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Abstract

The zero moment point (ZMP), foot rotation indicator (FRI) and
centroidal moment pivot (CMP) are important ground reference
points used for motion identification and control in biomechanics
and legged robotics. In this paper, we study these reference points
for normal human walking, and discuss their applicability in legged
machine control. Since the FRI was proposed as an indicator of foot
rotation, we hypothesize that the FRI will closely track the ZMP in
early single support when the foot remains flat on the ground, but
will then significantly diverge from the ZMP in late single support
as the foot rolls during heel-off. Additionally, since spin angular
momentum has been shown to remain small throughout the walking
cycle, we hypothesize that the CMP will never leave the ground sup-
port base throughout the entire gait cycle, closely tracking the ZMP.
We test these hypotheses using a morphologically realistic human
model and kinetic and kinematic gait data measured from ten human
subjects walking at self-selected speeds. We find that the mean sep-
aration distance between the FRI and ZMP during heel-off is within
the accuracy of their measurement (0.1% of foot length). Thus, the
FRI point is determined not to be an adequate measure of foot ro-
tational acceleration and a modified FRI point is proposed. Finally,
we find that the CMP never leaves the ground support base, and the
mean separation distance between the CMP and ZMP is small (14%
of foot length), highlighting how closely the human body regulates
spin angular momentum in level ground walking.
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1. Nomenclature

�ai = body segment icenter of mass acceleration
α = parameter used for optimization of human model mass

parameters
D = relative mass distribution described by a 16-component

vector
DA = average relative mass distribution (Winter 1990)
DR = resulting relative mass distribution
DS = subject specific relative mass distribution obtained by

equal density assumption
Di

S
= relative mass of the ith link

�F = net force acting on a whole body (in free fall Fx = Fy =
0, Fz = −Mg)

�Fankle = net force at the stance foot ankle joint exerted from
the rest of the body

�FG.R. = ground reaction force
FG.R. ⊥ = component of the ground reaction force normal to

the surface
�FR. = reaction force (general surface)
F moment

x
= net zero force in x-direction corresponding to the

moment balance strategy
F zero−moment

x
= net zero force in x-direction corresponding to

the zero-moment balance strategy
g = gravitational constant (9.81 m s−2)

1



Pr
oo

f C
op

y

2 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / October 2005

�g = gravitational vector (−g · �eZ)
↔→ Ii = body segment i inertia tensor about the link’s center

of mass
↔→ Ii (�rCM) = time-dependent segment i moment of inertia

tensor about the center of mass
↔→ I (�rCM) = time-dependent whole-body moment of inertia

tensor about the center of mass
�Lf oot (�rF ) = angular momentum of the foot about some point

F
�Lf oot (�rFRI ) = angular momentum of the foot about the foot

rotation indicator point
�Lf oot (�rmod.FRI ) = angular momentum of the foot about the

modified foot rotation indicator point
�Ldes. (�rCM) = desired whole-body angular momentum
lf oot = length of the foot
M = body mass
mf oot = mass of the foot
mi = body segment imass
�n⊥ = unit vector normal to the surface and pointing away

from the ground
PA = average distribution of link densities (Winter 1990)
P(α) = density profile described by the 16-component vector
P i(α) = M Di(α)

/
V i = density of the ith link

�pf oot = linear momentum of the foot’s center of mass
�̇pf oot = net force acting on the foot
p (�r) = pressure at location �r
�rankle = stance foot ankle joint center
�rCM = body center of mass
�rCMP = centroidal moment pivot point
�rf oot = stance foot center of mass
�rFRI = foot rotation indicator point
�ri = body segment icenter of mass
�rmod.FRI = modified foot rotation indicator point
�rZMP = zero moment point
t = time
�τ (�rZMP ) |horizontal = horizontal component (orthogonal to

gravity vector) of the net moment about the zero moment
point

�τankle = net torque at the stance foot ankle joint exerted from
the rest of the body

�τdes. (�rCM) = desired target whole-body moment about the
center of mass

�τG.R.(0)|horizontal = resulting moment exerted from the ground
on the body about the origin of the lab reference frame

�τG.R.(�rZMP )|horizontal = horizontal component (orthogonal to
gravity vector) of the moment of ground reaction force
about the zero moment point

�τinertia+gravity(�rZMP )|horizontal = horizontal component (ortho-
gonal to gravity vector) of the moment due to inertial and
gravitational forces about the zero moment point

�τ ||| = component of the whole-body moment parallel to the
flat surface (i.e., �τ ||| · �n⊥ = 0)

�θ = time-dependent whole-body angular excursion vector
�θdes. = desired target whole-body angular excursion

�̈θdes. = desired target whole-body angular acceleration
�v = time-dependent whole-body center of mass velocity

(error in paper)
V i = volume of the ith link
�ω = time-dependent whole-body angular velocity vector
�ωi = body segment i angular velocity
x = 2af oot

/
g = relative heel acceleration

xpeak = peak relative heel acceleration
z̈CM = body center of mass acceleration in the vertical

direction (in free fall z̈CM = −g)

2. Introduction

Legged robotics has witnessed many impressive advances in
the last several decades, from animal-like, hopping robots in
the 1980s (Raibert 1986) to walking humanoid robots at the
turn of the century (Hirai 1997; Hirai et al. 1998; Chew, Pratt,
and Pratt 1999; Yamaguchi et al. 1999; Kagami et al. 2000).
Although the field has witnessed tremendous progress, legged
machines that demonstrate biologically realistic movement
patterns and behaviors have not yet been offered, due in part
to limitations in control technique (Schaal 1999; Pratt 2002).
An example is the Honda robot, a remarkable autonomous
humanoid that walks across level surfaces and ascends and
descends stairs (Hirai 1997; Hirai et al. 1998). The stability
of the robot is obtained using a control design that requires the
robot to accurately track precisely calculated joint trajectories.
In distinction, for many movement tasks, animals and humans
control limb impedance, allowing for a more robust handling
of unexpected disturbances (Pratt 2002).

The development of animal-like and human-like robots that
mimic the kinematics and kinetics of their biological coun-
terparts, quantitatively or qualitatively, is indeed a formidable
task. Humans, for example, are capable of performing nu-
merous dynamical movements in a wide variety of complex
and novel environments while robustly rejecting a large spec-
trum of disturbances. Given limitations on computational ca-
pacity, real-time trajectory planning in joint space does not
seem feasible using optimization strategies with moderately
long future time horizons. Subsequently, for the diversity of
biological motor tasks to be represented in a robot’s move-
ment repertoire, the control problem has to be restated us-
ing a lower-dimensional representation (Full and Koditschek
1999). However, independent of the specific architecture that
achieves that reduction in dimension, biomechanical mo-
tion characteristics have to be identified and appropriately
addressed.

There are several ground reference points used for mo-
tion identification and control in biomechanics and legged
robotics. The locations of these reference points relative to
each other, and relative to the ground support area, provide im-
portant local and sometimes global characteristics of whole-
body movement, serving as benchmarks for either physical or



Pr
oo

f C
op

y

Popovic, Goswami, and Herr / Ground Reference Points in Legged Locomotion 3

desired movement patterns. The zero moment point (ZMP),
first discussed by Elftman1 (1938) for the study of human
biomechanics, has only more recently been used in the context
of legged machine control (Vukobratovic and Juricic 1969;
Vukobratovic and Stepanenko 1973; Takanishi et al. 1985;
Yamaguchi, Takanishi and Kato 1993; Hirai 1997; Hirai et al.
1998). In addition to this standard reference point, Goswami
(1999) introduced the foot rotation indicator (FRI), a ground
reference point that provides information on stance-foot an-
gular accelerations when only one foot is on the ground. Since
its introduction, the FRI has been used in legged robotic con-
trollers to determine whether the stance foot is flat on the
ground or rolling with angular acceleration during single sup-
port (Wollherr et al. 2003; Hofmann et al. 2004; Popovic,
Englehart and Herr 2004; Choi and Grizzle 2005). The cen-
troidal moment pivot (CMP) is yet another ground reference
point recently introduced in the literature (Herr, Hofmann,
and Popovic 2003; Hofmann, 2003; Goswami and Kallem
2004; Popovic, Hofmann, and Herr 2004a). When the CMP
corresponds with the ZMP, the ground reaction force passes
directly through the center of mass (CM) of the body, sat-
isfying a zero moment or rotational equilibrium condition.
Hence, the departure of the CMP from the ZMP is an indi-
cation of non-zero CM body moments, causing variations in
whole-body, spin angular momentum.

In this paper we study the ZMP, FRI, and CMP ground
reference points. Using a consistent mathematical notation,
we define and compare the ground points in Section 3 and
outline the various methodologies that can be employed in
their estimation. In Section 4, we analyze the ZMP, FRI, and
CMP trajectories for level-ground, steady-state human walk-
ing, and in Section 5, we conclude the paper with a discussion
of the significance of the ground reference points to legged
robotic control systems.

In Section 4, two key hypotheses are tested regarding the
nature of the ground reference points in level-ground, steady-
state human walking. As known from gait observations, the
stance foot rolls and undergoes angular accelerations late in
the single support phase of walking, as the heel lifts from
the walking surface during powered plantar flexion (Rose and
Gamble 1994). In distinction, throughout the controlled dor-
siflexion phase of single support, the foot does not roll but
remains flat on the ground. Hence, we hypothesize that the
FRI trajectory will closely track the ZMP trajectory through-
out the controlled dorsiflexion phase of single support, but
will then significantly diverge from the ZMP trajectory, leav-
ing the ground support base during powered plantar flexion. In
addition to the FRI reference trajectory, we also study the char-
acter of the CMP trajectory in human walking. Because recent
biomechanical investigations have shown that total spin an-

1. Although Borelli (1680) discussed the concept of the ZMP for the case of
static equilibrium, it was Elftman (1938) who introduced the point for the
more general dynamic case. Elftman named the specified point the “position
of the force” and built the first ground force plate for its measurement.

gular momentum is highly regulated throughout the walking
cycle (Popovic, Gu, and Herr 2002; Gu 2003; Herr, White-
ley and Childress 2003; Herr and Popovic 2004; Popovic,
Hofmann, and Herr 2004a), we hypothesize that the CMP
trajectory will never leave the ground support base through-
out the entire walking gait cycle, closely tracking the ZMP
trajectory throughout the single and double support phases
of gait. We test both the FRI and CMP hypotheses using a
morphologically realistic human model and kinetic and kine-
matic gait data measured from ten human subjects walking at
self-selected walking speeds.

3. ZMP, FRI, and CMP Reference Points:
Definitions and Comparisons

In this section, we define the ground reference points: ZMP,
FRI, and CMP. Although the reference points have been de-
fined previously in the literature, we define and compare
them here using a consistent terminology and mathematical
notation.

In this paper, we adopt a notation by which �τ(�rA) symbol-
izes the total moment acting on a body about point �rA. For
example,�τ(0) symbolizes a moment calculated at the origin
of a coordinate frame. This notation stresses the fact that a
moment of force acting on a body changes depending on the
point about which it is calculated. In addition to the point about
which the moment is calculated, we also designate the force
used in the moment calculation. For example, if we consider
only the moment due to the ground reaction force acting on a
body, we specify this with the subscript G.R., i.e., �τG.R.(�rA).
Also, in this paper when we consider only a moment that acts
on a particular body segment, or group of segments, we spec-
ify that moment using the segment’s name in the superscript,
e.g., �τ f oot (�rA). In addition, in this paper, we often refer to the
ground support base (GSB) to describe the foot–ground in-
teraction. The GSB is the actual foot–ground contact surface
when only one foot is in contact with the ground, or the con-
vex hull of the two or more discrete contact surfaces when two
or more feet are in contact with the ground, respectively. Fi-
nally, the ground support envelope is used to denote the actual
boundary of the foot when the entire foot is flat on the contact
surface, or the actual boundary of the convex hull when two
or more feet are flat on the contact surface. In contrast to the
GSB, the ground support envelope is not time varying even
in the presence of foot rotational accelerations or rolling.

3.1. Zero Moment Point

In the book On the Movement of Animals, Borelli (1680) dis-
cussed a biomechanical point that he called the support point, a
ground reference location where the resultant ground reaction
force acts in the case of static equilibrium. Much later, Elftman
(1938) defined a more general “position of the force” for both
static and dynamic cases, and he built the first ground force
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plate for its measurement. Following this work, Vukobratovic
and Juricic (1969) revisited Elftman’s point and expanded its
definition and applicability to legged machine control. They
defined how the point can be computed from legged system
state and mass distribution, allowing a robotic control sys-
tem to anticipate future ground–foot interactions from desired
body kinematics. For the application of robotic control, they
renamed Elftman’s point the ZMP.

Although for flat horizontal ground surfaces the ZMP is
equal to the center of pressure, the points are distinct for ir-
regular ground surfaces. In Appendix A, we properly define
these ground points, and prove their equivalence for horizon-
tal ground surfaces, and their uniqueness for more complex
contact topologies.

Vukobratovic and Juricic (1969) defined the ZMP as the
“point of resulting reaction forces at the contact surface be-
tween the extremity and the ground”. The ZMP, �rZMP , there-
fore may be defined as the point on the ground surface about
which the horizontal component of the moment of ground re-
action force is zero (Arakawa and Fukuda 1997;Vukobratovic
and Borovac 2004), or

�τG.R.(�rZMP )|horizontal = 0. (1)

Equation (1) means that the resulting moment of force ex-
erted from the ground on the body about the ZMP is always
vertical, or parallel to �g. The ZMP may also be defined as the
point on the ground at which the net moment due to inertial
and gravitational forces has no component along the horizon-
tal axes (Hirai et al. 1998; Dasgupta and Nakamura 1999;
Vukobratovic and Borovac 2004), or

�τinertia+gravity(�rZMP )|horizontal = 0. (2)

Proof that these two definitions are in fact equal may be found
in Goswami (1999) and more recently in Sardain and Bessonet
(2004).

Following from eq. (1), if there are no external forces ex-
cept the ground reaction force and gravity, the horizontal com-
ponent of the moment that gravity creates about the ZMP is
equal to the horizontal component of the total body moment
about the ZMP, �τ(�rZMP )|horizontal , or

�τ (�rZMP ) |horizontal = [
(�rCM − �rZMP ) × M �g]

horizontal
(3)

where �rCM is the CM and M is the total body mass. Using
detailed information of body segment dynamics, this can be
rewritten as

N∑
i=1

[
(�ri − �rZMP ) × mi �ai + d(

↔→ Ii �ωi)

dt

]
horizontal

= [
(�rCM − �rZMP ) × M �g]

horizontal
, (4)

where �ri is the CM of the ith link, mi is the mass of the ith

link, �ai is the linear acceleration of the ith link CM,
↔
I i is the

inertia tensor of the ith link about the link’s CM, and �ωi is
the angular velocity of the ith link. Equation (4) is a system
of two equations with two unknowns, xZMP and yZMP , which
can be solved to give

xZMP = −

N∑
i=1

{
�ri × mi(�ai − �g) +

[
d

(
↔
I i �ωi

)
/dt

]}
Y

M

(
..

Z
CM

+g

) (5)

and

yZMP =

N∑
i=1

{
�ri × mi(�ai − �g) +

[
d

(
↔
I i �ωi

)
/dt

]}
X

M

(
..

Z
CM

+g

) .

Given full body kinematics and the mass distribution of a
legged system, eq. (5) can be used to reconstruct the ZMP
trajectory. Alternatively, at a particular instant in time, eq. (5)
can be employed as a constraint equation for deciding joint
accelerations consistent with a desired ZMP position, as dis-
cussed by Kondak and Hommel (2003).

Finally, the ZMP as a function of the CM position, net CM
force ( �F = M �aCM), and net moment about the CM can be
expressed as

xZMP = xCM − Fx

Fz + Mg
zCM − τy (�rCM)

Fz + Mg
(6)

and

yZMP = yCM − Fy

Fz + Mg
zCM + τx (�rCM)

Fz + Mg
.

As emphasized in Figure 1, the most important notion of the
ZMP quantity, applicable for both single and multileg ground
support phases, is that it resolves the ground reaction force dis-
tribution to a single point. However, one needs to be careful to
use this point in an appropriate manner. Most notably, both the
vertical component of moment and the CM work performed
by the ground reaction force cannot be computed solely on
the bases of the ZMP trajectory and the resulting ground reac-
tion force vector. For example, the resultant horizontal ground
reaction force could be zero while the vertical component of
moment and/or the work performed by the ground reaction
force could be non-zero. Consider a legged posture in which
the following conditions are satisfied: (1) the ZMP is located
just beneath the CM; (2) the horizontal ground reaction force
field is tangent to a circle centered about the ZMP; (3) the
horizontal ground reaction force magnitude is a function of
only radial distance. In this situation, shown in Figure 2, the
net horizontal force is zero, but the net moment is non-zero.
Another example is two particles of equal mass subject to two
forces equal in magnitude but acting in opposite directions;
while the net force is zero and the CM is at rest, the particles
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CM

ZMP

gM

..RGF
aM

Fig. 1. Zero moment point. The ZMP is where the ground
reaction force acts whereas the CM point is where inertia and
the force of gravity originate.

are moving and the work conducted by the external forces is
non-zero. In other words, neither δWG.R. = �FG.R,δ�rZMP nor
δWG.R. = �FG.R,δ�rCM is a permissible expression for the work
performed by the ground reaction force.

3.2. Foot Rotation Indicator

3.2.1. Motivation

In legged systems, a loss of rotational equilibrium of the stance
foot during single support implies the existence of an unbal-
anced moment acting on the foot segment, causing foot ro-
tations and movement of the ZMP towards the edge of the
footprint boundary. Once the stance foot has rolled to an ex-
treme posture, pushing the ZMP to the very edge of the foot
envelope, additional rotational dynamics of the foot, such as
different rates of rotational acceleration, are no longer dis-
cernible using the ZMP. The FRI point, shown in Figure 3,
was introduced by Goswami (1999) in order to specifically ad-
dress this limitation. Dominant foot rotation has been noted to
reflect a loss of balance and an eventual fall in monopods (Lee
and Raibert 1991) and bipeds (Arakawa and Fukuda 1997),
two classes of legged robots most prone to instabilities. The
FRI point extends the concept of the ZMP and quantifies the
severity of foot rotational acceleration. A motivation behind
its formulation was to achieve a measure of foot rotational
acceleration during single support that could be employed by
legged control systems as one possible indicator of overall
postural instability.

3.2.2. Definition

The FRI point is a point on the foot–ground contact surface,
within or outside the support base, where the net ground re-

CM

ZMP

1F

2F

21 FF

Fig. 2. A legged posture is shown in which the ZMP is located
just beneath the CM, the horizontal ground reaction force
field is tangent to a circle centered about the ZMP, and the
horizontal ground reaction force magnitude is a function of
only radial distance. In this case, the net horizontal force is
zero, but the net moment is non-zero. Thus, both the vertical
component of moment and the CM work performed by the
ground reaction force cannot be computed solely on the bases
of the ZMP trajectory and the resulting ground reaction force
vector.

action force would have to act to achieve a zero moment con-
dition about the foot with respect to the FRI point itself. The
FRI point coincides with the ZMP when the foot is station-
ary, and diverges from the ZMP for non-zero rotational foot
accelerations.

Consider calculating the rotation of the stance foot during
the single support phase in the lab reference frame about some
point F on the ground. The rotational dynamical equation for
the horizontal moment component is then[

(�rZMP − �rF ) × �FG.R. +
(�rf oot − �rF

) × mf oot �g

+ (�rankle − �rF ) × �Fankle + �τankle

]
hor

=
[

d �Lf oot (�rF )

dt

]
hor

(7)

where �rf oot is the CM of the stance foot, mf oot is the mass of
the foot, �rankle is the ankle joint center at which the force �Fankle

and torque �τankle are exerted from the rest of the body, and
�Lf oot (�rF ) is the angular momentum of the foot about point F .

Now assume the existence of the point FRI for which

�τG.R. (�rFRI ) |horizontal =
[
(rZMP − �rFRI ) × �FG.R.

]
horizontal

=
[

d �Lf oot (�rFRI )

dt

]
horizontal

, (8)

and subsequently, from eq. (7),[(�rf oot − �rFRI

) × mf oot �g + (�rankle − �rFRI )

× �Fankle + �τankle

]
horizontal

= 0. (9)
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CMfoot

mfootg

m otfoot afo

FGR

Fankle

ankle

ZMP, FRI

CMfoot

Ankle

FRIZMP

GR

ankle

Fankle

FGR

mfootg

m otfoot afo

GR

Fig. 3. Foot rotation indicator. The FRI is the point where the ground reaction force would have to act to keep the foot from
accelerating. When the foot is stationary, shown in the left figure, the FRI coincides with the ZMP. As the foot starts turning
(figure on right), the FRI leaves the support base. Here the distance from the FRI to the ZMP is proportional to the magnitude
of the foot moment about the FRI point. Although only two dimensions are depicted in the figure, the FRI definition is
applicable to the problem of three-dimensional biped control problems, including foot rotational information for sagittal and
coronal planes.

Equations (8) and (9) are two equivalent physical expres-
sions of the FRI point. Clearly, if the stance foot is at rest, then
the right-hand side (RHS) of eq. (8) is zero, and the only solu-
tion is that the FRI is equal to the ZMP (because FG.R.Z �= 0).
However, if the RHS of eq. (8) is not zero, then the FRI differs
from the ZMP.While by definition the ZMP point cannot leave
the ground support base, the FRI point can. Therefore, the FRI
point, in principle, can be employed as an indicator of foot
rotational activity for single support movement activities. The
non-zero horizontal component of the foot moment is orthog-
onal to the plane of rotation defined by vectors (�rZMP − �rFRI )

and �g. By using eq. (8) and the resulting ground reaction force,
one could then obtain the magnitude of the foot moment. Note
that the definition of the FRI point, defined by eq. (8), does
not require a rigid robotic foot; the FRI point could be applied
equally well to a compliant, biological or robotic foot.

The FRI point may also be expressed directly from ob-
served foot dynamics. By manipulation of eq. (8), we obtain

xFRI = (10)

xf oot ṗZ f oot − zf oot ṗX f oot − xZMP FG.R. Z − L̇
f oot

Y

(�rf oot

)
ṗZ f oot − FG.R. Z

and

yFRI =
yf oot ṗZ f oot − zf oot ṗY f oot − yZMP FG.R. Z + L̇

f oot

X

(�rf oot

)
ṗZ f oot − FG.R. Z

,

where �pf oot denotes the linear momentum of the foot’s CM.
Alternatively, the FRI can be computed using whole-body

kinematic and mass distribution information. The underlying
idea here is that the entire legged system can be divided into
two portions, one portion consisting of the stance foot and the
second portion consisting of the rest of the body. With this
division, the RHS of eq. (8) can be rewritten as[

d �Lf oot (�rFRI )

dt

]
horizontal

=

�τ (�rFRI ) |horizontal − �τ body−f oot (�rFRI ) |horizontal, (11)

where �τ body−f oot (�rFRI ) denotes the moment applied on the
whole body minus the stance foot moment about the FRI point.

The horizontal moment on the whole body about the FRI
point can be expressed as

�τ (�rFRI ) |horizontal =[
(�rZMP − �rFRI ) × �FG.R. + (�rCM − �rFRI ) × M �g

]
horizontal

.

(12)

Combining eqs. (8), (11), and (12), we obtain

0 = [
(�rCM − �rFRI ) × M �g − �τ body−f oot (�rFRI )

]
horizontal

. (13)

Using detailed information of multibody link dynamics,
eq. (13) can be rewritten as

0 = {(�rCM − �rFRI ) × M �g

−
N∑

i=2


(�ri − �rFRI ) × mi �ai + d(

↔
I i �ωi)

dt







horizontal

, (14)
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where i = 1 corresponds to the stance foot. Similar to eq. (4),
this is a system of two equations with two unknowns, xFRI

and yFRI , which can be easily solved to give

xFRI = (15)

−

[
−�r1×m1 �g+

N∑
i=2

{
�ri ×mi(�ai −�g)+

[
d

(
↔
I i �ωi

)
/dt

]}]
Y

m1g +
N∑

i=2

mi

(
..

Z
i

+g

)

and

yFRI =[
−�r1 × m1 �g+

N∑
i=2

{
�ri × mi(�ai − �g)+

[
d

(
↔
I i �ωi

)
/dt

]}]
X

m1g +
N∑

i=2

mi

(
..

Z
i

+g

) .

A careful comparison of eqs. (5) and (15) reveals that the FRI
point and the ZMP point coincide only if

(�r1 − �rFRI ) × m1�a1 +
d

(
↔
I 1 �ω1

)
dt




horizontal

=
[

d �Lf oot (�rFRI )

dt

]
horizontal

= 0. (16)

Hence, the distance between the FRI point and the ZMP com-
municates information about foot rotational dynamics during
the single support phase (excluding foot rotations about the
vertical axis). When the FRI point coincides with the ZMP
point, the foot is stationary. In distinction, when the FRI point
diverges from the ZMP, the foot is not stationary but is under-
going non-zero rotational accelerations.

3.3. Centroidal Moment Pivot

3.3.1. Motivation

Biomechanical investigations have determined that for nor-
mal, level-ground human walking, spin angular momentum,
or the body’s angular momentum about the CM, remains small
through the gait cycle. Researchers discovered that spin an-
gular momentum about all three spatial axes was highly regu-
lated throughout the entire walking cycle, including both sin-
gle and double support phases, by observing small moments
about the body’s CM (Popovic, Gu and Herr 2002) and small
spin angular momenta (Herr and Popovic 2004; Popovic, Hof-
mann, and Herr 2004a). In the latter investigations on spin an-
gular momentum, a morphologically realistic human model
and kinematic gait data were used to estimate spin angular mo-
mentum at self-selected walking speeds. Walking spin values

were then normalized by dividing by body mass, total body
height, and walking speed. The resulting dimensionless spin
was surprisingly small. Throughout the gait cycle, none of the
three spatial components ever exceeded 0.02 dimensionless
units.2

To determine the effect of the small, but non-zero angular
momentum components on whole-body angular excursions in
human walking, the whole-body angular velocity vector can
be computed, or

�ω (t) = ↔
I

−1

(�rCM, t) �L (�rCM, t) . (17a)

Here, the time-dependent quantity,
↔
I (�rCM, t) =

N∑
i=1

↔
I i (�rCM, t),

is the whole-body inertia tensor about the CM. Subsequently,
the whole-body angular velocity vector may be integrated to
give the whole-body angular excursion vector, or

�θ(t) =
t∫

−∞

�ω(t∗) dt∗ + C, (17b)

where C is an integration constant determined through an
analysis of boundary conditions3 (Popovic, Hofmann, and
Herr 2004a). The whole-body angular excursion vector can
be accurately viewed as the rotational analog of the CM posi-
tion vector (i.e., note that analogously �v = �̇rCM = M−1 �p and

�rCM(t) =
t∫

−∞
�vCM(t∗) dt∗+D). In recent biomechanical inves-

tigations, angular excursion analyses for level ground human
walking showed that the maximum whole-body angular de-
viations within sagittal (<1◦), coronal (<0.2◦), and transverse
(<2◦) planes were negligibly small throughout the walking
gait cycle (Herr and Popovic 2005; Popovic, Hofmann and
Herr 2004a). These results support the hypothesis that spin
angular momentum in human walking is highly regulated by
the central nervous system (CNS) so as to keep whole-body
angular excursions at a minimum.

According to Newton’s laws of motion, a constant spin an-
gular momentum requires that the moments about the CM sum
to zero. During the flight phase of running or jumping, angular
momentum is perfectly conserved since the dominant exter-
nal force is gravity acting at the body’s CM. However, during
the stance period, angular momentum is not necessarily con-
stant because the legs can exert forces on the ground tending

2. Using kinematic data from digitized films (Braune and Fisher 1895), Elft-
man (1939) estimated spin angular momentum during the single support
phase of walking for one human test subject, and found that arm movements
during walking decreased the rotation of the body about the vertical axis.
Although Elftman did not discuss the overall magnitude of whole-body an-
gular momentum, he observed important body mechanisms for intersegment
cancellations of angular momentum.
3. Since the whole-body angular excursion vector defined in eq. (??) necessi-
tates a numerical integration of the body’s angular velocity vector, its accurate
estimate requires a small integration time span and a correspondingly small
error in the angular velocity vector.
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to accelerate the system (Hinrichs, Cavanagh and Williams
1983; Raibert, 1986; Dapena and McDonald 1989; LeBlanc
and Dapena 1996; Gu 2003). Hence, a legged control system
must continually modulate moments about the CM to control
spin angular momentum and whole-body angular excursions.
For example, the moment about the CM has to be continually
adjusted throughout a walking gait cycle to keep spin angular
momentum and whole-body angular excursions from becom-
ing appreciably large. To address spin angular momentum and
the moment about the CM in connection with various postu-
ral balance strategies, the CMP ground reference point was
recently introduced (Herr, Hofmann, and Popovic 2003; Hof-
mann 2003; Popovic, Hofmann, and Herr 2004a). Goswami
and Kallem (2004) proposed the same point in an independent
investigation.4

3.3.2. Definition

The CMP is defined as the point where a line parallel to the
ground reaction force, passing through the CM, intersects with
the external contact surface (see Figure 4). This condition can
be expressed mathematically by requiring that the cross prod-
uct of the CMP–CM position vector and the ground reaction
force vector vanishes, or

(�rCMP − �rCM) × �FG.R. = 0 and zCMP = 0. (18)

By expanding the cross product of eq. (18), the CMP location
can be written in terms of the CM location and the ground
reaction force, or

xCMP = xCM − FG.R. X

FG.R. Z

zCM (19)

and

yCMP = yCM − FG.R. Y

FG.R. Z

zCM.

Finally, by combining ZMP eq. (6) and CMP eq. (19), the
CMP location may also be expressed in terms of the ZMP
location, the vertical ground reaction force, and the moment
about the CM, or

xCMP = xZMP + τy (�rCM)

FG.R. Z

(20)

and

yCMP = yZMP − τx (�rCM)

FG.R. Z

.

4. Popovic, Hofmann, and Herr (2004a) called the specified quantity the zero
spin center of pressure (ZSCP) point, whereas Goswami and Kallem (2004)
called the specified quantity the zero rate of angular momentum (ZRAM)
point. In this paper, we use a more succinct name, the centroidal moment
pivot (CMP).

ZMP

..RGF

CMP

CM

gM

CM

gM

..RGF

 ZMP=CMP

aM
aM

0|horizontalCMr 0|horizontalCMr

Fig. 4. Centroidal moment pivot. The CMP is the point where
the ground reaction force would have to act to keep the
horizontal component of the whole-body angular momentum
constant. When the moment about the CM is zero (shown
in the figure to the right), the CMP coincides with the ZMP.
However, when the CM moment is non-zero (figure on the
left), the extent of separation between the CMP and ZMP
is equal to the magnitude of the horizontal component of
moment about the CM, divided by the normal component of
the ground reaction force.

As shown by eq. (20), when the CMP is equal to the ZMP,
the ground reaction force passes directly through the CM of
the body, satisfying a zero moment or rotational equilibrium
condition. In distinction, when the CMP departs from the
ZMP, there exists a non-zero body moment about the CM,
causing variations in whole-body, spin angular momentum.
While by definition the ZMP cannot leave the ground support
base, the CMP can, but only in the presence of a significant
moment about the CM. Hence, the notion of the CMP, ap-
plicable for both single and multileg ground support phases,
is that it communicates information about whole-body rota-
tional dynamics when supplemented with the ZMP location
(excluding body rotations about the vertical axis).

It is interesting to note that when the stance foot is at rest
during single support, and when there is zero moment about
the CM, the ZMP, FRI, and CMP coincide. However, gener-
ally speaking, these ground reference points cannot be con-
sidered equivalent.

4. ZMP, FRI, and CMP Trajectories in Human
Walking

For the diversity of biological motor tasks to be represented
in a robot’s movement capabilities, biomechanical movement
strategies must first be identified, and legged control systems
must exploit these strategies. To this end, we ask what are
the characteristics of the ZMP, FRI, and CMP ground refer-
ence points in human walking, and how do they interrelate?
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As discussed in Section 3, the separation distance between
the FRI point and the ZMP should, in principle, be a reason-
able indicator of foot rolling or angular acceleration. Hence,
we anticipate that the FRI trajectory will closely track the
ZMP trajectory throughout the controlled dorsiflexion phase
of single support, when the foot is predominantly flat on the
ground. However, during the powered plantar flexion phase,
as the foot rolls and experiences acceleration, we expect the
FRI point to diverge significantly from the ZMP trajectory,
leaving the ground support base. In addition to the FRI ref-
erence trajectory, we also study the character of the CMP
trajectory in human walking. As discussed in Section 3, spin
angular momentum remains small throughout the walking cy-
cle. Hence, we hypothesize that the CMP trajectory will never
leave the ground support base during the entire walking gait
cycle, closely tracking the ZMP trajectory during both single
and double support phases.

In this section we test both the FRI and CMP hypotheses us-
ing a morphologically realistic human model and kinetic and
kinematic gait data measured from ten human subjects walk-
ing at self-selected forward walking speeds. In Section 4.1, we
outline the experimental methods used in the study, including
a description of data collection methods, human model struc-
ture and the analysis procedures used to estimate, compare
and characterize the reference point biological trajectories.
Finally, in Section 4.2, we present the experimental results of
the gait study, and in Section 4.3, we discuss their significance.

4.1. Experimental Methods

4.1.1. Kinetic and Kinematic Gait Measures

For the human walking trials, kinetic and kinematic data were
collected in the Gait Laboratory of Spaulding Rehabilitation
Hospital, Harvard Medical School, Boston, MA, in a study
approved by the Spaulding Committee on the Use of Humans
as Experimental Subjects. Ten healthy adult participants, five
male and five female, with an age range from 20 to 38 years
old, were involved in the study.

Participants walked at a self-selected forward speed over a
10 m long walkway. To ensure a consistent walking speed be-
tween experimental trials, participants were timed across the
10 m walking distance. Walking trials with forward walking
speeds within a ±5% interval were accepted. Seven walking
trials were collected for each participant.

To assess gait kinematics, an eight infrared camera, mo-
tion analysis system (VICON 512 System, Oxford Metrics,
Oxford, UK) was used to measure the three-dimensional po-
sitions of reflective markers placed on various parts of each
participant’s body. The frame rate of the camera system was
120 frames per second. A total of 33 markers were employed:
16 lower extremity markers, five thoracic and pelvic markers,
eight upper extremity markers, and four head markers. The
markers were attached to the following bony landmarks: bi-

lateral anterior superior iliac spines, posterior superior iliac
spines, lateral femoral condyles, lateral malleoli, forefeet and
heels. Additional markers were rigidly attached to wands over
the mid-femur and mid-shaft of the tibia. Kinematic data of
the upper body were also collected with markers placed on the
following locations: sternum, clavicle, C7 vertebra, T10 ver-
tebra, head, and bilaterally on the shoulder, elbow and wrist.
Depending on the position and movement of a participant, the
system was able to detect marker position with a precision of
a few millimeters.

During walking trials, ground reaction forces were mea-
sured synchronously with the kinematic data using two stag-
gered force platforms (model OR6-5-1, AMTI, Newton, MA)
embedded in the 10 m walkway. The force data were col-
lected at a sampling rate of 1080 Hz at an absolute precision
of ∼0.1 N for ground reaction forces and ∼1 mm for the ZMP
location.

4.1.2. Human Model Structure

A morphologically realistic human model was constructed in
order to calculate the FRI and CMP ground reference trajec-
tories. The human model, shown in Figure 5, consisted of
18 links: right and left forefoot links, heels, shanks, thighs,
hands, forearms, upper arms, pelvis–abdomen region, thorax,
neck, and head. The forefoot and a heel sections, as well as
the hands, were modeled as rectangular boxes. The shanks,
thighs, forearms, and upper arms were modeled as truncated
cones. The pelvis–abdomen region and the thoracic link were
modeled as elliptical slabs. The neck was modeled as a cylin-
der, and the head was modeled as a sphere.

To increase the accuracy of the human model, 25 length
measurements were taken on each participant: (1) foot and
hand length, width, and thickness; (2) shanks, thighs, fore-
arms, and upper arm lengths as well as their proximal and dis-
tal base radii; (3) thorax and pelvis–abdomen heights, widths,
and thicknesses; (4) radius of the head. The neck radius was
set equal to half the head radius.

Using observations of the human foot’s articulated bone
structure (Ankrah and Mills 2003), the mass of the forefoot
was estimated to be 20% of the total foot mass. For the re-
maining model segments, a link’s mass and density were op-
timized to closely match experimental values in the literature
(Winter 1990; Tilley and Dreyfuss 1993) using the follow-
ing procedure. The relative mass distribution throughout the
model, described by a 16-component vector D (i.e., the heel
and forefoot were represented as a single foot segment) was
modeled as a function of a single parameter α such that

D(α) = (DA + αDS)
/
(1 + α). (21)

Here, DA is the average relative mass distribution obtained
from the literature (Winter 1990), and the subject specific rel-
ative mass distribution, DS , was obtained by using an equal
density assumption; the relative mass of the ith link, Di

S
,was
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Fig. 5. The morphologically realistic human model used in
the human gait study. The human model has a total of 38
degrees of freedom, or 32 internal degrees of freedom (12
for the legs, 14 for the arms and six for the rest) and six
external degrees of freedom (three body translations and three
rotations). Using morphological data from the literature and
direct human participant measurements, mass is distributed
throughout the model’s links in a realistic manner.

assumed to be equal to the ratio of the link’s volume, V i , over
the total body volume, V , or Di

S
= V i

/
V . The selection of

parameter αthen uniquely defined the density profile through-
out the various links of the human model, as described by the
16-component vectorP(α), such that P i(α) = M Di(α)

/
V i

where M was equal to the total body mass. The resulting rel-
ative mass distribution, DR, was obtained as DR = D(αmin)

where αmin minimized the absolute error between the distri-
bution of link densities, P(α), and the average distribution of
link densities obtained from the literature, PA (Winter 1990).
In notation form, this analysis procedure may be expressed as

min |P(α) − PA| = min

√∑
i

[
P i(α) − P i

A

]2 ⇒ αmin

⇒ DR = DA + αmin DS

1 + αmin

. (22)

4.1.3. Data Analysis

For each participant and for each walking trial, the ZMP, FRI
and CMP trajectories were computed. The ZMP was esti-
mated directly from the force platform data using eq. (1).
The FRI point was calculated based on eq. (10) using ground
reaction force and foot kinematic gait data. The CMP was
calculated using the calculated CM position from the human
model, and the measured ZMP and ground reaction force data
from the force platforms (see eq. 19). Here the CM trajectory
was estimated by computing the CM of the human model at
each gait posture throughout the entire gait cycle. The model’s

posture, or spatial orientation, was determined from the joint
position data collected from the human gait trials.

As a measure of how well the FRI tracked the ZMP, and
how well the CMP tracked the ZMP, we computed the linear
distance between the FRI and the ZMP, as well as between
the CMP and the ZMP, at each moment throughout the gait
cycle. For each participant, the mean FRI–ZMP distance and
the mean CMP–ZMP distance were then computed using all
seven gait trials. These mean distances were then normalized
by the participant’s foot length. We then performed a non-
parametric Wilcoxon signed rank test for zero median to test
for significance in the mean FRI–ZMP normalized distance
between the single support period of controlled dorsiflexion
and the single support period of powered plantar flexion (N
= 10 subjects). Finally, we again performed a non-parametric
Wilcoxon signed rank test for zero median to test for signifi-
cance in the mean CMP–ZMP distance between the single and
double support phases of gait (N = 10 subjects). For these sta-
tistical analyses, significance was determined using p < 0.05.

4.2. Results

Representative trajectories of the ZMP, FRI, and CMP are
shown in Figure 6 for a healthy female participant (age 21,
mass 50.1 kg, height 158 cm, speed ∼1.3 m s−1). For each
study participant, Table 1 lists the mean normalized distances
between the FRI and the ZMP, and additionally between the
CMP and the ZMP.

For all participants and for all walking trials, the ZMP was
always well inside the ground support base. The ZMP was
never closer to the edge of the ground support base than by
approximately 5–10% of foot length (see Figure 6). Addi-
tionally, for all participants and for all walking trials, the FRI
point remained within the ground support base throughout
the entire single support phase, even during powered plan-
tar flexion, or heel-off, when the foot experienced accelera-
tion. The mean of the normalized distance between the FRI
and the ZMP for the controlled dorsiflexion phase (0.04 ±
0.01%) was significantly different from that computed for the
powered plantar flexion phase (0.19 ± 0.06%) (p = 0.002).
Finally, for all participants and for all walking trials, the CMP
remained within ground support base throughout the entire
gait cycle. The mean of the normalized distance between the
CMP and the ZMP for the single support phase (14 ± 2%) was
not significantly different from that computed for the double
support phase (13 ± 2%) (p = 0.35).

4.3. Discussion

4.3.1. Human Walking Trajectories: FRI and ZMP

In this paper, we study the characteristics of the FRI ground
reference point in human walking, and how it relates to the
foot–ground ZMP. Since the FRI was proposed as an indi-
cator of foot rotation (Goswami 1999), we hypothesize that
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Table 1.
Mean

Subjects 1 2 3 4 5 6 7 8 9 10 ±STD

A% 16 14 13 17 16 10 12 11 15 15 14 ± 2
B% 15 13 10 15 12 9.0 14 15 15 14 13 ± 2
C% 16 13 12 16 15 10 12 12 15 15 14 ± 2
D% 0.03 0.03 0.02 0.05 0.06 0.03 0.02 0.03 0.04 0.05 0.04 ± 0.01
E% 0.15 0.15 0.11 0.23 0.30 0.15 0.11 0.20 0.23 0.24 0.19 ± 0.06
F% 0.05 0.06 0.04 0.09 0.11 0.05 0.04 0.06 0.07 0.09 0.07 ± 0.02

For ten healthy test participants walking steadily at their self-selected speeds, we list the mean distances, normalized by foot
length, between the CMP and the ZMP points for the single-support phase (A), double-support phase (B), and across the entire
gait cycle (C). In addition, the table lists the mean distances, normalized by foot length, between the FRI and the ZMP points
for controlled dorsiflexion (D), powered plantar flexion (E), and the entire single support phase (F).

Fig. 6. Plotted on the left are the ZMP (dashed), CMP (solid),
and CM ground projection (dash-dotted) trajectories and cor-
responding footprints of a study participant walking at a self-
selected speed (1.3 m s−1). The two circles on each line denote
the transition from single to double support, and vice versa.
Data span from the middle of a single support phase to the
middle of the next single support phase of the opposite limb.
Plotted on the right are the ZMP (dashed) and FRI (solid) tra-
jectories from mid-stance to the double-support phase. Here
the circle denotes the transition from foot-flat to heel-off.

the FRI will closely track the ZMP in early single support
when the foot remains flat on the ground, but will then signif-
icantly diverge from the ZMP in late single support, leaving
the ground support base as the foot undergoes acceleration
during heel-off. The results of this investigation, however, do
not support this hypothesis. We find that the FRI never leaves
the ground support base, and that the mean FRI–ZMP separa-
tion distance during the single support phase is small (0.1% of
foot length). The FRI point closely tracks the ZMP through-
out the entire single support phase, with a mean FRI–ZMP
separation equal to less than 1 mm. Clearly, during the foot-
flat phase, one would not expect a large separation distance
between the FRI and ZMP points because the stance foot does
not rotate. However, during the heel-off or powered plantar
flexion phase, encompassing on average 20% of the entire sin-
gle support period (Wright, Desai and Henderson 1964; Rose
and Gamble 1994), the foot rolls and undergoes acceleration,
and one would therefore expect a more significant FRI–ZMP
separation.

The rather small size of the FRI–ZMP separation in human
walking, even when the foot is rolling, is perhaps due to the
fact that the foot is small compared to the rest of body (foot
mass is ∼1/70 of total body mass), and the corresponding
rotational dynamics are therefore dictated by relatively small
moments. From eq. (8), the FRI–ZMP separation is propor-
tional to the foot’s rate of change of angular momentum. This,
in turn, depends on the foot’s rotational acceleration and its
moment of inertia. Compared to the entire body, the foot has
a relatively small mass, and therefore, unless the foot has a
very large angular acceleration, its rate of angular momentum
change is relatively small compared to the entire body.

One might be inclined to expect that a more rigid and some-
what heavier robotic foot would result in a more pronounced
FRI–ZMP separation. However, such a foot would likely re-
sult in a maximum FRI–ZMP separation of only a few mil-
limeters. Consider the situation where a foot, mf oot ≈ M/70,
starting from rest, rotates through an angle, θ = π/6, with
constant angular acceleration during time interval, �t =
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0.1 s. Assuming that the foot may be approximated by a uni-
form rod of length lf oot ≈ 0.25 m and that the vertical ground
reaction force is approximately equal to body weight, one
could solve eq. (8) for a typical FRI–ZMP separation at the
moment of heel-off, or

|yFRI − yCP | =
1
3
mf oot l

2
f oot

[
2θ/ (�t)

2
]

Mg − mf oot

lf oot

2

[
2θ/ (�t)

2
]

=
1
3
0.252

[
2 π

6
/ (0.1)

2
]

70 · 9.81 − 0.25
2

[
2 π

6
/ (0.1)

2
] ≈ 3.2 mm.

(23)

Therefore, even for this exaggerated physical situation, we
still obtain a FRI–ZMP separation of only a few millimeters.
This obviously represents an obstacle for the FRI point as an
indicator of foot acceleration in legged systems because both
the ZMP and support base parameters are usually only known
up to a few millimeters of accuracy.As a possible resolution to
this difficulty, we propose a modified FRI point in Section 5.2.

4.3.2. Human Walking Trajectories: ZMP and CMP

Since spin angular momentum has been shown to remain
small throughout the walking cycle, we hypothesize that the
CMP will never leave the ground support base throughout the
entire gait cycle, closely tracking the ZMP. The results of this
investigation support this hypothesis. We find that the CMP
never leaves the ground support base, and the mean separa-
tion distance between the CMP and ZMP is small (14% of foot
length), highlighting how closely the human body regulates
spin angular momentum in level ground walking. The mean
normalized distance between the CMP and the ZMP for the
single support phase (14 ± 2%) was not significantly different
from that computed for the double support phase (13 ± 2%)
(p = 0.35), suggesting that the CMP is a reasonable estimate
of ZMP position independent of the number of legs in contact
with the ground surface.

5. Control Implications of Ground Reference
Points ZMP, FRI, and CMP

In this section, we discuss how the ZMP, FRI, and CMP
ground reference points can be used in legged robotic and
prosthetic control systems. In Section 5.1, the control impli-
cations of the foot–ground ZMP are discussed. In Section 5.2,
we address the relatively small separation distance between
the FRI and ZMP points and suggest a modified FRI that has
a better scaling property. Finally, in Section 5.3, we discuss
how the control of both the ZMP and the CMP could enhance
postural stability for single-leg standing.

5.1. Control Implications of the ZMP

5.1.1. Does a ZMP Location Inside the Ground Support Base
Indicate Postural Stability?

As noted by Goswami (1999), the requirement that the ZMP
should be inside the ground support base has been extensively
used in the literature as a criterion of postural stability5 (Shih
et al. 1990; Li, Takanishi and Kato 1993; Shih 1996; Arakawa
and Fukuda 1997; Huang et al. 2001). However, since the
ZMP must always reside within the ground support base as
required by fundamental physics (see eq. 1), a ZMP estimate
that falls outside the ground support base should be an in-
dication of non-physical behavior and not an indication of
overall postural instability. For example, if a computer sim-
ulation predicts that the ZMP is outside the ground support
base, the result should simply be viewed as a non-physical
simulation artifact and not an indication of postural instabil-
ity. Still further, if the simulation predicts a ZMP location
within the ground support base, overall postural stability is
not, in any way, guaranteed.

5.1.2. Does Maintaining the ZMP at the Center of the Ground
Support Envelope Guarantee Postural Stability?

It has been suggested in the literature that postural stability
during single support will be ensured if the ZMP remains at
the center of the ground support envelope (Vukobratovic and
Juricic 1969; Vukobratovic and Stepanenko 1973; Li, Takan-
ishi and Kato 1993; Arakawa and Fukuda 1997; Huang et al.
2001). However, it is noted here that accurately controlling
the ZMP location to coincide with the center of the ground
support envelope will not in itself guarantee postural stability
for all legged control problems. To clarify this point, consider
the simple model of single support standing shown in Fig-
ure 7(A). The mass of the body is represented as a point mass
attached to a massless foot and leg linkage, and the ankle is
the only actuated degree of freedom.

If the ZMP is tightly controlled to operate at the center
of the ground support envelope, such that xZMP = 0, then
according to eq. (6)

Fx = MẍCM = M (z̈CM + g)
xCM

zCM

− τy

zCM

. (24)

For this simplified model, the moment about the CM is always
equal to zero, τy = 0, since the mass of the body is represented
as a single point mass. Thus, from eq. (24) we have

ẍCM = (z̈CM + g)
xCM

zCM

. (25)

We see from eq. (25) that for this simplified model, a control
system that maintains the ZMP position at the center of the

5. Throughout this paper, postural stability, or body stability, refers to the
maintenance of body attitude angles within a specified bounded region and
the return to that bounded region after a perturbation (Vukobratovic, Frank,
and Juricic 1970).
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Fig. 7. In (A), a simple model of single-leg standing is shown
consisting of three links: (1) a body link represented by a
point mass equal to total body mass; (2) a massless leg link
representing the stance leg; (3) a massless foot link (base of
support), which is aligned with the ground and which has
limited extent. The ankle joint between the foot link and the
leg link is the only actuated degree of freedom in the model.
In (B), the same model as in (A) is shown except the body
link is modeled as a solid uniform rod. In contrast to the
model of (A), the model of (B) has an actuated ankle and hip
joint. Thus, this model may have a non-zero moment about
its CM.

ground support envelope, or xZMP = 0, causes the system to
be equivalent to a statically unstable, non-actuated inverted
pendulum. Thus, we may conclude that controlling the ZMP
to operate at the center of the ground support envelope during
single support cannot, by itself, ensure postural stability.

If we now allow for non-zero ZMP positions, we obtain

ẍCM = (z̈CM + g)
xCM − xZMP

zCM

. (26)

Thus, we see from eq. (26) that by selecting an appropriate
non-zero ZMP trajectory, the model of Figure 7(A) can be
stabilized albeit for relatively modest CM disturbances.6 For

6. Here stability refers to the capacity of the system to restore the CM to a
location vertically above the center of the ground support envelope (xZMP =
0) after a perturbation.

example, if the CM projection onto the ground extends beyond
the boundaries of the foot as a result of a disturbance to the
system, the system cannot be stabilized simply by controlling
ZMP position because the foot is not physically attached to the
ground surface (see eq. 26; Popovic and Herr 2003; Hofmann
et al. 2004, Popovic, Hofmann and Herr 2004b).

Although controlling the ZMP position is one strategy for
stabilizing legged posture, it is not the only tool for addressing
stability. For example, during single-leg standing, consider
shrinking the stance foot to a single point. The ZMP is then
constrained at that contact point and cannot be repositioned
using a ZMP control strategy.As is apparent from eq. (24), the
only way to stabilize such a system is to produce a non-zero
moment about the CM. In Section 5.3, we argue that by con-
trolling both the ZMP and CMP ground reference positions,
overall postural stability during single support standing can be
maintained even in the presence of large disturbances where
the CM projection on the ground surface extends beyond the
ground support envelope.

5.2. Control Implications of the FRI

5.2.1. Can the FRI Point be Modified to Increase its Sensitivity
to Non-Zero Foot Accelerations?

Gaswami (1999) introduced the FRI as a measure of foot ro-
tational acceleration. He argued that the distance between the
FRI point and the ZMP is useful because it communicates
information about foot rotational dynamics during the sin-
gle support phase (excluding foot rotations about the vertical
axis). However, in this investigation we find that during the
single support phase of walking, the FRI closely tracks the
ZMP even though the foot is rolling and undergoing accel-
eration. During the entire single support phase, the absolute
separation distance between the FRI and the ZMP is less than
1 mm. Clearly, during the foot-flat phase one should not ex-
pect a large separation between the FRI and ZMP because the
stance foot does not rotate. However, during the heel-off or
powered plantar flexion phase, the foot rolls and undergoes
acceleration, and one would therefore expect a more signifi-
cant FRI–ZMP separation.

One approach to resolve this problem is to use a modified
FRI point (MFRI) defined as

(�rMFRI − �rZMP ) × (mf oot �g)|horizontal =[
d �Lf oot (�rMFRI )

dt

]
horizontal

, (27)

where the moment due to the weight of the foot is employed
instead of the moment due to the ground reaction force (see
eq. 8 for the definition of the FRI). The MFRI–ZMP separa-
tion scales much better than the FRI–ZMP separation simply
because FG.R.Z >> mf ootg.
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Although the MFRI point described in eq. (27) cannot be
represented by body–foot dynamics alone (see eq. 15), the
point may be used to quantify non-zero foot moments and
therefore stance foot rotational instabilities. To highlight the
differences between the original FRI and the MFRI in terms of
their capacity to detect foot rotational accelerations, we con-
struct a simple model of the foot. Assuming that the foot may
be approximated by a uniform rod rotating about its “toes”
and that the vertical ground reaction force is equal to body
weight, eq. (8) can be solved for a typical FRI–ZMP separa-
tion as function of the relative heel acceleration, x = 2af oot

/
g,

at the moment of heel-off, or

|yFRI − yZMP |
lf oot

= x/3

(M/mf oot ) − (x/2)
for x <

2M

mf oot

. (28)

Under the aforementioned approximations, one could also
solve for a typical MFRI–ZMP separation distance, or

|yMFRI − yZMP |
lf oot

= x/3

1 − (x/2)
for x < 2. (29)

The original FRI and the MFRI separation distances from the
ZMP point are shown in Figure 8(A) assumingmf oot ≈ M/70.
From the human walking data, a typical peak foot acceleration
during the powered plantar flexion phase of single support is
xpeak = 2af oot

/
g ∼ 1.At this peak value, the MFRI–ZMP sep-

aration distance is ∼20cm whereas the FRI–ZMP separation
is only ∼1 mm. In Figure 8(B), the original FRI, the modified
FRI, and the ZMP are plotted for the single support phase of
human walking, clearly indicating that the MFRI–ZMP sepa-
ration distance is sufficiently large to be a measurable physical
quantity given the resolution of current sensing technology.

5.2.2. Can the Modified FRI Point be Employed as a Measure
of Postural Stability?

Although stance-foot rotational acceleration may be an impor-
tant indicator of a loss of overall postural balance for some
legged movement activities, a lack of foot rotational equilib-
rium is clearly not always related to overall postural insta-
bility. For example, it is easy to imagine situations where the
stance foot is rolling but postural stability of a legged system is
perfectly satisfied. In fact, during a large portion of the human
gait cycle, the stance foot is not in perfect rotational equilib-
rium even during the single support phase (Rose and Gamble
1994).Although postural stability and stance foot equilibrium
are not always inter-related, rotational equilibrium of the foot
is indeed one measure that might be useful in the evaluation
and control of legged systems (Hofmann et al. 2004).

FRI

Modified FRI

heela

A

B

Fig. 8. In (A), predictions from the simplified foot model are
shown. The FRI–ZMP separation and the modified FRI–ZMP
separation, each normalized by foot length, are plotted as
a function of heel acceleration normalized by gravitational
acceleration. As shown, this calculation assumes a flat contact
surface, a rectangular foot shape, and a foot CM position at
ground level when the heel first lifts from the ground surface.
In the foot illustration, the open circle is the ZMP, the closed
circle is the original FRI, and the closed triangle is the
modified FRI. In (B), the ZMP (dashed line), the original FRI
(open circles), and the modified FRI (solid line) are plotted
for the single support phase of human walking. Although
the results are from a single study participant (female, mass
= 50.1 kg) walking at a self-selected speed, similar results
were observed for all participants and for all walking trials.
The large circle on the modified FRI (solid line) denotes the
transition from the foot-flat phase of single support to the
introduction of heel-off and powered plantar flexion. The
modified FRI remains close to the ZMP during the foot-flat
phase but then diverges from the ZMP as the foot experi-
ences rotational accelerations during powered plantar flexion.

5.3. Control Implications of the CMP

5.3.1. For Whole-body Rotational Control, Should a Control
System Minimize CM Moment, Spin Angular Momentum, or
Whole-Body Angular Excursions?

As noted in Section 4.2, the CMP trajectory was confined
to the ground support base for each subject and for each
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walking trial. Thus, one metric of human-like walking that
may be useful in the evaluation of biomimetic humanoid
robots is that the CMP must remain within the ground support
base, near the ZMP, throughout the entire gait cycle. How-
ever, a zero moment about the CM, or a zero CMP–ZMP
separation, should only be viewed as a condition of body ro-
tational equilibrium and not a condition of postural stability.
A loss of rotational equilibrium does not necessarily mean
that the person or robot is destined to fall. In fact, the moment
about the CM is prominently non-zero for many stable legged
movement patterns (Hinrichs, Cavanagh and Williams 1983;
Dapena and McDonald 1989; LeBlanc and Dapena 1996; Gu
2003). Non-zero CM moments are expected since the appli-
cation of CM moment by a legged control system can increase
the restoring force applied to the CM, as shown by eq. (6),
restoring CM position to a desired location (Hofmann et al.
2004;Popovic, Hofmann, and Herr 2004a,b).

Since the application of moments about the CM is one criti-
cal control strategy to achieve postural stability in the presence
of disturbances, the objective for the controller of whole-body
angular behavior should not be to achieve a zero CM moment,
or equivalently, a zero CMP–ZMP separation. Rather, a CM
moment should be applied by the system controller to achieve
a desired spin angular momentum and a particular whole-body
angular excursion (see eq. 17). For example, focusing solely
on rotational degrees of freedom, one could write a simple
second-order differential control equation for a desired target
moment, or

�τdes. (�rCM) = �̇Ldes. + ↔
a ��θ + ↔

b � �̇θ

= �̇Ldes. + ↔
a ��θ + ↔

b

′
� �L (�rCM) , (30)

where � �L (�rCM) = �L (�rCM)− �Ldes. (�rCM) and ��θ = �θ − �θdes.,
↔
a and

↔
b (with

↔
b

′
= ↔

b
↔
I

−1

(�rCM) ) are second-order tensors, i.e.,
3 × 3 matrices representing rotational “stiffness” and “damp-

ing” coefficients, respectively,
↔
I (�rCM) =

N∑
i=1

↔
I i(�rCM) is the

whole-body moment of inertia tensor about the CM (also a

function of time) and �ω = ↔
I

−1

(�rCM) �L (�rCM) is the whole-
body effective angular velocity (which may be integrated to
give �θ), see eq. (17). Alternatively, instead of whole-body
angular excursions, which are not directly measurable quan-
tities, one may consider using whole-body principal angles
defined by the relative orientations of the principal axes of
the whole-body moment of inertia tensor with respect to the
non-rotating lab frame axes (Popovic and Herr 2005). For a
humanoid walking robot, the desired whole-body angular ex-
cursion and the spin angular momentum would both be set
to zero and the rotational stiffness and damping coefficients
would then be adjusted to achieve a desired system response.

In his book Legged Robots that Balance, Raibert (1986)
speculated that a control system that keeps angular momen-

tum constant during stance could achieve higher efficiency
and better performance. Motivated by biomechanical mea-
surements showing the relatively small size of CM moments
during human walking, Popovic, Gu and Herr (2002) sug-
gested that humanoid control systems should explicitly mini-
mize global spin angular momentum during steady state for-
ward walking ( �Ldes. (�rCM) = 0). Using this approach, the
zero-spin controller would apply corrective moments to min-
imize body spin when the whole-body state is such that spin
is non-zero. It is noted here that a consequence of this con-
trol objective is that the CMP–ZMP separation distance is
minimized. However, a control system that only minimizes
the CMP–ZMP separation distance will only ensure a con-
stant spin angular momentum and not specifically a zero spin
value.

Kajita et al. (2003, 2004) implemented a zero-spin con-
trol on the humanoid robot HRP-2 and showed its useful-
ness in kicking, hopping and running. Still further, Popovic,
Hofmann and Herr (2004a) showed in a two-dimensional nu-
merical simulation of walking that biologically realistic leg
joint kinematics emerge through the minimization of spin an-
gular momentum and the total sum of joint torque squared
(minimal effort criteria), suggesting that both angular momen-
tum and energetic factors may be important considerations for
biomimetic controllers.

5.3.2. Would Controlling Both ZMP and CMP Enhance
Postural Stability?

For the simplified model of single-leg standing shown in Fig-
ure 7(A), Section 5.1, ankle torques have to be applied to move
the ZMP such that appropriately needed horizontal forces are
generated, as dictated by eq. (26), to move the model’s CM
back over the foot support envelope. However, as required by
physics (see eq. 1), the ZMP cannot leave the ground sup-
port base. This physical constraint poses a restriction on the
magnitude of the restoring CM forces that can be applied by
the system controller to restore CM position, and therefore
directly limits the range of perturbation that can be rejected
by the system.

Let us now relax the zero moment condition (CMP=ZMP)
and consider the model shown in Figure 7(B). In this model,
the point mass of model 7A is replaced with a uniform rod
that rotates about a hip joint at the top of a massless leg and
foot linkage. By controlling both the ZMP and CMP trajec-
tories, a larger set of perturbations can be rejected than when
controlling only the ZMP trajectory (Hofmann et al. 2004;
Popovic, Hofmann and Herr 2004a,b). Even when the ZMP
is at the very edge of the ground support envelope in the model
of Figure 7(B), a horizontal restoring force can still be pro-
duced through the application of a moment about the CM,
or equivalently by controlling the CMP relative to the ZMP.
According to eq. (6), the horizontal restoring force output of
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the model shown in Figure 7(B) can now be written as

Fx = MẍCM = M (z̈CM + g)
xCM − xZMP

zCM

− τy

zCM

= F zero−moment

x
+ F moment

x
(31)

where F zero−moment
x

= M (z̈CM + g)
xCM−xZMP

zCM
corresponds to

a zero-moment balance strategy and F moment
x

= − τy

zCM
cor-

responds to a moment balance strategy. Because the CMP
represents a unique pivot point, eq. (31) may be written more
compactly as

Fx = M (z̈CM + g)
xCM − xCMP

zCM

. (32)

As highlighted by eq. (32), the CM restoring force can be
controlled by modulating the separation distance between the
CM projection on the ground surface and the CMP location.

Depending on the character of a particular movement task
and robotic structure, the two balance control strategies may
have different levels of influence on postural stability. For ex-
ample, in Figure 7(B), if the model’s foot link were made
infinitely small, with xZMP = 0 as a physical constraint, the
moment balance strategy (CMP �= ZMP) would necessarily
dominate. However, when the CMP is in the vicinity of the
ground support envelope boundary during single-leg balanc-
ing, or outside that boundary, the moment balance strategy
(CMP �= ZMP) must dominate since ZMP trajectory control
alone cannot restore postural balance (Hofmann et al. 2004;
Popovic, Hofmann and Herr 2004a,b). Therefore, the CMP
location relative to the ground support envelope is an impor-
tant indicator for a control system to determine which balance
strategy should necessarily dominate (Hofmann et al. 2004;
Popovic, Hofmann and Herr 2004a,b).

6. Summary

For the diversity of biological motor tasks to be represented
in a robot’s movement repertoire, biomechanical movement
strategies must first be identified, and legged robotic control
systems must exploit these strategies. To this end, in this paper
we ask what are the characteristics of the ZMP, FRI, and CMP
ground reference trajectories in human walking, and how do
they inter-relate? We compute walking reference trajectories
using a human model and gait data measured from ten hu-
man subjects walking at self-selected speeds. We find that the
mean separation distance between the FRI and ZMP during
the powered plantar flexion period of single support is within
the accuracy of their measurement (0.1% of foot length), and
thus the FRI point is determined not to be an adequate mea-
sure of foot rotational acceleration. As a potential resolution
to this difficulty, we propose a modified FRI point with im-
proved scaling properties. In addition, we find that the CMP
never leaves the ground support base, and the mean separa-
tion distance between the CMP and the ZMP is small (14%

of foot length) across both single and double support walking
phases, highlighting how closely the human body regulates
spin angular momentum in level ground walking.

We conclude the paper with a discussion of legged control
issues related to the ground reference points. Using a simple
model of single-leg balancing, we show that by controlling
both the ZMP and the CMP trajectories, larger CM restoring
forces can be applied by a system than would be possible using
only a ZMP control.An area of future research of considerable
importance will be in the implementation of legged systems
that control both the ZMP and the CMP locations, resulting in
corrective CM forces and moments necessary to restore CM
position and body angular orientation. Another area of future
research will be to characterize the ZMP and CMP biological
trajectories for a whole host of animal and human movement
patterns in the hope to further motivate biomimetic control
schemes. It is our hope that this work will lead to further
studies in ground reference points for the identification and
control of legged systems, resulting in an even wider range
of locomotory performance capabilities of legged robots and
prostheses.

Appendix A: Center of Pressure and Zero
Moment Point: Equivalence and Uniqueness

Although several authors (Goswami 1999; Sardain and
Bessonet 2004) have speculated that the CP should be equiv-
alent to the ZMP,7 no formal proof has yet been advanced.
In this appendix, we put forth a formal proof of their equiva-
lence for horizontal ground surfaces, and then we show their
uniqueness for more complex contact topologies.

A.1. Equivalence of the ZMP and the CP for
Horizontal Contact Surfaces

The concept of CP most likely originated from the field of
fluid dynamics. CP is utilized in aerodynamical calculations
of aircraft and rockets (Darling 2002). It is also frequently
used in the study of human gait and postural balance (Winter
1990; Rose and Gamble 1994).

For a body resting on a flat horizontal ground surface, the
position of the CP, denoted by �rCP , is defined as

�rCP =

∫
gsb

�r p (�r) da∫
gsb

p (�r) da
= �τG.R.(0)|horizontal

FG.R. Z

× �g
g

, (A1)

where the integration is over the ground support base (gsb),
da is an infinitesimal element of the support surface located
at �r , p (�r) is the pressure at that location, FG.R. Z is the vertical
component of the resulting ground reaction force, and g is the

7. Goswami (1999) and Sardain and Bessonet (2004) did not prove the equiv-
alence of the CP and the ZMP, but rather, they proved the equivalence of two
definitions of the ZMP (see Section 3.1 for ZMP definitions, eqs. 1 and 2).
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gravitational acceleration. The second equality in equation
(A1) follows from p (�r) da = dFG.R. Z and �r · �g = 0.

The resulting moment exerted from the ground on the body
about the origin of the lab reference frame (assumed here to
be on the ground) is

�τG.R.(0)|horizontal =
∫
gsb

(
�r × d �FG.R.

)
|horizontal

= −
∫
gsb

(
�r × �g

g

)
p (�r) da = �g

g
×

∫
gsb

�r p (�r) da. (A2)

For simplicity we assume a horizontal ground surface in
eqs. (A1) and (A2). However, the results may easily be gen-
eralized to include inclined surfaces as well if vector −�g/

g
is exchanged for �n⊥, the unit vector normal to the surface
and pointing away from the ground. In addition, FG.R. Z has
to be exchanged with FG.R. ⊥, the component of the ground
reaction force normal to the surface, and �τ |horizontal has to be
exchanged for �τ ||| where �τ ||| · �n⊥ = 0. For a more compli-
cated surface geometry, for example when two robot legs are
posed on two surfaces of different inclination, the unique em-
bedding surface does not exist. Below, we resolve this issue
by considering an embedding convex volume instead of an
embedding flat surface. The flat surface approach was first
proposed by Takanishi et al. (1990) and later used by Sardain
and Bessonnet (2004).

Given the definition of the CP (eq. A.1), we can prove that
the CP is identical to the ZMP by noting from eq. (A2) that

�τG.R.(�rCP )|horizontal = �τG.R.(0)|horizontal + FG.R. Z�rCP × �g
g

= 0,

(A3)

therefore satisfying one definition of the ZMP defined in eq.
(1), Section 3.1.

Alternatively we could rewrite eq. (1), Section 3.1, as

�τG.R.(�rZMP )|horizontal =
∫
gsb

[
(�r − �rZMP ) × d �FG.R.

]
horizontal

= −
∫
gsb

[
(�r − �rZMP ) × �g

g

]
dFG.R.Z = 0, (A4)

to show that it is exactly satisfied when the ZMP is identical
to the CP (eq. A.1), or

�τG.R.(�rZMP )|horizontal = −
∫
gsb

(
�r × �g

g

)
dFG.R.Z

+

∫
gsb

�rdFG.R.Z∫
gsb

dFG.R.Z

× �g
g

∫
gsb

dFG.R.Z = 0 QED. (A5)

Hence, for a flat horizontal support base, the ZMP and the CP
exactly coincide.

CM

gM

aM

..RGF

CMP
CP

d
dF RG |||| ..

ZMP line

ZMP
Fig. A1. Dynamical multilink humanoid model with hand
and foot contact. The ground reaction force originates at the
ZMP. Inertia and the force of gravity originate at the CM
point. As shown in the figure, the ZMP and the CP point do
not coincide for non-horizontal contact surfaces.

A.2. Uniqueness of the ZMP and the CP for Complex
Contact Topologies

Consider the human model shown in Figure A1. Here the
model’s hand and foot are exerting forces against a non-
horizontal contact surface. Given the net CM force, the ground
reaction force may be obtained by simply subtracting the grav-
itational force. Given the CM location and the net moment
about the CM, the ZMP line may be constructed. The inter-
section of that line with the contact surface then defines the
ZMP location. In distinction, the CP may be obtained by inte-
grating across the contact surface according to the first equal-
ity of eq. (A1). Hence, the CP can be positioned anywhere
inside the convex hull represented by a three-dimensional,
CP embedding volume and encompassing the contact foot
and contact hand. For this particular example, the CP is not a
ground reference point at all but is located above the contact
surface.

Using mathematical notation, we show that the ZMP is not
equal to the CP for non-horizontal contact surfaces like those
depicted in Figure 8. For a general distribution of a normal unit
vector field, �n⊥(�r) �= −−−→const., defined on all contact surfaces,
one may show that the ZMP is not equal to the CP by first
defining the ZMP as


∫

sb

(�r − �rCM) × d �FR.




hor.

=

(�rZMP − �rCM) ×

∫
sb

d �FR.




hor.

(A6)

where �rZMP is on the external contact surface. We can then
set this definition of the ZMP equal to the CP (eq. A.1), to
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observe that

∫
sb

(
�r × d �FR

)
hor.

�=




∫
sb

�r
(

d �FR. · �n
)

∫
sb

(
d �FR. · �n

) ×
∫
sb

d �FR.




hor.

. (A7)

Hence, the ZMP and the CP do not always coincide and should
therefore not be considered identical physical quantities. It
should be noted that for expressions (A6) and (A7) we avoided
the prefix “ground” to stress that any type of external contact
surface is permissible when the ZMP is defined according to
eq. (A6). Also, using this formalization, any body segment
may be in contact with the external surface.
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