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Abstract

The focus of this paper is the problem of foot rotation
in biped robots during the single support phase. Foot
rotation is an indication of postural instability and
should be carefully treated in a dynamically stable
walk and avoided altogether in a statically stable walk.

We introduce the foot rotation indicator (FRI)
point which is a point on the foot/ground contact sur-
face where the net ground reaction force would have to
act to keep the foot stationary. To ensure no foot ro-
tation, the FRI point must remain within the convex
hull of the foot support area.

In contrast with the ground projection of the cen-
ter of mass (GCoM), which is a static criterion, the
FRI point incorporates the robot dynamics. As op-
posed to the center of pressure (CoP) — better known
as the zero moment point (ZMP) in the robotics lit-
erature — which may not leave the support area, the
FRI point may. Due to these important properties the
FRI point helps not only to monitor the state of static
stability of a biped robot during the entire gait cycle,
but indicates the stability robustness or the severity
of instability of the gait as well. In response to a re-
cent need the paper also resolves the misconceptions
surrounding the CoP/ZMP equivalence.

1 Motivation

The problem of gait planning for biped robots is
fundamentally different from the path planning for
traditional fixed-base manipulator arms as succinctly
pointed out in [12]. A biped robot may be viewed as
a ballistic mechanism which intermittently interacts
with its environment — the ground — through its feet.
The foot/ground “joint” is unilateral since attractive
forces are not present, and underactuated since con-
trol inputs are absent. Formally speaking, unilateral-
ity and underactuation are the inherent characteristics
of the locomotion mechanics and, at the same time,
the root causes behind their postural instability and
fall. A loss of postural stability may have potentially
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serious consequences and this calls for its thorough
analysis in order to better predict and eliminate the
possibility of fall.

Postural balance and stance foot equilibrium are
profoundly inter-twined. A biped robot gait is said to
be statically stable [9] and a human posture is said to
be balanced[8] if the ground projection of its center of
mass (GCoM)! falls within the convex hull of the foot
support area (henceforth called the support polygon).
The exit of the GCoM from the support polygon is
equivalent to the presence of an uncompensated mo-
ment on the foot which causes it to rotate about a
point on the polygon boundary.

Rotational equilibrium of the foot is therefore an
important criterion for the evaluation and control of
gait, and postural stability in legged robots. Indeed,
foot rotation has been noted to reflect a loss of balance
and an eventual fall in monopods[6] and bipeds[1] —
two classes of legged robots most prone to instabilities.
The exit of the GCoM from the support polygon is
considered to be the determining factor of stability in
the study of human posture as well[8].

Although the position of the GCoM is sufficient to
determine the occurrence of foot rotation in a station-
ary robot, it is not so for a robot in motion. Instead
it is the location of the foot rotation indicator (FRI)
point, which we introduce in this paper, that indi-
cates the existence of an unbalanced torque on the
foot. The FRI point is a point on the foot/ground
surface, within or outside the support polygon, where
the net ground reaction force would have to act to keep
the foot stationary. Farther away this point from the
support boundary, larger is the unbalanced moment,
and greater is the instability. To ensure no foot rota-
tion, the FRI point must remain within the support
polygon, regardless of the GCoM position. The FRI
point is a dynamics-based criterion, and reduces to the
GCoM position for a stationary robot.

We would like emphasize that the FRI point is dis-
tinctly different from the center of pressure CoP — bet-
ter known as the zero moment point (ZMP)[1, 4, 5,
7,9, 10, 11, 12] in the robotics literature — and fre-
quently used in gait planning for biped robots. CoP
is a point on the foot/ground surface where the net

1GCoM: Ground Projection of the Center of Mass.



ground reaction force actually acts. Regardless of the
state of stability of the robot, the CoP may never leave
the support polygon, whereas the FRI point does so
whenever there is an unbalanced torque on the foot.
In fact, the distance of the FRI point from the sup-
port polygon is an indication of the severity of this
unbalanced torque and may be exploited during the
planning stage.

This paper makes two main contributions. The first
is the introduction of the FRI point which may be em-
ployed as a useful tool in gait planning in biped and
other legged robots, as well as for the postural stability
assessment in the human. The second contribution is
in response to our discussion with other researchers re-
garding the misconceptions surrounding CoP and the
CoP/ZMP equivalence. We review the physics behind
both the concepts and show that CoP and ZMP are
identical.

2 FRI point of a biped robot

In order to formally introduce the FRI point, we first
treat the entire biped robot — a general n-segment ex-
tended rigid-body kinematic chain (sketch shown for
example purpose in Fig. 1) — as a system and deter-
mine its response to the external force/torque. We
may employ Newton or d’Alembert’s principles for this
purpose. The external forces acting on the robot are
the resultant ground reaction force/torque, R and M,
acting at the CoP (denoted by point P, see Fig. 2),
and the gravity. The equation for rotational dynamic
equilibrium is obtained by noting that the sum of the
external moments on the robot, computed either at
its CoM or at any stationary reference point is equal
to the sum of the rates of change of angular momen-
tum of the individual segments about the same point.
Taking moments at the origin O, we have

M+OP xR+ OG; xm;g=
ZHGi +20Gi X mia; (1)

where m; is the mass, G; is the CoM location, a; is

the CoM linear acceleration, and Hg; is the angular
momentum about CoM, of the i*" segment. M is the
frictional ground reaction moment (tangential).

An important aspect of our approach is to treat the
stance foot as the focus of attention. Indeed, as the
only robot segment interacting with the ground, the
stance foot is a “special” segment subjected to joint
forces, gravity forces and the ground reaction forces.
Viewing from the stance foot, the dynamics of the
rest of the robot may be completely represented by
the ankle force/torque —R; and —71 (negative signs
for convention). Fig. 2 artificially disconnects the an-
kle joint to clearly show the forces in action at that
joint. The dynamic equilibrium equation of the foot
(segment#1) is:

M + OP x R+ 0OG, ><m1g—7-1—001 x R1 =
HG’I + OG1 X mia1. (2)

Figure 1: The sketch of a biped robot with the dynamic forces
on the i-th segment. The GCoM is denoted by C.

The equations for static equilibrium of the foot are
obtained by setting the dynamic terms (RHS) in Eq. 2
to zero:

M+OPXR+0G; xmig—71— 001 xR; =0 (3)

Recall that to derive Eq. 3 we could compute the
moments at any other stationary reference point. Out
of these the CoP represents a special point where Eq. 3
reduces to a simpler form

M + PG1 Xxmig — 11 — PO1 X R =0. (4)

Considering only the tangential (XY") vector compo-
nents of Eq. 4, we may write

(‘I’1—|—PO1 x R — PG, ><m19> =0 (5)
t

where the subscript ¢ implies the tangential compo-
nents. Since M is tangential to the foot/ground sur-
face its vector direction is normal to that surface?. In
the presence of an unbalanced torque on the foot Eq. 5
is not satisfied for any point within the support poly-
gon. One may, however, still find a point F' outside
the support boundary which satisfies Eq. 4, i.e.,

(T1+F01XR1—FG1 xmlg) =0. (6)
t

The point F' is called the FRI point and defined as,

2We ignore foot rotation about the ground normal as it does
not contribute to a balance loss. Also we assume that the
foot/ground friction is sufficiently large and there is no sliding.



Figure 2: Biped robot foot artificially disconnected to show
the intervening forces. The CoP and the FRI point are denoted
by P and F, respectively.

The foot rotation indicator (FRI) point is a point
on the foot/ground contact surface, within or
outside the convex hull of the foot support area,
at which the resultant moment of the force/torque
impressed on the foot is normal to the surface.

By impressed force/torque, we mean the force and
torque at the ankle joint plus the weight of the foot,
and not the ground reaction forces. An intuitive un-
derstanding is obtained by setting 71 = 0, m; =0 in
Eq. 6. In this case F' is the point on the ground where
the line of action of R, penetrates, as was considered
in [6] to analyze the hoof rotation in a monopod.

Finally, explicit expressions for the coordinates of
F,OF : (OF,,0F,,OF, = 0) are obtained by computing
the dynamics of the robot minus the foot at F,

n
71+ FO, XRl—}—ZFGiXmig:
=2

n n
ZHGi+ZFGixmiai (7)
i=2 =2

Using Eq. 6 and considering only the tangential
components,

(FG1 ><m19+i:i2FGi ><mi(y*0»i))75 = (chl)t
(8)

Noting FG; = FO + OG; and OF = —FO, Eq. 8 may

be rewritten as

(ZOFxmi(aifg)fOFxmlg) =

i=2 t
(—OGl><m1g+ZHG¢+ZOG¢><m¢(ai—g)> . (9)
i=2 i=2 t
Carrying out the operation, we may finally obtain:

NU M,
DEN’

NUM:
OF, = !
DEN

where DEN = mig + Z?zzmi(aiz + g9), NUM; =
mloG}yg + 2?22 m¢OGiy(aiz =+ g) — 2?22 m¢OGizaiy +
Z?:z Hgix and NUM> = ’I’nl'OGlmg =+ E?:z miOGm(aiz =+
9) — iy miOGiz 50 — Y1y Haiy.

and OFy = (10)

2.1 Properties of FRI point

Some useful properties of the FRI point which may be
exploited in gait planning are listed below:

1. The FRI point indicates the occurrence of foot
rotation as already described.

2. The location of the FRI point indicates the mag-
nitude of the unbalanced moment on the foot.
The total moment M’ due to the impressed forces
about a point A on the support polygon boundary
(Fig. 2) is:

ML = AF x (mig — R1) (11)

which is proportional to the distance between A

and F. If F is situated inside the support poly-
gon M is counter-acted by the moment due to R
and is precisely compensated, see Fig. 3, top, for
a planar example. Otherwise, M} is the uncom-
pensated moment which causes the foot to rotate
(Fig. 3, bottom).

3. The FRI point indicates the direction of foot ro-
tation. This we derive from Eq.11 assuming that
m1g — R; is directed downwards.

4. The FRI point indicates the stability margin of
the robot. The stability margin of a robot against
foot rotation may be quantified by the minimum
distance of the support polygon boundary from
the current location of the FRI point within the
footprint. Conversely, when the FRI point is out-
side the footprint, this minimum distance is a
measure of instability of the robot. An imminent
foot rotation will be indicated by a motion of the
FRI point towards the support polygon boundary.

2.2 Examples

The difference between the CoP, GCoM, and the FRI
point will be analytically explored in Section 3. Here
we provide two examples to aid our intuitive under-
standing. Fig. 4 depicts a planar inverted pendulum
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Figure 3: The magnitude of the moment experienced by a
point on the support boundary is linearly proportional to the
distance of this point from the FRI point (F). The magnitudes
of the moments are shown by the arrow lengths. CW (i.e,,
negative) moments are shown by upward pointed arrows and the
CCW (i.e., positive) moments are shown by downward pointed
arrows. Moments are precisely compensated at top, so P = F,
and the foot is stable. At bottom, P # F and the foot is
unstable. n stands for the normal component.

connected by an “ankle” joint to a massless® trian-
gular foot. In the first example (top) the pendu-
lum configuration corresponds to a GCoM position de-
noted by C, outside the support polygon. The foot is
however prevented from rotating by the ankle torque
(mi%6 — milgcosf) and the FRI point F is situated
within the support line. Note that in order to stop the
robot from tipping over [5] used a scheme to acceler-
ate forward the heavy robot body. This generates a
supplementary backward inertia force — similar to this
example — which shifts the FRI point backward.

In the second example (bottom), the pendulum is
vertically upright with its GCoM well within the sup-
port line. Despite, the foot starts to rotate due to
the ankle torque ml?§. The FRI point F is situ-
ated outside the support line at a horizontal distance

@(l +h) from O.

g

3 FRI point, CoP (ZMP) and
GCoM compared

3.1 CoP reviewed

Although the term CoP most likely originated in the
field of fluid mechanics, it is frequently used in the

OFy =

3This simplifies our description without compromising the
main issue.
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Figure 4: Two simple examples to compare and contrast the
CoP (P), GCoM (C), and FRI point (F). In the top figure the
foot is in static equilibrium since F' is within the support line
(although C' is outside). P is coincident with F. At bottom,
the foot is starting to rotate since F' is outside the support line
(although C is inside). P is at the tip about which the foot
rotates.

study of gait and postural balance. In Fig. 5, two
types of interaction forces are shown to act at the
foot/ground interface. They are the normal forces
fni, always directed upwards (Fig. 5, top left) and
the frictional tangential forces f,; (Fig. 5, top right).
CoP may be defined as the point P where the resul-
tant R, = Y f,; acts. With respect to a coordinate

origin O, OP = M, where g; is the vector to the

point of action of force f;. P must lie within the sup-
port polygon. The resultant of the tangential forces
may be represented at P by a force R; =3 f,; and a
moment M = Y r; x f,; where r; is the vector from P
to the point of application of 3 f,,.

The complete picture is shown in Fig. 5, bottom.
The stance foot of the biped robot is subjected to a re-
sultant ground reaction force R = R,+R; and a ground
reaction moment M. An analysis with a continuous
distribution of ground reaction force was performed
earlier[2, 3]. We point out that contrary to what ap-
peared in [9] R, and not R,, is the total ground re-
action force. Note that CoP is identical to what has
been termed as the “center of the actual ground reac-
tion force” (C-ATGRF) in a recent paper|[5)].
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Figure 5: Analysis of CoP (Section 3.1). In the foot/ground
interface we have the normal forces (top left) and the frictional
tangential forces (top right). CoP is the point (P) where the
resultant R, of the normal forces act. At CoP, the tangential
forces may be represented by a resultant force R; and a moment
M (bottom). Ground reaction force is R = R, + R;.

3.2 Zero moment point (ZMP)

The concept of ZMP which we demonstrate to be iden-
tical to the CoP is known to have originally been intro-
duced in 1969[13]. Since then it has been frequently
used in biped robot control [1, 4, 5, 7, 9, 10, 11, 12]
as a criterion of postural stability. Reference is often
made to the ZMP condition[1], or the ZMP stability
criterion[7], which states that the ZMP of a biped
robot must be constrained within the convex hull of
the foot support area to ensure the stability of the
foot/ground contact[1], walk stability without falling
down[1], dynamic stability of locomotion[10, 9], phys-
ical admissibility and realizability of gait[9]. Unfortu-
nately, these justifications are not all equivalent, and
the physical implications of some of these descriptions
are not entirely clear.

A similar problem is encountered with the different
definitions of ZMP, which, perhaps due to lack of rigor,
are not always clearly understandable and has created
confusion in the research community. Among the ref-
erences reviewed we find the following definitions to
be correct and consistent:

Def1l Hemami and Golliday 1977: ZMP is the point
where the vertical reaction force intersects the
ground[4].

Def2 Arakawa and Fukuda 1997: ZMP is the point on
the floor at which the moment T : (T3, Ty,T.) gen-
erated by the reaction force and the reaction torque
satisfies T = 0, and Ty = 0[1].

The term zero moment point is a misnomer since
in general only two of the three moment components

are zero. This raises question about the necessity of
introducing a new name for an already well-known
concept.

3.3 CoP =ZMP

Defs. 1, 2 of ZMP immediately correspond to the def-

inition of CoP as we described in Section 3.1. It is also
possible to show that CoP is the same point where the

resultant moment generated by the inertia and grav-
ity forces is tangential to the surface. To prove this
let us first assume that this latter point, which we call
D is distinct from the CoP. The dynamic equilibrium
equation computed at D takes the form:

M+DP xR+ DG; xmig=
> Hgi+» DG xmia; (12)
whereas, by definition D satisfies:
() _Hgi+ > DG xmi(a; —g)),=0 (13)

Comparing Egs. 12 and 13, (DP x R); = 0. However,
since R # 0 and DP }f R in general, this is possible
only if DP = 0 or the points D and P are coincident.
Other approaches have led to identical conclusion[2,
3]. CoP is defined in terms of the point of action of
the ground reaction force and ZMP is traditionally
defined in terms of the dynamic forces.
Another way to see this is to rewrite Eq. 12 as

(DPxR),=(>_Hgi+y_ DG;xmi(a;—g)), (14)

in which the LHS corresponds to the traditional defi-
nition of CoP and the RHS corresponds to the defini-
tion used to compute the ZMP.

Since CoP=ZMP, ZMP may never leave the sup-
port polygon, contrary to what was incorrectly sug-
gested in [7, 9]. Also, ZMP has no inherent relation-
ship with a dynamically stable gait as has been previ-
ously implied[7, 10].

3.4 FRI point and CoP

In order to relate the FRI point and CoP let us rewrite
Eq. 2, this time computing the moments at F":

M+ FP xR+ FG; xmig—711— FO;1 xR =
HGI + FG1 xmia1 (15)

By substituting Eq. 6 in Eq. 15 we obtain:

(FP X R)t = (IEI(;l + FG1 ><m1a,1)t (16)

The FRI point and CoP are coincident if FP = 0,
i.e., if (Hg, + FG1 x mia1); = 0. This is possible if any
one of the following conditions is satisfied: 1) a; = 0
and angular acceleration is zero i.e., the foot is at rest
or has uniform linear and angular motions, 2) I1 =0
and my = 0, i.e., the foot has zero mass and inertia,
3) FGq H mi1a1 and Il = 0

It may be shown that for an idealized rigid foot the
CoP is situated at a boundary point unless the foot is



in stable equilibrium. Since the position of CoP can-
not distinguish between the marginal state of static
equilibrium and a complete loss of equilibrium of the
foot (in both cases it is situated at the support bound-
ary), its utility in gait planning is limited. FRI point,
on the other hand, may exit the physical boundary of
the support polygon and it does so whenever the foot
is subjected to a net rotational moment.

3.5 CoP and GCoM
Referring to Fig. 1, GCoM, C satisfies
CGXZmiQZO (17)

where G is the center of mass of the entire robot
and Y. m; = M is the total robot mass. Noting that

CGZmZ = ECGimi; and CG; = CP + PG; we can
rewrite Eq. 17 as:

CP x> mig+» PGixmig=0 (18)
Substituting in Eq. 1 we get
M*CPXZWL;‘QZZHGZ"FZPGixmiai (19)

From above, P and C coincide if (¥ Hgi +
> PG; x m;a;), = 0 which is possible if the robot is
stationary.

t

4 Conclusions

We introduced a new criterion called the FRI point
that indicates the state of postural stability of a biped
robot. The FRI point is a point on the foot/ground
surface, within or outside the support polygon, where
the net ground reaction force would have to act to keep
the foot stationary. When the entire robot is station-
ary and stable, the FRI point is situated within the
support polygon, and is coincident with GCoM and
CoP. For stationary and unstable configurations, both
GCoM and FRI point, which are coincident, are out-
side the support polygon. The CoP is at the polygon
boundary.

In the presence of dynamics the GCoM and FRI
point are non-coincident. When the foot is stable (im-
plying that the robot possesses postural balance) the
FRI point is situated within the support polygon and
is coincident with the CoP. The CoP may never leave
the support polygon, whereas the FRI point may. An
exit of the FRI point from the support polygon signals
postural instability. Farther away is the FRI point
from the support boundary, larger is the unbalanced
moment on the foot and greater is the instability. The
distance between the FRI point and the nearest point
on the polygon boundary is an useful indicator of the
static stability margin of the foot.

Although postural stability of a biped robot (or a
human being) is closely related to the static stability
of its foot, the relationship between foot stability and
natural anthropomorphic bipedalism is not at all clear.
Even a simple observation of human locomotion will

convince us that a significant part of the gait cycle
involves foot rotation. One of our future goals is to
measure the FRI point trajectory for natural human
locomotion.
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