robust nonlinear trajectory optimization
using multiple models,” in IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), 2007, pp. 177 – 182.
[10] J. Shinar, V. Glizer, and V. Turetsky, “Solution of a linear pursuit-

evasion game with variable structure and uncertain dynamics,” in
Advances in Dynamic Game Theory - Numerical Methods, Algorithms,

and Applications to Ecology and Economics, S. Jorgensen, M. Quin-
campoix, and T. Vincent, Eds. Birkhauser, 2007, vol. 9, pp. 195–222.

[11] V. Azhmyakov, V. Boltyanski, and A. Poznyak, “The dynamic pro-
gramming approach to multi-model robust optimization,” Nonlinear

Analysis, Theory, Methods & Applications, vol. 72, no. 2, pp. 1110–
1119, 2010.

[12] J. Z. Kolter, “Learning and control with inaccurate models,” Ph.D.
dissertation, Stanford, August 2010.

[13] S. Sanan, M. H. Ornstein, and C. G. Atkeson, “Physical human
interaction for an inflatable manipulator,” in IEEE Engineering in

Medicine and Biology Society (EMBC), 2011.
[14] R. G. Heikes, D. C. Montgomery, and R. L. Rardin, “Using common

random numbers in simulation experiments - an approach to statistical
analysis,” Simulation, vol. 27, no. 3, pp. 81–85, 1976.

[15] A. Y. Ng and M. Jordan, “Pegasus: A policy search method for
large MDPs and POMDPs,” in Uncertainty in Artificial Intelligence,

Proceedings of the Sixteenth Conference, 2000.
[16] C. G. Atkeson, “Efficient robust policy optimization (long version),”

2012, www.cs.cmu.edu/∼cga/papers/acc2012-tr.pdf.
[17] P. J. Werbos, “Multiple models for approximate dynamic programming

and true intelligent control: Why and how,” in Proc. 10th Yale

Conference on Learning and Adaptive Systems, K. Narendra, Ed. EE
Dept. Yale University, 1998.

[18] A. Griewank and A. Walther, Evaluating derivatives: Principles and

Techniques of Algorithmic Differentiation. SIAM, 2008.
[19] P. J. Werbos, “Backwards differentiation in AD and neural nets: Past

links and new opportunities,” in Automatic Differentiation: Applica-

tions, Theory and Implementations, M. Bücker, G. Gorliss, P. Hovland,
U. Naumann, and B. Norris, Eds., 2006, pp. 15–34.

[20] D. H. Jacobson and D. Q. Mayne, Differential Dynamic Programming.
Elsevier, New York, NY, 1970.

[21] P. Dyer and S. R. McReynolds, The Computation and Theory of

Optimal Control. Academic Press, New York, NY, 1970.
[22] R. J. Williams, “Adaptive state representation and estimation using

recurrent connectionist networks,” in Neural Networks for Control.
MIT Press, 1990, pp. 97–114.

[23] P. J. Werbos, “Neurocontrol and supervised learning: An overview
and evaluation,” in Handbook of Intelligent Control: Neural, Fuzzy,

and Adaptive Approaches. Van Nostrand Reinhold, 1992, pp. 65–89.
[24] ——, The Roots of Backpropagation: From Ordered Derivatives to

Neural Networks and Political Forecasting. Wiley, 1994.
[25] D. V. Prokhorov, “Backpropagation through time and derivative adap-

tive critics — a common framework for comparison,” in Handbook

of Learning and Approximate Dynamic Programming. Wiley-IEEE
Press, 2004, pp. 381–404.

[26] W. T. Miller, R. S. Sutton, and P. J. Werbos, Neural Networks for

Control. MIT Press, 1990.
[27] D. A. White and D. A. Sofge, Handbook of Intelligent Control: Neural,

Fuzzy, and Adaptive Approaches. Van Nostrand Reinhold, 1992.
[28] J. Si, A. G. Barto, W. B. Powell, and D. W. II, Handbook of Learning

and Approximate Dynamic Programming. Wiley-IEEE Press, 2004.
[29] F. L. Lewis, G. Lendaris, and D. Liu, “Special issue on approximate

dynamic programming and reinforcement learning for feedback con-
trol,” IEEE Trans. Syst. Man, Cybern – B: Cybernetics, vol. 41, no. 1,
pp. 896–897, 2008.

[30] F. L. Lewis and D. Vrabie, “Reinforcement learning and adaptive
dynamic programming for feedback control,” IEEE Circuits and

Systems Magazine, vol. 9, no. 3, pp. 32–50, 2009.
[31] F.-Y. Wang, H. Zhang, and D. Liu, “Adaptive dynamic programming:

An introduction,” IEEE Computational Intelligence Magazine, vol. 4,
no. 2, pp. 39–47, 2009.

[32] C. G. Atkeson and B. Stephens, “Random sampling of states in
dynamic programming,” IEEE Transactions on Systems, Man, and

Cybernetics, Part B, vol. 38, no. 4, pp. 924–929, 2008.


