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Abstract 

I n  this paper, we propose a learning method f o r  
implementing human-like sequential movements in 
robots. As an example of dynamic sequential move- 
ment,  we consider the “stand-up” task f o r  a two-joint, 
three-link robot. In contrast t o  the case of steady walk- 
ing or standing, the desired trajectory fo r  such a tran- 
sient behavior is very dificult t o  derive. The goal of 
the task is to find a path that links a lying state to a n  
upright state under the constraints of the system dy- 
namics. The geometry of the robot i s  such that there 
is no static solution; the robot has to  stand up dynam- 
ically utilizing the momentum of its body. W e  use re- 
inforcement learning, in particular, a conitinuous t ime 
and state temporal difference (TO) learning method. 
For successful results, we use 1) a n  eficient method 
of value function approximation in a high-dimensional 
state space, and 2) a hierarchical architecture which 
divides a large state space into a few smaller pieces. 

1 Introduction 

Recently, there have been many attempts at con- 
trolling humanoid robots in a human-like way [6]. In 
the case of upper-body movements and steady walk- 
ing, for example, the desired trajectories itnd the con- 
trol laws to implement them have been well analyzed 
theoretically [5, 81. On the other hand, trajecto- 
ries for transient sequential movement such as a dy- 
namic stand-up are difficult to derive thecretically, in- 
tuitively, or empirically. In this paper, we investigate 
methods for a robot to achieve a dynamic stand-up 
by itself through learning. We take the reinforce- 
ment learning approach which does not require ex- 
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plicit knowledge of the desired trajectories, but only 
requires a signal that evaluates if the action taken by 
the robot is “good” or “bad”. The robot learns stand- 
up trajectories through trid and error, in the same 
way as humans learn motion patterns. We use a two- 
joint, three-link robot, as shown in Figure 1, which 
is not fixed to the ground and has a ten-dimensional 
state space. 

The application of reinforcement learning to such 
a high-dimensional system is difficult, especially if a 
grid-like representation of the state is used. There- 
fore, we explore the use of 1) an efficient method of 
value function approximation in a high-dimensional 
state space, and 2) a hierarchical architecture which 
divides a large state space into smaller pieces using 
subgoals in a lower-dimensional space. Using these 
methods, we have obtained successful results where 
the two-joint, three-link robot learned the the dynam- 
ical stand-up motion by computer simulation. 

Table 1: Physical parameters of the robot 
link1 link2 link3 

length experiment 1 1.25 m 0.5 m 0.5 m 
experiment 2 1.0 m 0.5 m 0.5 m 

width 0.2 m 0.2 m 0.2 m 
weight 20 kg 20 kg 20 kg 

actuator1 actuator2 
max torque 260 N - m 700 N - m 
position gain k7 100 e 300 e 
velocity gain b, 10 & 30 & 
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Figure 1: Robot configuration. 
The robot has ten dimensional state space : 
x = (e,, el, e2, d2, eppit, eppit, Z, k,  Y, 18. 

2 Stand-up task and learning method 

The goal of the task is to find a path that links a 
lying state to  an upright state under the constraint 
given by the robot dynamics. We apply reinforce 
ment learning, especially continuous temporal differ- 
ence (TD) learning [4] to this task. We use the actor- 
critic method [l] to  implement the continuous TD 
learning (see Fig. 2). The robot configuration and 
state variables are shown in Fig. 1. We select the most 
essential variables as the input to the %tor and critic 
networks. The variables are x = (01,81,82,&, d ,  d ) ,  
where 81 denotes the hip angle, 82 denotes the knee 
angle, and d gives the horizontal displacement of the 
center of mass from the center of the foot (see Fig. 1). 

The actor works as a control function that takes 
the six state variables as the input, and provides the 
desired joint angles u(x) = ( 8 d l , 8 d 2 )  as the output. 
The torque q of the actuator (i = 1,2) is calculated 
from control law 

Ti = k, (edi - Q+) - b ,  e, (1) 

where k, is the position gain , and b, is the velocity 
gain (see Table 1). 

The critic works as a predictor of the value func- 
tion P ( x )  which also takes the six state variables and 
makes a prediction of the value of the state [4]. 

The function approximation method and the rep- 
resentation of the state space for implementing the 

Figure 2: Actor-critic architecture 

actor u(x) and the critic P ( x )  are critical in applying 
the actor-critic method to high-dimensional tasks. We 
consider these points in the next section. 

3 Value function approximation 

A common approach in reinforcement learning of 
control tasks is to discretize the state space using 
“boxes” [l] or CMAC [9] to approximate the value 
function. Problems with such an approach are the lack 
of generalization and perceptual aliasing. Further- 
more, when we have to deal with a high-dimensional 
state space, simple direct product of each discretized 
state variable will produce a huge number of states. 
Therefore, we consider a continuous value function ap- 
proximation method that is capable of dealing with 
high-dimensional input. 

In many control tasks, the part of the state space 
that is relevant for the task is very limited. In such a 
case, we should use precise interpolation in that part of 
the state space that is important for the task while us- 
ing coarse extrapolation in the rest of the state space. 
Now, we consider how to implement that idea below. 

A network with sigmoid basis functions is widely 
used for non-linear function approximation. Global 
function approximation using sigmoid basis functions 
provides a good nature of generalization and works 
well for off-line learning. However, sigmoid basis func- 
tion approximation has the problem of catastrophic 
interference when used for on-line learning [7]. When 
applied to temporal difference (TD) learning, the pa- 
rameters of sigmoid networks can, in some cases, di- 
verge [2]. 

Local function approximation methods like radial 
basis function (RBF) network are suitable for on-line 
learning. However, RBF has the drawback of limited 
generalization and problems caused by the curse of di- 
mensionality. In this paper, we investigate a function 
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Figure 3: Extension of Gaussian softmax: basis func- 
tions. (a) One dimensional example. (b) Two dimen- 
sional example. 

approximation method using Gaussian softmax basis 
functions (GSBF) which can implement both local and 
global basis functions in a natural way. 

3.1 Gaussian Softmax Basis Function 
Network (GSBFN) 

Figure 3 (a) shows examples of scalar Gaussian soft- 
max basis functions given by 

where Ck and S k  are the center and the size of the k-th 
basis function. The basis functions in the middle are 
local but those at the ends are extended in a sigmoidal 
fashion by the effect of normalization. The same char- 
acteristics can be seen in a higher-dimensional space, 
as illustrated in Figure 3 (b) for the two-dimensional 
case. 

For a given n dimensional input vector x = 
(21, ..., z,)~, the activation function of the k-th unit 
is calculated by 

U k ( x )  = e-? ~ ~ ~ k ( x - c k ) ~ ~ 2 ,  

where C k  is the center of activation and M k  is a matrix 
that determines the shape of the activation function. 
The softmax basis function is then given by 

where K is the number of basis functions. The output 
is given by the inner product of the basis functions 
and the weights W k  

K 
Y(x)  w k b k ( x ) -  

k = l  

a b 

Figure 4: Adaptation of the shape of basis functions. 
(a) If there is no neighboring basis function in the 
middle, the shapes of all basis functions extended in 
a sigmoidal fashion. (b) When a new basis function 
is allocated, the shapes of neighboring basis functions 
change adaptively. 

For a given target output $(x), the weights are up- 
dated by the LMS rule 

where qW is the learning rate. 

3.2 Adaptive GSBFN 

In an adaptive GSBF, a new unit is allocated if the 
error is larger than a criterion emax and the activation 
of all existing units is smaller than a threshold amin, 

that is, 

The new unit is initialized with W k  = $(x) ,  C k  = x ,  
and k f k  = diag(pi), where pi is the inverse of the 
radius of basis function. 

Note that when a new basis function is allocated, 
the shapes of neighboring basis functions also change 
because of the nature of GSBF (see Fig. 4). 

The shape and the center of the activation can be 
further optimized by the following learning rules. 

where V M  and qc are the learning rates. 
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4 Dividing a task using a hierarchical 
architecture 

Although we have achieved modest success in the 
stand-up task using the adaptive GSBFN (experiment 
1, see Section 5.1), we consider a divide and con- 
quer strategy to further accelerate learning (experi- 
ment 2, see Section 5.2). The basic idea is to divide a 
highly non-linear task in a high-dimensional space into 
two levels: local optimization in the high-dimensional 
space and global exploration in a lower-dimensional 
space. 

Hierarchical reinforcement learning using subgoals 
has been applied to discrete maze search tasks [lo, 
31 and to sequential control of a two-link robot arm 
[9]. In [3], the subgoals were movement direction in a 
coarse-grain state space. In [lo] and [9], the subgoals 
were specific points in the lower-level state space. 

In our stand-up task, we take only the joint and 
pitch angles of intermediate postures as the subgoals 
while other variables, such as angular velocities, are 
left unspecified. This enables the learning of subgoals 
in a low-dimensional space. The exact values of the 
remaining variables are determined by the lower level 
optimization process. The task for the upper level 
process is to find an appropriate sequence of subgoal 
postures which are realizable by the lower level pro- 
cesses. 

4.1 Stand-up task using a hierarchical ar- 
chitecture 

In the hierarchical architecture, the upper level pro- 
cess works as a discrete reinforcement learning system 
whose actions are discrete sequence of subgoal pos- 
tures. The lower level process takes the subgoal pos- 
ture as the peak of the reward function and learns to 
maximize it, that is, to find a trajectory to reach the 
subgoal. 

Summarv of the hierarchical architc 
Upper level 
Input: X = (e,, 02, e,,,) 
Output: Subgoal posture U = (Os, ,  es2, 

Lower level 
Input: Joint angle, joint angular velocity, 
pitch angle, pitch anplar  velocity 

Output: Desired joint angle U = (e&, 8 d 2 )  

Reward: Function of subgoal posture 

x= (e,,4 , 02, e,, @ p i t ,  %d> 

r ( t )  = F ( ~ 1 , ~ 2 , ~ 3 ; ~ , 1 , ~ s 2 , ~ s , i t )  

; m e  

- I 
.o- 
U 

1 I 

Figure 5:  The hierarchical architecture used for the 
stand-up task. 

5 Experiments 

Each trial was started with the robot lying on the 
ground, and was continued for ten seconds in simula- 
tion time. When the robot fell down and hit its hip 
or head on the ground, the trial was terminated and 
was restarted again. 

5.1 Experiment 1: Adaptive GSBF 

We used an adaptive GSBF network to approxi- 
mate the control functions (actor) and the value func- 
tion (critic). We used = 0.001 and amin = e-'.' 
when a new unit was allocated. We used pi = 
(2.3,0.18,2.3,0.18,8.0,0.5) for initialization of basis 
functions. In the current experiment, the shape and 
the center of the activation functions were not updated 
for simplicity. 

The reward was given by the head height y: 

( f ) 2  - 1 (during trial) 
T(Y) = { -1 (on failure) 

where I is the total length of the robot. Each simula- 
tion was continued up to 2,000 trials. 

5.2 Experiment 2: The hierarchical archi- 
tecture 

In the hierarchical architecture, we divided the task 
into three sub-tasks using two intermediate postures 
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Table 2: Sequence of subgoal postures. 

Method 
Plain 

Hierarchical 

(&I, e s 2 ,  e,,,) [des] 
Initial state 

(150, -120, -30) 
bases trials CPU time 
actor: 246 734 39min. 
critic: 261 
actorl: 25 
criticl: 46 
actor2: 26 106 7min. 
critic2: 46 
actor3: 84 
critic3: 150 

3 II (0. om 

as the subgoals, as shown in Table 2 and Figure 6. 
Each subtask uses a separate actor-critic pair at the 
lower level as shown in Figure 5. 

The reward function for the lower level critic was 

where 6, was the width of the reward function. 
A subtask except for the last one was completed 

when the reward was r > -0.1, that is, when the robot 
reached to a tube in the state space around the subgoal 
posture. A new subtask was started from that point 
with the next subgoal. The entire task wils terminated 
after ten seconds from the start or when the robot fell 
down to the floor, in which case a penalty of r = -1 
was given for the subtask. Each simulation run was 
continued up to 300 trials. 

5.3 Results 

In a preliminary experiment, we tested the per- 
formance of GSBFN with fixed basis functions allo- 
cated in a grid shape. Each of the six input variables 
( e 1 , e 1 , & , ~ 2 , d , ; )  was represented by (7 ,  3, 7, 3, 10, 
3) basis functions, respectively, the prodiuct of which 
resulted in the total of 13,230 basis functions. In this 
case, it took about 8,000 trials and 9 hours to learn to 
stand-up. 

We tested above methods with the following two 
cases. 

0 Experiment 1 
Plain: A plain architecture without subgoals us- 
ing adaptive GSBFN. 

0 Experiment 2 
Hierarchical: A hierarchical architecture using 
adaptive GSBFN. 

First we tested the plain architecture with the 
adaptive GSBFN. The robot successfulliy learned to 
stand up within 2,000 trials in five out (of 15 simula- 
tion runs. Table 3 summarizes the results of the five 

Table 3: The number of bases, trials, and CPU time 
needed for learning to stand-up (CPU: SGI Indigo 2). 
Average over 5 successful runs. 

successful runs. Learning was about ten times faster 
than with fixed GSBF in the preliminary experiment. 
This result shows an efficient function approximation 
ability of adaptive GSBF. 

Next, we tested the hierarchical architecture with 
adaptive GSBFN. The robot successfully learned to 
stand up within 300 trials in five out of 13 simulation 
runs, and about seven times faster than with the plain 
architecture in number of trials, as shown in Table 3. 

Figures 6 and 7 show the subgoal sequence and the 
stand-up trajectory learned by hierarchical architec- 
ture. 

6 Conclusion 

In this paper, we proposeL a learning method that 
enables a two-joint, three-link robot to stand up in 
a high-dimensional state space. Continuous temporal 
difference (TD) learning with adaptive GSBF and a 
hierarchical architecture enables the robot to learn to 
stand up in a relatively small number of trials. 

The results show that adaptive GSBF is suitable 
for approximating functions in high-dimensional state 
space, and that a hierarchical architecture enables the 
robot to explore efficiently in high-dimensional state 
space. Furthermore, the hierarchical architecture en- 
ables us to easily incorporate our physical knowledge 
or the data from demonstration into the learning pro- 
cess. 

In this paper, we fixed the action sequence of the 
upper level. Simultaneous learning of both upper and 
lower level actions is the subject of future work. 
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(a) Initial state (b) Subgoal 1 (c) Subgoal 2 (d) Subgoal 3 

Figure 6: Upper level action sequence 

Figure 7: Lower lever action sequence (learned stand-up trajectory) 
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