Proceedings of the 1998 IEEE/RSJ
Intl. Conference on Intelligent Robots and Systems
Victoria, B.C., Canada * October 1998

Reinforcement learning of dynamic motor sequence:
Learning to stand up

Jun Morimoto

jun-m@is.aist-nara.ac.jp
Graduate School of Information Science
Nara Inst. of Science and Technology
ATR Human Infomation Processing Lab.
Takayama, Ikoma, Nara, 630-0101, Japan

Abstract

In this paper, we propose a learning method for
implementing human-like sequential movements in
robots. As an example of dynamic sequential move-
ment, we consider the “stand-up” task for a two-joint,
three-link robot. In contrast to the case of steady walk-
ing or standing, the desired trajectory for such a tran-
sient behavior is very difficult to derive. The goal of
the task is to find a path that links e lying state to an
upright state under the constraints of the system dy-
namics. The geometry of the robot is such that there
is no static solution; the robot has to stand up dynam-
ically utilizing the momentum of its body. We use re-
inforcement learning, in particular, a continuous time
and state temporal difference (TD) learning method.
For successful results, we use 1) an efficient method
of value function approzimation in a high-dimensional
state space, and 2) a hierarchical architecture which
divides a large state space into a few smaller pieces.

1 Introduction

Recently, there have been many attempts at con-
trolling humanoid robots in a human-like way [6]. In
the case of upper-body movements and steady walk-
ing, for example, the desired trajectories and the con-
trol laws to implement them have been well analyzed
theoretically [5, 8]. On the other hand, trajecto-
ries for transient sequential movement such as a dy-
namic stand-up are difficult to derive thecretically, in-
tuitively, or empirically. In this paper, we investigate
methods for a robot to achieve a dynamic stand-up
by itself through learning. We take the reinforce-
ment learning approach which does not require ex-

0-7803-4465-0/98 $10.00 © 1998 IEEE

Kenji Doya

doya@erato.atr.co.jp
Computational Neurobiology Group
Kawato Dynamic Brain Project, JST
- Nara Inst. of Science and Technology
Seika, Soraku, Kyoto, 619-0288, Japan

plicit knowledge of the desired trajectories, but only
requires a signal that evaluates if the action taken by
the robot is “good” or “bad”. The robot learns stand-
up trajectories through trial and error, in the same
way as humans learn motion patterns. We use a two-
joint, three-link robot, as shown in Figure 1, which
is not fixed to the ground and has a ten-dimensional
state space.

The application of reinforcement learning to such
a high-dimensional system is difficult, especially if a
grid-like representation of the state is used. There-
fore, we explore the use of 1) an efficient method of
value function approximation in a high-dimensional
state space, and 2) a hierarchical architecture which
divides a large state space into smaller pieces using
subgoals in a lower-dimensional space. Using these
methods, we have obtained successful results where
the two-joint, three-link robot learned the the dynam-
ical stand-up motion by computer simulation.

Table 1: Physical parameters of the robot
linkl link2 link3

length experimentl 125m 05m 0.5m
experiment 2 10m 05m 05m
width 02m 02m 02m
weight 20kg 20kg 20 kg
actuatorl actuator2
max torque 260 N-m T00N-m
position gain k, 100 £z 300 &
velocity gain b, 10 d’—:’;% 30 f:ﬁ;";

1721

mailto:jun-m@is.aist-nara.ac.jp
mailto:doya@erato.atr.co.jp

actuator1

actuator2

ld]
e

Figure 1: Robot configuration.
The robot has ten dimensional state space :
X = (01701,02,02’9pitaBpihx’:tay:g)'

2 Stand-up task and learning method

The goal of the task is to find a path that links a
lying state to an upright state under the constraint
given by the robot dynamics. We apply reinforce-
ment learning, especially continuous temporal differ-
ence (TD) learning [4] to this task. We use the actor-
critic method [1] to implement the continuous TD
learning (see Fig. 2). The robot configuration and
state variables are shown in Fig. 1. We select the most
essential variables as the input to the actor and critic
networks. The variables are x = (61,61,02,602,d,d),
where 6; denotes the hip angle, 82 denotes the knee
angle, and d gives the horizontal displacement of the
center of mass from the center of the foot (see Fig. 1).

The actor works as a control function that takes
the six state variables as the input, and provides the
desired joint angles u(x) = (841,042) as the output.
The torque 7; of the actuator (i = 1,2) is calculated
from control law

7 = kr;(Bai — 6;) — b’rgéi (1)

where k, is the position gain , and b, is the velocity
gain (see Table 1).

The critic works as a predictor of the value func-
tion P(x) which also takes the six state variables and
makes a prediction of the value of the state [4].

The function approximation method and the rep-
resentation of the state space for implementing the

critic x

Ly

actor

-

u process | X
f(x,u)

Figure 2: Actor-critic architecture

actor u(x) and the critic P(x) are critical in applying
the actor-critic method to high-dimensional tasks. We
consider these points in the next section.

3 Value function approximation

A common approach in reinforcement learning of
control tasks is to discretize the state space using
“boxes” [1] or CMAC [9] to approximate the value
function. Problems with such an approach are the lack
of generalization and perceptual aliasing. Further-
more, when we have to deal with a high-dimensional
state space, simple direct product of each discretized
state variable will produce a huge number of states.
Therefore, we consider a continuous value function ap-
proximation method that is capable of dealing with
high-dimensional input.

In many control tasks, the part of the state space
that is relevant for the task is very limited. In such a
case, we should use precise interpolation in that part of
the state space that is important for the task while us-
ing coarse extrapolation in the rest of the state space.
Now, we consider how to implement that idea below.

A network with sigmoid basis functions is widely
used for non-linear function approximation. Global
function approximation using sigmoid basis functions
provides a good nature of generalization and works
well for off-line learning. However, sigmoid basis func-
tion approximation has the problem of catastrophic
interference when used for on-line learning [7]. When
applied to temporal difference (TD) learning, the pa-
rameters of sigmoid networks can, in some cases, di-
verge [2].

Local function approximation methods like radial
basis function (RBF) network are suitable for on-line
learning. However, RBF has the drawback of limited
generalization and problems caused by the curse of di-
mensionality. In this paper, we investigate a function

1722

Figure 3: Extension of Gaussian softmax basis func-
tions. (a) One dimensional example. (b) Two dimen-
sional example.

approximation method using Gaussian softmax basis
functions (GSBF) which can implement both local and
global basis functions in a natural way.

3.1 Gaussian Softmax Basis Function
Network (GSBFN)

Figure 3 (a) shows examples of scalar Gaussian soft-
max basis functions given by

%‘(i::up

b(z) = ————
k() E e_%l(z:'c!)lz

where c; and s; are the center and the size of the k-th
basis function. The basis functions in the middle are
local but those at the ends are extended in a sigmoidal
fashion by the effect of normalization. The same char-
acteristics can be seen in a higher-dimensional space,
as illustrated in Figure 3 (b) for the two-dimensional
case.

For a given n dimensional input vector x =
(z1,..-,4)T, the activation function of the k-th unit
is calculated by

ap(x) = e—%nM,,(x—c,,)u’,
where c;; is the center of activation and M; is a matrix
that determines the shape of the activation function.
The softmax basis function is then given by

ar(x)
21K=1 ai(x) ’

where K is the number of basis functions. The output
is given by the inner product of the basis functions
and the weights wy,

bk (x) =

K
y(x) = 3 wibi(x).
k=1

1 !
0.8 0.9
0.6 0,6}
0.4 0.4]
0.2 k 0.2

a b

Figure 4: Adaptation of the shape of basis functions.
(a) If there is no neighboring basis function in the
middle, the shapes of all basis functions extended in
a sigmoidal fashion. (b) When a new basis function
is allocated, the shapes of neighboring basis functions
change adaptively.

For a given target output §(x), the weights are up-
dated by the LMS rule

Awg = —nu(y(x) - §(x)be(x) (k=1,..,K).

where 7, is the learning rate.

3.2 Adaptive GSBFN

In an adaptive GSBF, a new unit is allocated if the
error is larger than a criterion epnay and the activation
of all existing units is smaller than a threshold amin,
that is,

ly(x) — §(x)] > emax and maxgar(x) < Gmin-

The new unit is initialized with w; = §(x), ¢ = x,
and M, = diag(p:), where u; is the inverse of the
radius of basis function.

Note that when a new basis function is allocated,
the shapes of neighboring basis functions also change
because of the nature of GSBF (see Fig. 4).

The shape and the center of the activation can be
further optimized by the following learning rules.

AMi=1ae(y(x) — (0w et ok
=—11r (Y (%)=§ (%)) wr (br (x)~1)bx (x) My (x—cx.) (x—c) 7,
Obk 6a,k

Ac==1c(y(x) = §(x))wr 57 5=
=11c (y(x)~§(x) Jwi (be (3)—1)b (x) My, M (x—cx),

where np and 7, are the learning rates.

1723

4 Dividing a task using a hierarchical
architecture

Although we have achieved modest success in the
stand-up task using the adaptive GSBFN (experiment
1, see Section 5.1), we consider a divide and con-
quer strategy to further accelerate learning (experi-
ment 2, see Section 5.2). The basic idea is to divide a
highly non-linear task in a high-dimensional space into
two levels: local optimization in the high-dimensional
space and global exploration in a lower-dimensional
space.

Hierarchical reinforcement learning using subgoals
has been applied to discrete maze search tasks {10,
3] and to sequential control of a two-link robot arm
[9]. In [3], the subgoals were movement direction in a
coarse-grain state space. In [10] and [9], the subgoals
were specific points in the lower-level state space.

In our stand-up task, we take only the joint and
pitch angles of intermediate postures as the subgoals
while other variables, such as angular velocities, are
left unspecified. This enables the learning of subgoals
in a low-dimensional space. The exact values of the
remaining variables are determined by the lower level
optimization process. The task for the upper level
process is to find an appropriate sequence of subgoal
postures which are realizable by the lower level pro-
cesses.

4.1 Stand-up task using a hierarchical ar-
chitecture

In the hierarchical architecture, the upper level pro-
cess works as a discrete reinforcement learning system
whose actions are discrete sequence of subgoal pos-
tures. The lower level process takes the subgoal pos-
ture as the peak of the reward function and learns to
maximize it, that is, to find a trajectory to reach the
subgoal.

Summary of the hierarchical architecture
Upper level

Input: X = (64,62,0::)

OQutput: Subgoal posture U = (0,1,052,0spit)

Lower level

Input: Joint angle, joint angular velocity,
pitch angle, pitch angular velocity

X= (01) 017 027 02) gpit: eptt)

Output: Desired joint angle u = (041, 642)
Reward: Function of subgoal posture

r(t) = F(61,62,63;651,0s2,05pit)

critic2 I
criticl

Lower

Robot
dynamics

actozr3

actorl
Lower

Figure 5: The hierarchical architecture used for the
stand-up task.

5 Experiments

Each trial was started with the robot lying on the
ground, and was continued for ten seconds in simula-
tion time. When the robot fell down and hit its hip
or head on the ground, the trial was terminated and
was restarted again.

5.1 Experiment 1: Adaptive GSBF

We used an adaptive GSBF network to approxi-
mate the control functions (actor) and the value func-
tion (critic). We used €2,,, = 0.001 and a,,;, = e 1
when a new unit was allocated. We used p; =
(2.3,0.18,2.3,0.18,8.0,0.5) for initialization of basis
functions. In the current experiment, the shape and
the center of the activation functions were not updated
for simplicity.

The reward was given by the head height y:

_f ()% -1 (during trial)
r(y) = { —ll (on failure)

where [is the total length of the robot. Each simula-
tion was continued up to 2,000 trials.

5.2 Experiment 2: The hierarchical archi-
tecture

In the hierarchical architecture, we divided the task
into three sub-tasks using two intermediate postures

1724

Table 2: Sequence of subgoal postures.

(0313 982’ espit) [deg]

Initial state (0,0,90)
Subgoal 1 (90,0,0)
2 (150, —120, —30)

3 (0,0,0)

as the subgoals, as shown in Table 2 and Figure 6.
Each subtask uses a separate actor-critic pair at the
lower level as shown in Figure 5.

The reward function for the lower level critic was

2
|01—9”|2+|02—0!2|2+Eﬂ—9 pit!
r(01,92,9pu) — e(L5 2 -) -1

rpit

where ¢, was the width of the reward function.

A subtask except for the last one was completed
when the reward was » > —0.1, that is, when the robot
reached to a tube in the state space around the subgoal
posture. A new subtask was started from that point
with the next subgoal. The entire task was terminated
after ten seconds from the start or when the robot fell
down to the floor, in which case a penalty of r = —1
was given for the subtask. Each simulation run was
continued up to 300 trials.

5.3 Results

In a preliminary experiment, we tested the per-
formance of GSBFN with fixed basis functions allo-
cated in a grid shape. Each of the six input variables
(61,61,02,02,d,d) was represented by (7, 3, 7, 3, 10,
3) basis functions, respectively, the product of which
resulted in the total of 13,230 basis functions. In this
case, it took about 8,000 trials and 9 hours to learn to
stand-up.

We tested above methods with the following two
cases.

¢ Experiment 1
Plain: A plain architecture without subgoals us-
ing adaptive GSBFN.

¢ Experiment 2
Hierarchical: A hierarchical architecture using
adaptive GSBFN.

First we tested the plain architecture with the
adaptive GSBFN. The robot successfully learned to
stand up within 2,000 trials in five out of 15 simula-
tion runs. Table 3 summarizes the results of the five

Table 3: The number of bases, trials, and CPU time
needed for learning to stand-up (CPU: SGI Indigo 2).
Average over 5 successful runs.

Method bases trials
Plain actor: 246 734
critic: 261
actorl: 25
criticl: 46
actor2: 26 106
critic2: 46
actor3: 84
critic3: 150

CPU time
39min.

Hierarchical

7min.

successful runs. Learning was about ten times faster
than with fixed GSBF in the preliminary experiment.
This result shows an efficient function approximation
ability of adaptive GSBF.

Next, we tested the hierarchical architecture with
adaptive GSBFN. The robot successfully learned to
stand up within 300 trials in five out of 13 simulation
runs, and about seven times faster than with the plain
architecture in number of trials, as shown in Table 3.

Figures 6 and 7 show the subgoal sequence and the
stand-up trajectory learned by hierarchical architec-
ture.

6 Conclusion

In this paper, we proposed a learning method that
enables a two-joint, three-link robot to stand up in
a high-dimensional state space. Continuous temporal
difference (TD) learning with adaptive GSBF and a
hierarchical architecture enables the robot to learn to
stand up in a relatively small number of trials.

The results show that adaptive GSBF is suitable
for approximating functions in high-dimensional state
space, and that a hierarchical architecture enables the
robot to explore efficiently in high-dimensional state
space. Furthermore, the hierarchical architecture en-
ables us to easily incorporate our physical knowledge
or the data from demonstration into the learning pro-
cess.

In this paper, we fixed the action sequence of the
upper level. Simultaneous learning of both upper and
lower level actions is the subject of future work.

1725

(a) Initial state (b) Subgoal 1

(c) Subgoal 2

(d) Subgoal 3

Figure 6: Upper level action sequence

Figure 7: Lower lever action sequence (learned stand-up trajectory)

References

[1]

2]

A. G. Barto, R. S. Sutton, and C. W. Anderson.
Neuronlike adaptive elements that can solve dif-
ficult learning control problems. IEEE Transac-
tions on Systems, Man, and Cybernetics, 13:834-
846, 1983.

J. A. Boyan and A. W. Moore. Generalization in
reinforcement learning: Safely approximating the
value function. In G. Tesauro, D. S. Touretzky,
and T. K. Leen, editors, Advances in Neural In-
formation Processing Systems 7, pages 369-376.
MIT Press, Cambridge, MA, USA, 1995.

P. Dayan and G. E. Hinton. Feudal reinforcement
learning. NIPS 5, pages 271-278, 1993.

K. Doya. Temporal difference learning in contin-
uous time and space. In D. S. Touretzky, M. C.
Mozer, and M. E. Hasselmo, editors, Advances in
Neural Information Processing Systems 8, pages
1073-1079. MIT Press, Cambridge, MA, 1996.

J. Furusho and A. Sano. Sensor-Based Control
of a Nine-Link biped. International Journal of
Robotics Research, 9(2):83-98, 1990.

[6]

7]

[8]

1726

M. Inaba, I. Igarashi, K. Kagami, and I. Hi-
rochika. A 35 dof humanoid that can coordinate
arms and legs in standing up, reaching-and grasp-
ing an object. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots
and Systems, volume 1, pages 29-36, 1996.

S. Schaal and C. G. Atkeson. From isolation to
cooperation: An alternative view of a system of
experts. In D. S. Touretzky, M. C. Mozer, and
M. E. Hasselmo, editors, Advances in Neural In-
formation Processing Systems 8, pages 605-611.
MIT Press, Cambridge, MA, USA, 1996.

A. Takanishi, M. Ishida, Y. Yamazaki, and
I. Kato. The Realization of Dynamic Walking
by the Biped Walking Robot WL-10RD. In Pro-
ceedings of 1985 International Conference on Ad-
vanced Robotics (ICAR’85), pages 459-466, 1985,

C. K. Tham. Reinforcement learning of multi-
ple tasks using a hierarchical CMAC architecture.
Robotics and Autonomous Systems, 15:247-274,
1995.

M. Wiering and J. Schmidhuber. HQ-learning.
Adaptive Behavior, 6(2), 1997.

