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Abstract

Energetic and mechanical principles of walking and running
are reviewed, using information available from force-plate
studies. A mathematical model of walking is described that
conserves the sum of the kinetic and gravitational potential
energies of the body In running, energy is stored transiently
in the elastic deformations of stretched muscles and tendons
Theory and experiments are described using these principles
and others to find the range of stiffness values for a running
track that both lowers the potential for injuries and increases
running speed

1. Intreduction

In bipeds, walking and running can be distinguished
from a mechanical point of view on the basis of a
simple test In running, but not in walking, there is a
period when both feet leave the ground The equip-
ment carried by Marey’s (1874) runner (Fig. 1) is de-
signed to record the time each foot is on the ground.
For good measure, the tunner also carries an acceler-
ometer on his head

The accelerometer looks like an afterthought, but it
turns out to be an idea ahead of its time. An acceler-
ometer located at the center of mass of the body would
allow measurement of the mechanical work done on
the (assumed solid} body during activity, provided the
mass of the body were known.

The goal of this papet is to convey an appreciation
of the extent to which the laws of physics are impor-
tant in walking and running. A cential question will be
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how energy is stored and transformed as the limbs
move, Insights based on the mechanics of running will
pay a certain dividend —at the end of the paper we
will see how these facts and some other engineering
principles may be used to design a running track on
which faster speeds are possible than on any other
surface. But first it will be necessary to establish some
basic ideas about the dynamics and energetics of walk-
ing and running, and this brings us back to measure-
ments concerning accelerations of the center of mass.

2. Force Plates

A better instrument than Marey’s headpiece for deter-
mining the acceleration of the center of mass is a force
plate. This is a sensitive electronic scale that measures
not only the vertical force but also the horizontal and

lateral forces applied to it by the subject’s foot.

There are three criteria for good performance of a
force plate. First, the frequency response must be satis-
factory, which generally means that the natural fre-
quency of the plate (when the subject is standing on it}
must be high enough, typically above 200 Hz, to fol-
low rapid changes in the applied force. Second, the
plate must give the same signal for a given force, irre-
spective of where that force is applied (at the center of
the plate, o1 at an edge). Third, there must be an ac-

_ceptably low level of cross-talk — spurious signals

coming through one channel (for example, the one
measuring vertical force), when a force is applied
purely to one of the other channels (hotizontally or
laterally). A high-performance force plate is typically a
lightweight, 1igid platform suspended on a suitable.
arrangement of force transducers, which may be piezo-
electric crystals or stiff spring elements instrumented
with strain gauges.

When high-speed motion pictures are taken of a
subject moving over a force plate, a great deal of me-
chanical information can be obtained about the gait,
including the forces and moments about the various
joints as well as the trajectories of those joints, and
therefore the potential and kinetic energies of each of
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The device on the runner’s
head is an accelerometer,
and he holds in his left hand
a bulb for starting the pen
recorder (From Marey
1874}

Fig 1 Runner carrying a
clockwork recorder for mak-
ing records of walking and
running. Air chambers in the
shoes communicate with the
recorder via rubber tubes

_the limb segments Figure 2 shows a schematic stick
figure as it might be drawn in an oblique view from

-information obtained from lateial and frontal film

" records. The magnitude and direction of the ground-

reaction force measured by the force plate under the

" subject’s foot is alse shown.

3. Force-Plate Records of Walking
and Running

Perhaps it may seem that the net effect of using a force
plate is to make the analysis of walking and running
more complicated Nothing could be further from the
truth. There is a simple conclusion available from
force-plate records of both walking and running, as we
shall see.

In Fig. 3, the vertical force has been used to provide
a calculated record of changes in the mechanical en-
ergy of the body’s center of mass One integration of
the horizontal force divided by mass gives changes in
the forward speed of the center of mass; these have

Fig 2. Schematic represen-
tation of a subject walking
over a force plate (rectangle)
The arrow shows the direc-
tion and magnitude of the
grovind-reaction force

been used to calculate changes in Ey, the part of the
kinetic energy of the center of mass due to forward
speed. Other simple procedures give E,, the gravita-
tional potential energy, and E,,, the kinetic eneigy
due to vertical velocity. It is apparent that the changes
in potential and forward kinetic energies are almost
exactly out of phase with each other in walking, so
that the total energy, F,,, changes only a little
throughout a walking step. The opposite is true for
running, where changes in potential and forward ki-
netic energies are substantially in phase, leading to
large changes in F,,, in a cycle In Fig. 3C, an index
labeled “Recovéry (%) has been plotted against speed
The recovery percentage is defined in such a way that
it is 100% when the vertical energy, £, + Ey,, is.¢x-
actly equal in shape and amplitude to the forward
energy E,., but opposite in phase A recovery percent-
age of zero would mean that the vertical and forward
energy curves were perfectly in phase. In walking at
normal speeds, around 5 km/hr, the total mechanical
energy of the body is approximately conserved, so that
the “recovery” of energy between its vertical and for-
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Fig 3 Force-plate records
have been used to calculate
changes in the mechanical
energy of the center of mass
of the body during walking
and running A. Walking at
a normal speed, in this case
4.5 Iem/hr The upper curve
refers to the kinetic energy
due to forward motion,

E =12 mvi where v is the

forward speed The middle
tracing is the sum of the
gravitational potential en-
ergy, E,, and the (small) ki-
netic energy due to vertical
velocity, By, = Y2 mvZ The
boitom trace shows total
energy, B, = Eg +

E, +E,, Arrows show the
time of heel-strike (solid
line) and toe-off of the oppo-

site foot (broken line) B
Running at 5.5 km/hr and
119 km/hr. Unlike walking,
E..: goes through large
changes. C “Recovery” of
mechanical energy in walk-
ing (open symbols) and
running (closed symbols)
Here, Wy Is the sum of the
positive increments of the
curve By in one step, W, is

the sum of the positive incre-
ments of By, and W, is the
sum of the positive incre-
ments gf E,, {increments a
plusbinpart A) In this
figure, an increment is de-
fined as the change from a
local minimum to a local
maximum {(From Cavagna,
Thys. and Zamboni 1976 )

A heel strike
toe off 45 km/hr
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ward forms reaches 65% In running, this recovery
falls to nearly nil. Note that changes in energy stored
in an elastic form, if any, cannot be measured by a
force plate alone, and are not included in any of the
above

These facts will underpin everything — both experi-
mental and theoretical considerations— yet to come
in this paper. Although originally established for hu-
man locomotion, these same conclusions apply to
walking and running birds, and to guadrupedal ani-
mals as well (Cavagna, Heglund, and Taylor 1977)

4, Determinants of Gait

There is no unigue way to describe the motions of the
limbs during walking, but one description, given in
1953 by Saunders, Inman, and Eberhart, is useful
because of its simplicity and its completeness. In this
description, six determinants of normal gait are distin-
guished Each determinant generally depends on a
single degree of freedom in one of the joints

1. Compass gait In Fig, 4, the only motions of
the lowet extremities permitted are flexions
and extensions of the hips. The pelvis moves
through a series of arcs, where the 1adius of the
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arc is determined by the leg length. This is
called compass gait

2. Pelvic rotation. The next stage of complexity,
shown in Fig. 3, allows rotary motion of the
pelvis about a veitical axis. The amplitude of
this motion is about +3° in walking at normal
speeds, but increases at high speeds (Saunders,
Inthan, and Eberhart 1953). The effectively
greater length of the leg when pelvic rotation is
utilized is responsible for a longer step length
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Fig 4 Compass gait. The Fig 5. In pelvic rotation, the  Fig 6 Adding pelvic tilt to heel-strike (From Inman,

stance leg remains stiff at all  pelvis turns about a vertical pelvic rotation flattens the Ralston, and Todd [1981]
times, and the trunk moves axis, lengthening the step ares further Just bejore Originally published in

in an arc with each step and flattening the arcs by in-  toe-gff, the pelvis is lowered slightly different form in
(From Inman, Ralston, and  creasing the effective length abruptly on the swing-leg Saunders, Inman, and Eber-
Todd [1981]. Originally of the leg (From Inman, side, then raised slowly until  hart [1953])

published in slightly different  Ralston, and Todd [1981]. ‘

formt in Saunders, Inman, Originally published in

and Eberhart [1953 1) slightly different form in

Saunders, Inman, and Eber-
hart [1953])
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and a greater radius for the arcs of the hip,
hence a smoother ride. Walking racers use a
walking style that depends on exaggerated
pelvic rotation. In this way, they are able to
delay the transition from walking to running
vet maintain high speeds

3. Pelvic tilt, When the pelvis is allowed to tilt, so
that the hip on the swing side falls lower than
the hip on the stance side, the arcs specifying

LA AL

Fon Lo Lty Fign the trajectory of the center of the pelvis are

oo F o Hi made still flatter. As shown in Fig. 6, the low-
)@5\ g é / M%é b\?\l ering of the swing hip occurs rather abrupily at
F the end of the double-support phase, just be-
£, Percertist cycle fore tog-off of the swing leg The swing hip
fg,,:ﬁ ft\‘ [ m then rises slowly through the remainder of the
;5:3? swing period. Note that the introduction of
:7% ’ | |L’/{ l J ‘ this determinant neceSsarily also brings in the

requirement for knee flexion of the swing leg.
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Fig 7 Knee flexion of the
stance leg is added to pelvic
rotation and pelvic tilf
(From Inman, Ralston, and
Todd {1981} Originally
published in slightly different
form in Saunders, Inman,
and Eberhart [1933])

Fig. 8 Ankle plantar flexion
of the stance leg is added to
knee flexion Most of the
plantar flexion occurs just
before toe-off. (From Inman,
Ralston, and Todd [1981].
Originally published in
stightly different form in
Saunders, Inman, and Eber-

Fig 9 Lateral displacement
of the pelvis, a sinusoidal
motion at half the fiequency
of the up-and-down motions.
Inset Walking toy, which
moves down shallow inclines
by a complex motion that
includes lateral rocking and
pendular swinging of the

legs. The legs are fastened to
the body by an axle, as
shown (Illustration of lateral
displacement of the pelvis
from Inman, Ralston, and
Todd [1981] Originally
published in slightly different
form in Saunders, Inman,
and Eberhart [1933.])

hrart {1953 ])

Fig &

Otherwise, with the swing hip lower than the
stance hip, thé foot of the swing leg would
strike the ground as it moved forward.

4. Stance-leg knee flexion. In Fig. 7, flexion of
the stance leg has been added to the determi-
nants listed so far (Figs 1-6). The effect has
been to flatten further the arcs traced out by
the center of the pelvis.

5. Plantar flexion of the stance ankle. To smooth
the transition [rom the double-support phase
to the swing phase, the ankle of the stance leg

(-
t—-

Front

plantar flexes (sole, or plantar surface of the
foot, moves down) just before toe-off (Fig. 8).
Plantar flexion also plays an important part in
establishing the initial velocities of the shank
and thigh for the subsequent swinging motion.

6. Lateral displacement of the pelvis. Because
weight bearing is transferred alternately from
one limb to the other and because there is a
finite lateral separation between the lower
limbs, the body rocks fiom side to side some-
what during walking. The frequency of this
lateral motion is half the frequency of the ver-
tical excursions of the pelvis (Fig. 9).

The bipedal toy shown in Fig. 9 (inset) walks down
shallow grades by making lateral rocking motions
synchronized with the swinging of its pendulum legs.
As the toy rocks to the left, the right leg is free to
swing forward, and therefore it arrives in the correct
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Fig 10 Ballistic walking
model with stiff stance leg
The mass of the legs is as-
sumed to be distributed over
their length in a realistic
way, so that the center of
mass of the thigh is Z, from
the hip, and the center of
mass of the shank, including
the foot, is Z, from the knee
The mass of the trunk, arms,
and head is lumped at the
hip. Muscles act during
double support. between po-

e

sitions I and 2, 1o establish
initial conditions on all the
angles and velocities of the
limbs Thereafter between
positions 2 and 3, no wuscu-
lar torques act on the swing
leg, and the model moves
forward under the action of
gravity (and the momentum
established by the initial
velocities) until heel-strike
(From Mochon and McMa-
hon 1980)

K

position to catch the weight as the toy rolls back to the
right. The energy needed to overcome fiiction is sup-
plied by the fact that the toy steps down a bit with

each step forward.

The frequency of the lateral motions of the walking
toy is strongly amplitude-dependent As the amplitude
of the lateral rocking decreases, the frequency in-
creases. A penny that has been spinning on a tabletop
and is finally coming to rest shows this same behavior:
the pitch of the sound it makes becomes higher and
higher just before it lies flat The walking toy lowers its
cadence as it walks faster down steep slopes. This is
just the opposite of what can be observed in human
walking, where a faster speed leads to a somewhat
higher stepping fiequency. Nevertheless, human walk-
ing has quite a lot to do with the motions of a pendu-

hum, as we shall see

5. Ballistic Walking

Electromyographic records obtained from electrodes
in the leg muscles show that there is very little activity
in the swing leg during walking at normal speed, ex-

cept at the beginning and the end of the swing phase
(Basmajian 1976). The muscles are active during the
double-support period, when the initial conditions on
the angles and velocities of each of the imb segments
are being established Thereafter, the muscles all but
“turn off” and allow the leg to swing through like a
jointed pendulum. A theory for walking based on
these observations may be called a ballistic walking
model because, like a projectile moving through space,
such a model moves entirely under the action of grav-
ity once it begins it swing.

5.1, DErmNING THE MODEL

A schematic diagram of the ballistic walking model is
shown in Fig. 10. It consists of three links, one for the
stance leg and one each for the thigh and shank of
the swing leg. The foot of the swing feg is attached 1i-
gidly to the shank at right angles. The stance foot may
be ignored, since it remains planted on the ground.
The mass of the trunk and upper part of the body is
lumped at the hip joint, but the masses of the lower
limb segments are distributed in a realistic way. The
equations of motion for this system are derived (most
conveniently, using Lagrange’s equations) and pro-
grammed on a computer. Aibitrary initial conditions
are chosen for the angles and velocities of the leg,
thigh, and shank with 1espect to the vertical, subject to
the condition that the toe of the swing leg must leave
the ground just as the swing starts. Then the equations
are solved, taking small forward increments in time,
until the heel of the swing leg stiikes the ground. This
establishes the duration of the swing period, during
which the model moves from configuration 2 to con-
figuration 3 in Fig 10. By trial and error, the set of
initial conditions on the angular velocities of the thigh
and shank is determined for each step length, s; (for
walking, step length is the distance between heel strikes}.
A correct choice of initial conditions just permits

the swing-leg knee to come to full extension at the
moment the heel sirikes the ground. If the choice of
initial velocities has been incorzect, the knee locks be-
fore heel strike. Another condition requires that the
toe of the swing leg must not-strike the giound during
midswing.
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Fig 11. Calculated range
(shaded area) for the nor-
malized time of swing, T, as
a function of normalized step
length, S;, for the model of
Fig 10 The stick figures
show the moment of toe-off

rum knee flexion of 90°
(left diagram) and 125°
{(right diagram) To the left
of curve B, the toe of the
swing leg strikes the ground
To the leff of line A, the
model flies off the ground at

midstance. Inset An inverted
pendulum of length ¢ pulls
upward on its pivot when
V22 g€ (From Mochon and
McMahon 1980}

{broken lines, leff), maxi-
mum knee flexion (solid
lines). and maximum hip
Aexion (broken lines, right)
for a novmalized step length,
Sy =5, /¢ =10 and a maxi-

Y+

52 RESULIS OF THE BA111STIC MODEL

The condition that the toe of the swing leg not strike
the ground during midswing turns out to be very im-
portant in determining the kinematics of ballistic
walking. In Fig. 11, the calculated range of times of
swing T, is shown as a function of the normalized step
length, S, = s, /£, where £ is the leg length. Here 7, =
1/T,, where T'is the swing time in seconds and 7, is
the natural half-period of the leg as a rigid pendulum,
1, = n{i/mgZ )*, with I the moment of inertia of the
rigid leg about the hip, and Z the distance of the leg’s
center of mass fiom the hip. For a leg length of 1.0 m,
T, 1s approximately 0.82 s.

Theline B in Fig. 1 indicates the boundary between
those steps (to the left of the line) in which the toe of
the swing leg strikes the ground during some interme-
diate phase of the swing period, and those steps (to the
right) in which it clears the ground By comparison,
the line A in the figure shows the boundary determined
by the requirement that the vertical force shall always
remain positive. Combinations of S; and 7, to the left
of line A correspond to a swing phase so rapid that the
model flies off the ground. An inverted pendulum has
this same behavior: its weight will be negative when

10

v2/g¢ = 1 0, where v is the velocity of the pendulum at
the top of its swing (inset, Fig. 11). The point is that
line B ligs to the right of line A, and therefore consti-
tutes the minimum-swing-time boundary for ballistic
walking  For a given step length, as T, 1is reduced, the
model will begin stubbing its toe long before it flies off
the ground.

A short explanation of the other boundaries of the
shaded area in Fig 11 is in order. In the case where
the normalized step length S; = 1.0, the stick figures
at the top of the diagram show the model at the instant
when the toe leaves the ground (bioken lines, left),
when maximum knee flexion occuss (solid lines), and
at the moment of maximum hip flexion (broken lines,
1ight), The stick figure on the left shows a maximum
knee flexion of 90°. The near-vertical solid line ex-
tending below the arrow defines the locus of points
where maximum knee flexion is always 90° If the ini-
tial knee-flexion velocity is made greater, the time of
swing 1s prolonged, and the knee-flexion angle reaches
a greater maximum. The stick figure on the right
shows a maximum knee flexion of 125°. The entire
right-hand border of the shaded area represents ballis-
tic steps in which knee flexion has reached 125° (taken
to be a physiological limit) at some point during the
swing. As mentioned eailier, for the solution to be ac-
cepted, the knee always comes to full extension just at
the moment of heel strike.

The predictions of the ballistic walking model are
compared with experimental observations in Fig, 12,
In the experiments, subjects of different heights (stat-
ure) were asked only to walk at a range of different
speeds, from their slowest to their fastest comfortable
walking speed (Grieve and Gear 1966) The range of
swing times, measured in fiactions of a second, was
recorded using a photographic technigue. The range
for each subject is shown as a vertical bar. The broken
line shows the swing time (half-period) of a passive
compound pendulum, where the knee is assumed to
be a ftee joint and the mass is assumed to be distrib-
uted in a realistic way, as it was for the ballistic model.
The conclusion must be that the range of swing times
is confined to periods much shorter than the free pe-
riod of the leg alone, acting as a pendulum. We shall
retuin to this point later

Also shown in Fig. 12 is a shaded range comrespond-
ing to the ballistic walking predictions. The lower
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Fig 12 Time of swing
against stature. Vertical

lines show experimental
ranges adopted by subjects of
different heights walking at a
range of speeds The broken
line, which has a swing time
too long to agree with the
experimental range, was cal-

‘of a compound (jointed)

pendulum representing the
leg. The shaded range shows
the result of the ballistic
walking model (from Fig.
11, with § = 10) Note that
stature 15 plotted on a log
scale. (From Mochon and
McMahon 1980)

culated from the half-period
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boundary of the shaded region corresponds to the limit
where the toe just clears the ground during the swing,
The upper boundary corresponds to the 125° maxi-
mum-knee-flexion line in Fig 11. The shaded region
encompasses most of the times of swing observed ex-
perimentally, with the exception of those subjects less
than about 1.2 m in height, all of whom were young
children Workers investigating gaits have often re-
marked that young children walk differently from
aduits. Evidence from Fig. 12 shows that young chil-
dren could make better use of gravity while walking if
they cared to use longer times of swing

53 EXTENSIONS 10 INCLUDE ADDITIONAL
Ga11 DETERMINANIS

1 ke ballistic walking model may be extended to in-
clude, one by one, the additional gait determinants of
knee flexion of the stance leg, plantar flexion of the
stance ankle, and pelvic tilt (Mochon and McMahon
1981). One may imagine gear- or cam-driven mecha-
nisms that impose realistic functional relationships
between the angles y, ¢, and f, and between & and

the length 2p of the vertical component of the pelvic
link, shown in Fig. 13. In this way, all the links of the
stance leg go through a characteristic motion that
depends on only one angle, knee angle . Given g, the

length is d, now has a hinge
al distance  from the ankle.
Angles cc and 0 are defined
with respect to the vertical. 4
coupling is assumed fo exist
between o and each of the
parameters y, 8, and p.

Fig. 13 Extension of the
ballistic walking model to in-
clude knee flexion of the
stance leg (o), plantar flexion
of the stance ankle (y), and
pelvic tilt (through the addi-
tional pelvic link) The
stance foor whose tolal

stick figure is completely determined from the ground
to the hip joint of the swing leg, because 7, 8, and 2p
are automatically determined by the various hypothet-
ical gear or cam drives. The hip and knee of the swing
leg continue to move freely under gravity with no
muscular torques, as before.

The mechanical couplings do not add to ot subtract
from the total energy of the body duting the swing.
They simply act as gunides for the motion of the swing
hip, the way a frictionless roller coaster is guided by its
track. '

It turns out that the conclusions of the original bal-
listic walking model (Fig. 10) are changed very little
by the additional gait determinants of Fig. 13, at least
with respect to 1anges of swing time versus step length,
swing time versus stature, and so on. The one impoz-
tant change comes in the vertical force The original
ballistic walking model came close to predicting the
correct amplitude and shape of the fore-and-aft hori-
zontal force, but it made a poor prediction of the
vertical force (in comparison with an experimental
force-plate record). The introduction of a realistic form
for stance-leg knee flexion and extension did little
to improve the shape of the vertical force, which still
dropped to unrealistically low values toward the end of
the swing. Only with the addition of pelvic tilt (giv-
ing a vertical force rise at the beginning of the swing
phase) and stance-leg plantar flexion (giving a foice
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1ise toward the end of the swing) did the vertical force
predicted fiom the model conform with a typical mea-
sured force record

5.4, CONCLUSIONS FROM BAILISTIC
WALKING SIUDIE_S

Recall that the motivation for the ballistic walking
model was the observation of Fig. 3A that the sum of
the kinetic plus potential energies of the center of
mass of the body changed relatively little during the
swing phase of a walking step This observation was
used as a basis for the ballistic walking model in both
its original and extended forms.

A central conclusion from the analysis was that the
half-period of the swing leg alone, represented as a
jointed pendulum hanging from a fixed support, was
much longe: than the experimentally observed range
of times of swing (Fig. 12), but the range predicted by
the original ballistic walking model (Fig. 10) was in
reasonable agreement with experimental data. Appar-
ently, then, the coupling between the stance leg (acting
as an inverted pendulum) and the swing leg (acting as
a compound pendulum) is very impottant in deter-
mining the dynamics of normal walking. y

Therefore, our first conclusion will be that the model
of Fig. 10 is the least complicated mechanical con-
figuration one ought to have in mind when thinking
about the dynamics of walking. A compound pendu-
lum alone or an inverted pendulum alone is not enough

The second conclusion has io do with the role of the
various determinants of gait in walking dynamics.
According to the model of Fig. 13, the additions of
stance-leg knee flexion, stance-leg ankle plantar flex-
ion, and pelvic tilt do not make dramatic changes in
the swing period, but the last two are necessary to
obtain agreement between the predicted and observed
vertical ground-reaction forces. This confirms the
remark often made about the function of the calf mus-
cles during walking —that they act to smooth the tran-
sitions between the aics of compass gait. It does not
detiact, however, from the one central lesson of the
ballistic walking story.

That lesson is that the action of gravity is so impot-
tant in determining the dynamics of walking that a
model (Fig. 10) that includes no muscular torques at

12

all during the swing phase can give a satisfactory rep-
tesentation of human walking at normal speeds

In spite of this success, the ballistic walking model
has its limitations, which must be recognized. It does
not acknowledge a significant role for the arms and
trunk in walking dynamics, although they may well
have one Itis confined to the sagittal plane, and
therefore does not consider the kind of coupling be-
tween lateral rocking motions and forward swinging
motions that allowed the walking toy of Fig. 9 to work
and that may be an important feature of human walk-
ing at low speeds Finally, the assumption of zero
muscular torques at the joints of the swing leg makes
the model unable to represent walking at very low or
high speeds, or running.

6. Locomotion in Reduced Gravity

Because walking at normal speeds involves a thythmic
exchange between kinetic and potential energy, walk-
ing under conditions of reduced gravity (e.g., on the
moon) has to be confined to a lower range of walking
speeds. This is because the changes in potential energy
that can be stored against gravity are reduced, and
hence the changes in kinetic energy of the center of
mass must be reduced, when gravity is reduced.

This can be seen more clearly in the context of the
ballistic walking model. In Fig 11, the line B shows
the minimum normalized time of swing required for
the leg to clear the ground. For any particular step
length, 7, will be given by a point on this line: for ex-
ample, when §; = 10, ;=055 Since 7, is expressed
as a normalized time, the actual number of seconds, T,
required for the swing will change as gravity changes.
In fact, since the moon’s gravity is only one-sixth
that of the earth,

I T

mMOoR . = mithoon \/6 = 245, la
T earth T nearth ( )

where
1, = (/mgZ)" (15)

is the half-period of a pendiilum representing the leg
with the knee locked, as defined earlier .
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Therefore, in order for the ballistic walking model
to duplicate the same tiajectory of motion on the
maoon that it uses on the earth, the time of swing must
1ise by a factor of almost 2.5. As on earth, if it tries to
move faster than this, it stubs its toe (or it has to give
up the ballistic principle and use muscles during the
swing). Ihis means that the walking speed, for a given
step length, can be only about 40% on the moon what
it is on the earth.

Instead of being content with such a severe restric-
tion of speed, when the Apollo astronauts were on the
moon, they preferred to move about in a series of
jumps a few centimeters in height. They could have
jumped higher and therefore moved faster if they had
wanted to. Margaria and Cavagna {1972) have calcu-
lated that the height of a maximal jump on the moon
would be about 4 m.

7. Elastic Storage of Energy

Recall from Fig 3B how very different the fluctuations
in potential and kinetic energy are for running, as
opposed to walking. For running, both gravitational
potential energy, F,, and forward kinetic energy, E,
reach a minimum in the middle of the support phase,
and both go through a maximum as the body takes off
and flies through the air. The fact that the total en-
ergy, E,,, = Ey+ E,+ Ep,, goes through large fluctua-
tions during the time the feet are on the ground shows
that mechanisms of the pendulum type for conserving
total energy are not very important in running,

7.1. ENERGETICS OF KANGAROOS

What is important in 1unning, howevez, is the storage
of energy in an elastic form, as opposed to a gravita-
tional form. A clue to this is found in the study of the
energetics of kangaroos (Dawson and Taylor 1973)
At low speeds, kangaroos move in a mode of pro-
" gression that has been called “pentapedal,” since the
animal uses all four limbs and the tail, A gait cycle
starts with the hind feet and the tail on the ground.
The animal lowers the front feet to the ground, pulling
the tail toward the body, and swings the hind limbs
forward Tt then lifts the front feet and moves them

hopping begins. C. Speed in-
creases are achieved primar-
ily by increases in stride
length during hopping
Points represent data from
two females weighing 18 kg
(solid circles) and 28 kg
(open circles) (From Daw-

Fig 14 Energetics of hop-
ping kangaroos A Weight-
specific rate of oxygen con-
sumption actually decreases
slightly with increasing
speed before rising again at
the highest speeds B Siride
frequency increases only

slightly with speed, once son and Taylor 1973 )
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forward, 1epeating the cycle At a speed between 6 and
7 km/hr, kangaroos change to the hopping mode,
which involves only the hind limbs moving in
synchrony.

In the experiments whose results are shown in Fig.
14, kangaroos wore a lightweight ventilated face mask
while hopping on a treadmill. In all the experiments,
the rate of working was kept below the maximal aero-
bic rate. This was known because the repayment of
oxygen debt after a run was never more than 2% of the
oxygen consumed during a run.

Not surprisingly, the rate of oxygen consumption
increased sharply with speed during pentapedal loco-
motion. When the animals began to hop, however, the
rate of oxygen consumption decreased with increas-
ing speed, reaching a very flat minimum around 18
km/hr, before increasing slightly at higher speeds The
frequency of the hopping motion changed very little,
although the speed changed from 8 to 25 km/hr . This,
of course, meant that the animals achieved speed in-
creases primarily by increasing-stride length during
hopping
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Kangaroos have large Achilles tendons. In the 40-kg
animal Dawson and Taylor (1973) dissected, the
Achilles tendon was 1 5 cm in diameter and 35 cm in
length It seems plausible that substantial quantities of
elastic energy might be stored in the tendons imamedi-
ately following the animal’s impact with the ground,
to be released later as the animal rebounds into the
air Broad sheets of tendon running along the ventro-
lateral and dossolateral aspects of the tail may also
have a role in the transient storage of elastic energy,
since the tail is very heavy.

72. MAINTAINING A RESONANT SYSTEM IN MoO1ION

An experiment that may be considered analogous to
some featuzes of kangaroo hopping is shown in Fig.
15A. A subject grasps a handle with both hands The
handle is connected to a 20-1b weight via a spring. The
weight slides on a vertical guide rod (not shown). By
jigeling the handle up and down, the subject causes
the weight to move up and down with amplitnde 4.
The subject synchronizes the motions with the beat of
a metronome A pen 1ecorder displays the amplitude,
A, continuously so that the subject may keep it fixed
at a prescribed level. The energy cosi of making this
motion is recorded by monitoring the subject’s oxygen
consumption with & lightweight ventilated face mask.

When the frequency of the jiggling motion is fixed
at any one value, /, increases in the amplitude of the
motion of the weight are accompanied by proportional
increases in the amplitude of the periodic force felt at
the hand, since the spring is linear. The increased
force amplitude leads to an increased rate of oxygen
consumption, as shown in Fig. 15B

Suppose instead that the subject keeps 4 fixed while
slowly increasing f. In this case, the amplitude of the
handle motions and therefore the effort required drops
to a minimum at the (damped) natural frequency of
the mass-spring system, f (Fig. 15C). In these experi-
ments, f was determined independently by observing
the “ringing” frequency of the weight with the handle
fixed.

The rate of oxygen consumption therefore is a func-
tion of both fand 4. These experiments, involving five
young adult male subjects who had first trained on
this exercise for two weeks, were conducted at five

14

Fig 15. Experiment analo-
gous to kangaroo hopping A
A handle connected to a
spring supporting @ weight is
grasped with two hands and
shaken ait frequency f. The
amplitude of the motion of
the weight s A B Whentis
fixed, the force at the hand
rises directly with amplitude
A, causing the rate of oxygen
COnSumption 1o rise mono-
tonically with A. C. If the
subject migves the hands so
as to keep the amplitude A
fixed, the effort required goes
through a minimum at the
{(damped) natural frequency
of the mass and spring, §

D The experiments were
conducted at five amplitudes
for one frequency and at
seven frequencies for one
amplitude (solid points)
Using the results one may
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amplitudes for a single frequency and at seven fre-
quencies for a single amplitude (solid points in Fig.
15D). Assuming that the surface determining the rate
of oxygen consumption as a function of fand 4 is
reasonably smooth, one may use those results to inter-
polate points along a line like the one shown in Fig
15D, where both 4 and fare increasing simultaneously
in a series of steps through the ranges shown shaded in
parts B and C of the figure The results, plotted in part
E, show that the rate of oxygen consumption falls
slowly to a minimum and then rises again, when plot-
ted against the maximum speed of the weight, v =
2xfA. This behavior is essentially similar to the ob-
served dependence of oxygen-consumption rate on
running speed found in hopping kangaroos (Fig. 14A)
The spring in the present experiments is analogous to
the various energy-stoiage elements in the kangaroo’s
body, including (but not limited to) tendons in the
legs and tail. The weight is analogous to the animal’s
body mass as it collides with the ground, and the sub-
ject’s arms are analogous to the kangaroo’s antigiavity
muscles, .

Dawson and Taylor’s (1973) experiments were lim-
ited by the maximum speed of their treadmill. Since
kangaroos can sustain speeds of 40 km/hr, Dawson
and Taylor presumably would have found a continu-
ing increase in oxygen-consumption rate with speed if
they had been able to investigate the 20-40 km/hr
1ange.

Additional evidence in favor of the idea of elastic
energy storage comes from studies where kangaroos
hopped down a runway paved with a series of force
plates (Cavagna, Heglund, and Taylor 1977) Ata
speed of 30 km/hr, it was found that the metabolic
machinery was supplying (through oxygen utilization)
only one-third of the power required to lift and re-
accelerate the center of mass during an encounter with
the ground The other two-thirds of the energy re-
quired for each hop, plus the energy required to move
the limbs relative to the center of mass, had to be ac-
counied for by some mechanism other than aerobic
muscular metabolism. This same result, with lower
numbers for the conserved energy, has been shown for
munning men and for dogs and other animals (Ca-
vagna, Heglund, and Taylor 1977). The conclusion
follows that elastic energy must be stored transiently
in stretched tendons, ligaments, muscles, and possibly

Fig 16 Rate of oxygen con-
SUMPLION Versus running -
speed Vertical bars show
x 2 SE (standard error)
Each animal shows an ap-

proximately linear increase
in rate of oxygen consump-
tion with speed. (From Tay-
lor, Schmidt-Nielsen, and
Raab 1970)
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Vo, /W, Weight-specific rate of
oxygen consumption (ml Oy g hr'}

Running velocity (km hr')

bent bones during running, very much the way eneigy
is transiently stored in the spring of a pogo stick.

8. Cost of Running

A few general results have emerged that seem to de-
scribe the running energetics of animals of very diverse
ancestries ‘and body sizes. In Fig. 16, for example, the
weight-specific rate of oxygen consumption is seen to
be a linear function of speed for animals as different

as kangaroo 1ats and dogs (Taylor, Schmidi-Nielsen,
and Raab 1970). This same conclasion has since been
shown to apply for over 50 species of animals, from
pygmy mice to horses.

Suppose, for a moment, that all the lines of Fig. 16
went through the origin (they do not). Then the fact
that the rate of oxygen consumption increases directly
with speed would mean that the metabolic cost of
moving | g of body weight a distance of 1 m would be
a (different) constant for each animal, independent
of running speed Starting from any given reference
speed, an animal might run faster, and therefore arrive
where it wanted to go in less time, but the increased
rate of oxygen consumption required to do so would
exactly balance the reduced time, so that the same
number of milliliters of oxygen would be used up
in each case. The cost of running, measured in ml
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solid line in this log-log plot
is about — 0 40. (From Tay-
lov, Schmidi-Nielsen, and

Fig 17 Oxygen cost of
running Each point repre-
sents the slope of a line in

Fig 16 The siope of the Raab 1970)
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O,g~km™!, therefore would be found for each animal
from the slope of its line in Fig. 16.

8.1 Cost-or-RunNING ForMULA

The cost of running, defined in the preceding section,
was discovered to be a decreasing function of body
weight, When the cost of tunning was plotted against
body weight on log-log paper, a straight line resulted
with a slope near —0 40 (Fig. 17).

The fact that the lines in Fig. 16 do not go through
the origin means that an intercept term has to appear
in the equations describing the lines Since the inter-
cept teim (representing the 1ate of oxygen consump-
tion for running at zero speed) happens alsotobe a
power-law function of body weight, a single formula
can be given approximating all the lines in Fig 16:

Vo /W= 850040+ 6 0025, )
where V02 is the oxvgen consumption 1ate measured
in ml/hr, v is the running speed in km/hr, and Wis
the body weight in grams

82 INFLUENCE OF LiMBS
Before going on, it is reasonable to deal with a question
having to do with the overall shape of animals. Tt has

been assumed often by both physiologists and anato-
mists that a substantial part of the metabolic cost of

16

tah has massive limbs, the
gazelle very slender ones),
the oxygen cost of running at
any particular speed is about
the same (From Tayior et
al 1974)

Fig 18 Rate of oxygen
consumption versus speed for”
cheetahs, gazelles, and goats
of comparable body weight
Although the configurations
of the limbs of the animals
are very different (the chee-

Weight- speciflc rate of oxygen
consumption iml Og g™ he™

| | | |
0 B 1Q 15 20 25

Running speed (km hr’)

running should be due to overcoming the inertia of the
limbs as they are accelerated and decelerated with
respect to the body. If this is true, then there should be
an evolutionary advantage in having the center of
mass of a limb close to the shoulder or hip, decreasing
the moment of inertia of the limb and thereby de-
creasing the metabolic cost of running at a given speed.

By way of testing this assumption, C. R. Taylor and
his collaborators (1974) measured the 1ate of oxygen
consumption of cheetahs, gazelles, and goats running
on a treadmill The animals were very similar in body
weight and limb length, but the average distance to the
center of mass of the limbs from their pivot points
{shoulder or hip) was determined at autopsy to be
18 cm in the cheetah, 6 cm in the goat, and only 2 cm
in the gazelle Nevertheless, the 1ate of oxygen con-
sumptiofl at a given speed was almost the same in all
the animals (Fig. 18).

Therefore, the work done against the inertia of the
limbs probably is not a very large factor in determining
the metabolic cost of running All one needs in order
to arrive at a faitly good prediction for the 1ate of
oxygen consumption is a knowledge of the speed, the
animal’s body weight, and (Eq. 2). The way an ani-
mal’s mass is distributed over its body and limbs ap-
pears to be of secondary importance. This is evidence
in favor of the idea that the rate of oxygen consump-
tion 1s determined by the extent to which the muscles
maintain tension as they biake and reaccelerate the
center of mass.
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