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An Optimal Control Model for
Analyzing Human Postural Balance

Arthur D. Kuo, Member, IEEE

Abstract—The question posed in this study is whether optimal
control and state estimation can explain selection of control
strategies used by humans, in response to small perturbations
to stable upright balance. To answer this question, 2 human
sensorimotor control model, compatible with previous work by
others, was assembled. This model incorporates linearized equa-
tions and full-state feedback with provision for state estimation. A
form of gain-scheduling is employed to account for nonlinearities
caused by control and biomechanical constraints. By decoupling
the mechanics and transforming the controls into the space of
experimentally observed strategies, the model is made amenable
to the study of a number of possible control objectives. The
objectives studied include cost functions on the state deviations,
so as to control the center of mass, provide a stable platform for
the head, or maintain upright stance, along with a cost function
on control effort. Also studied was the effect of time delay on the
stability of controls produced using various control strategies.
An objective function weighting excursion of the center of mass
and deviations from the upright stable position, while taking
advantage of fast modes of the system, as dictated by inertial
parameters and musculoskeletal geometry, produces a control
that reasonably matches experimental data. Given estimates of
sensor performance, the model is also suited for prediction of
uncertainty in the response.

I. INTRODUCTION

IOMECHANICAL models of varying complexity have

been used extensively in the study of mammalian co-
ordination of movement, e.g., [9], [28], [4]. However, much
of the current work in modeling has limited applicability to
issues studied by motor control scientists. It is hoped that these
models can be adapted and used to address specific issues in
systems neurophysiology. Control of balance in human upright
standing is particularly well-suited for modeling, and is also a
popular experimental paradigm [26]. Human posture therefore
serves as an ideal starting point for applying modeling to
specific problems in motor control.

Investigators have reported that standing human subjects,
when perturbed by backwards translation of a moving support
surface and instructed not to move their feet, typically respond
by moving in the sagittal plane, using one or a combination
of two strategies [26]. For small disturbances [14], they tend
to keep the knees, hips, and neck fairly straight, moving
predominantly about the ankles (the “ankle strategy”). For
disturbances that place their center of mass near the perimeter
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of foot support, they tend to use a motion coordinating flexion
or extension of the hips with smaller concurrent extension
or flexion of the ankles (the “hip strategy”), keeping the
other joints fairly straight. These strategies have also been
reported using ground reaction forces and electromyograms,
but with some ambiguity of definition [1], [14], [26]. In this
paper, analysis of these strategies is explicitly restricted to the
kinematic definitions above.

Modeling of this experimental paradigm (disturbances to
posture in the sagittal plane) is particularly convenient, as
the dynamics can be linearized without significant impact on
simulation accuracy, the motion is 2-D, and the response in-
corporates the three main components of sensorimotor control:
detection, control, and actuation. For example, Hemami and
colleagues [13], [11], [7] developed one- and two-link inverted
pendulum models to study the use of constant state feedback
gains to stabilize posture. They found that reasonable pre-
dictions of behavior can be made using linearized dynamics.
They also computed minimal sets of stable feedback gains and
performed system identification to find those gains.

Barin [3] used multiple regression to compute state feedback
gains from experimentally derived kinematics, and found
that a two-segment model, used with the computed feedback
controls, is sufficient to accurately model and predict center-
of-pressure excursion.

He et al. [10] developed a complex model of the cat neuro-
musculo-skeletal system based on optimal (linear quadratic
regulator) control. They used this model to analyze various
control schemes, including joint position servo, muscle length
servo, muscle stiffness, and full-state (mechanical states aug-
mented with sensor and muscle states) feedback control.

There remains a gap, however, between these models and
their application to issues in neural control of movement. For
example, these models neither explain nor predict the selection
of ankle and hip control strategies described in [26]. Linear
models predict only scaled responses that vary with perturba-
tion size; but human responses to large perturbations are not
merely amplified responses to small perturbations [14]. Using
“feasible acceleration sets,” a method for characterizing the
entire set of angular accelerations achievable about the joints,
Kuo and Zajac [19], [20] found indications that biomechanical
and control constraints play a role in forcing selection of
strategies. As perturbations increase in size, subjects place
greater reliance on the hip strategy, which also appears to be
more effective in stabilizing the center of mass than the ankle
strategy, even when constraints are inactive. Control models
should therefore account for such constraints.
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Models (to date) also require complete state observability
or measurability. For example, Hemami et al. [13], using
simplified models, assumed that vestibular organs provide
information concerning trunk angle, and joint proprioceptors
information on lower body angles. He et al. [10] presumed
the majority of states to be directly measurable by sensors.
Joint angle information, by virtue of being observable, was
presumed to be estimated by the CNS from muscle receptors.
While the high redundancy of physiological sensors would
strongly suggest full observability, it remains open to question
whether the CNS actually performs the necessary calculations
to provide full state information.

The question addressed here, then, is whether the modeling
and control systems analysis techniques described above can
be adapted to account for constraints. If so, will these new
models provide an explanation for the selection of ankle and
hip strategies? In addition, is there evidence in support of
state estimation in the CNS, thereby justifying state feedback
models?

Such explanation is naturally dependent on hypotheses
concerning the objectives of the CNS. In experiments studying
movement of the head, Allum ez al. [2]} have postulated that
the selection of strategies may be driven partially by the
desire to stabilize the head, where visual, and perhaps more
importantly, vestibular sensors are located. McCollum and
Leen [24] showed that stiffening the body so that it acts as
a one-segment inverted pendulum (as in the ankle strategy)
provides a longer time constant than if the body is stiffened as
a two-segment inverted pendulum (as in the hip strategy). They
concluded that the ankle strategy thereby provides greater
chance of stability given transmission delays in the CNS
controller. These delays may greatly affect children leaming
to stand, for whom mechanical time constants are smaller
than, while transmission delays are similar to, those of adults.
However, a controller has considerable flexibility in altering
a system’s eigenvalues (and hence, its time constants). Thus,
the time constants of an uncontrolled pendulum may have little
relation to those of the controlled system. The stability of the
control (whether or not it is duplicating the behavior of a one-
or two-segment inverted pendulum) is therefore not necessarily
related to the time constants of inverted pendula.

The challenge, then, is to develop a model that is compatible
with and builds upon the modeling work of others, and that can
account for the constraints described in [19], [20], all within
the framework of a control systems analysis. In this paper, a
constraint-based state-feedback model is presented, in which
control strategies can be incorporated in the objective equation.
The relative efficacy of the ankle and hip strategies can thus be
tested in relation to their ability to satisfy various objectives.
The objectives tested include minimization of “neural effort,”
along with stabilization of the center of mass [20], and the
head [2]. The resulting controllers are tested for satisfaction
of constraints, settling time, and tolerance to transmission
delays [24]. Moreover, arguments for the incorporation of
state estimators in the optimal control model are presented,
based on similar research on vestibular function in movement
perception [27]. This model is substantially compatible with
and integrates the work of others, and is ideally suited to

examining issues raised in the experimental study of pos-
ture.
This paper is presented in five sections. In Section II,
the requirements of the model and the foundation for its
development are laid out. The mathematical formulation of
the model is given in Section III. An objective function
for simulating human responses is determined and tested in
Section IV. The results are discussed and future work outlined
in Section V.

II. MODEL SPECIFICATIONS AND RATIONALE

Development of a model that can be applied directly to ex-
perimental paradigms requires that both model and experiment
share certain features. These features, as outlined below, serve
both as assumptions about the experimental conditions and as
specifications the model must meet.

A. Input-Output Behavior

The motor control system is presumed to receive a desired
state vector, zq4, from higher levels of the CNS, compare it
with the measured state, and generate the motor command wu,
as shown in Fig. 1(a). Joint torques produced by the muscles
and external forces produced by disturbances, lumped together
in the vector T, act upon the body, resulting in movement
described by joint angles, velocities, and accelerations (vectors
6, 8, and 4, respectively). Because these (kinematics 0, 6, 8,
and the torques/forces T') are the only variables which can be
reliably measured (or estimated) for comparison to a model,
they will serve as the ideal inputs and outputs for a CNS
controller model. The first requirement for the model is that it
adequately represents the input-output behavior of the human
system comprised of sensors, controller, and actuators. We
will not concern ourselves with the actual information internal
to that system (such as the internal coding of the state or
motor commands), because those instruments that provide
such information generally provide indirect or ambiguous
data. For example, electromyograms provide indicators of the
motor commands or muscle forces, but are affected by muscle
shortening velocities, cross-talk, and various nonlinearities
[34]. Electrodes in various locations can provide indicators of
cortical, sensory, and other functions, but the sheer quantity
of information makes it difficult to ascertain the meaning of
the data, much less the actual “state representation.”

B. Linearity

Because the body dynamics have been demonstrated to be
fairly linear in this region {13], and (for a given perturbation)
the closed-loop system comprised of both the controller and
the body dynamics appears to be linear [3], the controller
can be expected to behave linearly as well. Using multi-input
multi-output transfer-function matrix, the model can therefore
be analyzed using the rich set of tools from linear system
theory. It is assumed that the CNS, though comprised of
many nonlinear neural elements, will behave linearly about
the operating point corresponding to upright static standing.
Nonlinearities seen over a range of perturbation magnitudes
are modeled using constraints [20], and are addressed through
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Fig. 1. (a) Diagram of feedback system. Central nervous system (CNS)
produces control signals acting on the body. Resulting motion is fed back
to controller. (b) Gain-selecting model accepts desired state x4 from higher
centers, control selection center triggers a feedforward trajectory or set of
feedback gains (or both). Body performs according to command signals, and
motion is detected by sensors. State estimator uses efference copy u and
sensory information y to form the state estimate & used by the lower level
regulator or higher centers.

selection of specific linear controllers for each perturbation
(see Section II-E).

C. Full-State Feedback

Studies of minimal sets of state feedback have shown that
a controller requires less than a full set of mechanical states
to stabilize the body [9], [7]. However, full-state feedback
appears to provide the best match to experimental results [3].
He et al. [10] demonstrated observability of the states and
found that full-state feedback used in the objective function
produced the best stabilizing control of cat posture.

Experimental evidence also suggests that full-state informa-
tion is available and is used in selection of control strategy.
In order to discriminate between disturbances small enough
to be countered by the ankle strategy, and those large enough
to require the hip strategy, the CNS must have information
from both lower and upper body semsors to estimate the
motion of the center of mass [23]. However, stabilization is
possible given only a subset of complete sensory information.
For example, experiments have been performed in which the
support surface is either rotated or translated backwards so
as to produce similar ankle disturbances, hence rendering
somatosensory information from the ankles and feet unreliable
[1]. Proper stabilization by subjects demonstrates that upper-
body sensors are sufficient to differentiate the two types of
disturbance, that ankle joint information is not used exclusively
in determining the response, and that there exists a feedback
path from upper-body sensors to the leg muscles. Patients
with vestibular deficits, on the other hand, are also able to
withstand disturbances, indicating that utilization of ankle or
foot somatosensors alone is sufficient for stability {15].

It is therefore assumed that all of the rigid body mechanical
states, in an arbitrary realization, are available to or estimated
by the CNS for use in forming a control response. The actual
state realization used by the CNS is unimportant in this paper;
of more importance is the input-output transfer-function matrix

behavior, which is independent of realization [17]. The issue of
how the state information is acquired is addressed in Section II.

D. Feedforward and/or Feedback

Some researchers have suggested that response to a distur-
bance is in the form of a feedforward trajectory, i.e., a motor
tape that is played based on the sensory input, e.g., [25]. Others
have proposed that the response is in the form of direct state
feedback [3]. The proposed model maintains compatibility
with both schemes in any combination (see Fig. 1(b)). In order
to choose the correct response, a control selection center uses
the mechanical state to select the type and amount of response
necessary to counter the disturbance. This center evaluates
the difference between an estimated state and the desired
state, and chooses the appropriate feedforward trajectory, the
appropriate feedback gains, or both. If the feedback component
is presumed to reside at lower levels of the CNS, e.g., the
spinal cord, this model is then compatible with a hierarchical
concept of motor control. If the effect of the feedforward
component is presumed small, and state feedback is the main
component of the response, then control selection effectively
chooses the appropriate gain matrix, in a scheme similar to the
popular control engineering technique of gain-scheduling [33].

E. Compatibility with Constraints and Feasible Accelerations

Constraints placed on the system by the mechanics of the
human body and the musculoskeletal configuration interact
heavily to influence the control choices available. Constraints
include keeping the knees straight (as has been experimentally
observed in human responses to backward perturbations of the
support surface which pitch the body forward), keeping the feet
flat on the ground (as subjects are instructed to do), as well
as limits on maximal muscle forces. The characterization of
these constraints is summarized briefly here (see [19], [21]).

The feasible acceleration set (FAS) is the set of all joint
angular accelerations (assembled in vector 4) that can be
produced by any combination of feasible muscle activations
(that is, with normalized activation levels within the range 0
< a; < 1fori=1,2,...m muscles). The FAS can be found
from the mapping

6=La+g. ¢y

This mapping (see Fig. 2) is derived from the equations of
motion (where L is a linear mapping and g represents a con-
stant term), musculoskeletal geometry, and muscle properties,
assuming that muscles are shortening slowly and excitation-
contraction dynamics are fast in relation to the movement [35].
For a sagittal plane model that allows ankle, knee, and hip
motion, this set is a polyhedron in joint angular acceleration
space (Fig. 3(a)).

Acceleration vectors reaching the boundary of the FAS
require at least one muscle to be fully activated. The FAS
can therefore be used as a measure of the amount of acceler-
ation that can be achieved in any direction in ankle-knee-hip
acceleration space for a given amount of neural effort, defined
as ||a||.., the maximum of the muscle activations a. This is
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Set of all feasible
muscle activations

Equations of motion
Musculoskeletal geometry

Feasible acceleration set

6= La+g

Fig. 2. Generation of feasible acceleration sets (FAS) is performed by characterizing the set of all feasible normalized muscle activations, which are confined
to a hypercube, followed by generation of a mapping describing the effects of musculoskeletal geometry and equations of motion, into the set of all feasible
joint angular accelerations. Result is a polytope in n-dimensional space, where n is the number of degrees of freedom studied. In this example, the feasible
activations of three muscles are confined to a cube. These activations are mapped into feasible accelerations constrained within a 3-D polyhedron.
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Fig. 3. (a) Ankle-knee-hip feasible acceleration set describes all combinations of joint angular accelerations achievable given any set of muscle activations.
Enforcement of control constraint to keep knees straight, as human subjects do in natural response to backwards platform movement, is modeled by intersecting
FAS with the plane corresponding to zero knee motion. (b) Enlargement of resulting ankle-hip FAS (keeping knees straight), showing effect of additional
contro] constraints on avoiding lifting of toes and heels off the ground (dark region).

a convenient method for describing the aggregate cost of a
given combination of joint angular accelerations, taking into
account not only the joint torques needed (as with the model
of [9]), but also the muscle forces needed to achieve those
torques. Note that, given the assumptions above, neural effort
is equivalent to the amount of muscle force (normalized to
maximum possible force).

Visualization of the FAS aids in understanding constraints
relevant to human posture. Researchers have reported that the
knees are kept relatively straight while countering disturbances
that pitch the body forward {26], [3]. The reasons behind and
effects of this behavior (see [20]) are not discussed here, but
this constraint must nevertheless be modeled. This modeling
of constrained knee motion is accomplished by intersecting
the polyhedron with the plane corresponding t0 fynee = 0. The
resulting polygon represents the set of all feasible accelerations
of the ankles and hips when keeping the knees straight (see
Fig. 3(b)) [20].

The length of the foot (or the support surface underneath
the foot) dictates limits both to stable body configurations and
to angular accelerations that can be achieved without lifting
either the toes or heels off the ground, a common experimental
requirement [26]. The body position constraints characterize
the horizontal location of the body center of mass, which
must remain over the base of support for stable stance. The
linearized equation is of the form

Cem0 S Cg'ma S Ceml (2)

where 6 is the vector of joint angles. The desire to keep the
feet flat on the ground is similarly written as the constraints

Choetd < Cheeld (32)
o
Coe? < Croeo (3b)

When displayed in ankle-hip space (that is, with knees kept
fixed), the constraint boundaries are approximately aligned
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with the long axis of the FAS polygon (Fig. 3(b)). Detailed
derivations of these constraints are given in [19].

The shape of the FAS in ankle-hip space is useful in defining
the ankle and hip strategies based purely on kinematics. The
hip strategy can be defined as movement along the constraints
(3), while the ankle strategy is based on accelerations along
the ankle axis [20]. This ankle strategy represents an ideal, as
experiments have shown that subjects actually respond with a
curved trajectory in ankle-hip space, meaning that hip motion
is not exactly zero [26].

These two strategies, described by vectors in ankle-hip
space, can serve as a basis for all ankle-hip motions. Any
movement (in which the knees are kept straight) can therefore
be expressed as a combination of hip and ankle strategies. By
defining the magnitude of each basis vector to correspond to
the maximum feasible acceleration in that direction, the basis
can also account for neural effort associated with the strategies.
Defining the unit strategy control as the ankle strategy, the
basis b is used to find the joint angular accelerations

[ 1 =77

é:nk =5b. l:ua.nk] =lo 0 . [uank] @
.. ne - . - .

Opip Uhip 0 245 | LUnie

where uanx and upip are CNS controls associated with the
ankle and hip strategies (columns of b), respectively. The first
column of b (ankle strategy) is found by measuring the width
of the FAS polygon (Fig. 3(b)) along the ankle axis, while the
second column (hip strategy) is found by measuring the FAS
along its long axis (see [19]).

Aside from modeling constraints and neural effort associated
with movement, feasible acceleration sets can also be used to
reduce the number of degrees of freedom in the system. By
casting the controls in the strategy space of Uank and up;p,
rather than joint-torque space, we need only be concerned
with two strategies, instead of three joint torques (four, if head
movement is modeled). When the knees are constrained, the
number of states to be fed back is reduced by two (because
Oxne = 0, Bne = 0). Thus, the number of necessary feedback
gains is reduced from 18 (six states fed to three joint torques)
to eight (four states fed to two strategies). While determination
of 18 gains is not necessarily difficult, analysis of the gains is
facilitated by reduction to the smallest number possible.

The Linear Quadratic Gaussian Controller: The five ob-
jectives discussed above are satisfied by a parametrized linear
quadratic regulator (LQR), with the need for state feedback
information satisfied by a linear quadratic estimator (LQE).
Together, these two components form a linear quadratic
Gaussian (LQG) optimal controller [17]. While there is no
evidence that the CNS functions as an LQG controller, there
are plausible arguments that the CNS should behave like an
LQG controller. First, the CNS can be expected to behave
like an optimizer because it must utilize redundant sets of
both actuators and sensors. Information that is presumed to be
important for control of posture, such as the trunk angle, can be

obtained from a number of sensors (e.g., hip proprioceptors,

vestibular organs), which may provide output in different

coordinate systems or time frames (e.g., position and velocity).
Moreover, it is presumed that these sensory components are
utilized in a systematic manner. The systematic resolution
of redundancies implies optimization, and neural networks,
both biological and artificial, have been shown to resolve
redundancies through minimization of “energy” or “error”
functions, that is, optimization [30].

If the optimization performed by the CNS can be adequately
described by a quadratic function of states and controls,
then LQG is a natural choice for modeling CNS behavior.
LQR selects trajectories that minimize an objective function
which weights the deviations of the controls and states from
nominal. LQE, on the other hand, relies on an internal model
of the system to make the best possible use of output from
sensors, weighting reliance on this internal model and sensors
according to the relative quality of information from either.
State estimators also incorporate coordinate transformations
and time integration as necessary to corroborate sensory in-
formation from more than one source.

Researchers have proposed computation of important vari-
ables from multisensory input in the CNS [16]. In addition,
He et al. verified the observability of the cat neuro-musculo-
skeletal system, showing that state estimation is at least
mathematically possible [10]. Others [5], [27] have performed
experiments demonstrating that movement perception can be
predicted using state estimators, given a variety of illusory
sensations (not unlike the ankle disturbances of [1]). The
model presented in this paper integrates a similar state esti-
mation model with optimal control to produce a full model
for sensorimotor control of posture.

Apart from its attractiveness for simulation of CNS be-
havior, LQG also serves as a convenient theoretical basis.
First, LQR provides a convenient means of finding feedback
gains which produce a smooth and stable trajectory. When the
number of gains is kept to a minimum and additional sim-
plifying assumptions are introduced (as discussed in Section
III), the LQR objective function can also be parametrized with
relatively few variables.

In addition, the state trajectory produced by LQR is an
optimal return function, a function minimizing a set of objec-
tives. Whether the CNS uses a sensed disturbance to trigger
a feedforward trajectory, or merely selects a set of feedback
gains, this return function appears the same

u= f(t) = ~kz(t) &)

where u is the control, f(¢) the feedforward trajectory, and
—kz(t) the state feedback [6].

It is important to note that modeling of the postural motor
control system as an LQG controller does not presume that
the CNS performs such functions. Rather, the LQG system
represents an ideal linear system, making best use of sensory
information to minimize a quadratic function of states and
controls, while satisfying the specifications discussed above.
If the CNS has similar objectives and similar performance
criteria, then the LQG system will produce a smooth, stable
trajectory of states similar to that seen in humans in response
to perturbations.



92 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 42, NO. 1, JANUARY 1995

III. MATHEMATICAL DESCRIPTION OF MODEL

The LQG regulator is a state feedback that minimizes an
objective of the form

J= / ~ E[zTQz + vTRu] dt, (6)
0

where Q and R are weighting matrices for states z and controls
u, respectively [6]. The system dynamics are described by a
set of time-invariant first-order linear equations of the form

i=Az+Bu+w
y=Ca:+Du‘+v

(7a)
(7b)

where y is a vector of output or sensor states, and system
matrices A, B, C, and D include both the mechanics of the
body and the dynamics of sensors, depending on the desired
complexity of the model. Process noise w and sensor noise
v are modeled as Gaussian white-noise random processes
with power spectral density matrices W and V, respectively.
Though the estimator is an integral part of the model, this
paper does not deal with specific effects of noise, and W and
V are left unmodeled. From the certainty-equivalence principle
[6], the controller can be designed independently of the state
estimator implementation.

A. State Equations for Rigid Body Mechanics

The first step in developing equations for rigid body me-
chanics is determination of state realization and dimension.
Many realizations will produce the same transfer function ma-
trix and input-output behavior. It is difficult, if not impossible,
to determine the actual physiological states employed by the
CNS because of their quantity and relative inaccessibility [29].
The particular state realization selected, while affecting some
measures of relative controllability and observability, such as
the grammian functions [17], is of little importance here. For
modeling the mechanics of human standing in conditions in
which the knees remain relatively straight, it is reasonable to
choose a reduced-order four-state system, corresponding to the
two-joint system utilized by others [9], [3]. Its realization is
arbitrarily based on joint angles (ankle and hip), as these are
commonly measured in experiments.

Using the feasible acceleration set for upright standing with
the knees kept straight (Fig. 3(b)), it is possible to decouple the
model, so that controls are described in strategy space rather
than torque space (see above). With the reduced-order state
and controls defined as

Gank
— | Onip - umk]
o= Bank |’ U= | umip
Onip
and system matrices
0 010 0 0
_10 0 01 _10 0
A=1000 0 =1 —77
0 00O 0 245

this double-integrator model is in the form of (7)
®

Note that values for B, are taken from (4), leaving out the
terms for knee acceleration.

The feedback K, for this decoupled system, found using @
and R as described in [33], must return a specific combination
of ankle and hip strategies u, given the states z,

Iy = Arzy + Bru,.

®

where K, € R2%4, The desired joint angular accelerations 84
can be found by

Ur = —RyTr

84 = B2 - u, (10)

where B, is the lower half of B,.
The model of (8) maintains compatibility with other linear
models (e.g., [3]), such as

an

where A,, € R6%6, B,, € R6*3 are derived from the
linearized equations of motion, and the states and controls are

Em = AmZTm + Bmtm

oank
gkne T x
By an
Tm = éhlp v Um = | Tkne
ank Thi
})
ane P
bhip

Note that constraining motion of the knee as in this study
does not imply absence of torque about the knee, which is
necessary to keep the knee straight. Conversion to the three-
joint, torque-based model (11) is accomplished as follows.
First, the matrices A,, B, and K, must be expanded to
correspond tO Z,,, U, including the knee (though it is kept
motionless). Written compactly, the result is

@ [0 P @ = [0
AT - [0 0 b B‘I’ - b 7

0 Ko 0 Kr14]
0 K1-22 0 Kr24 '

K3

K
K(3) = [ rll
r K. 23

Kro

The desired accelerations 65 can be expanded to 0,(13) € R
for ankle, knee, and hip joints, leaving the knee acceleration
zero. Then, using (4),

6

=b-u, (12)

similar to (10). Joint torques necessary to execute these desired
accelerations are found from

13)

where A,,2 and B,,; are taken from the lower half of (11).
This relation can be used in solving (11) to compute the feed-
forward components of the ankle, knee, and hip joint torques
necessary to execute the selected control strategies, keeping
the knee straight. (The resulting knee torque is presumed
to be supplied by active muscle force or by constraints on
knee motion.) However, this model does not include a direct

Uy = ;é(ef,s) - Amzzm)
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feedback of knee angle, which would be necessary in practice,
but which is assumed to be relatively small in magnitude if
the feedforward component is accurate.

Inclusion of sensory dynamics is described in Appendix A.

IV.. FORMULATION AND TESTING OF OBJECTIVES

With z = z, and u = u, (assuming no knee motion),
the weighting matrices R and @ of (6) can be chosen so
as to penalize excessive exertion of control effort (or neural
effort as defined in Section II) and undesired excursions of
the state from stable upright posture. However, R and Q
contain a total of 13 independent entries (of 4 entries in
R and 16 entries in @, due to symmetry), which prove
difficult to specify based on either theoretical considerations or
experimental data. Simplification of the objective function is
accomplished first by reducing the number of free entries, and
then parametrizing R and Q so that physically meaningful
objectives subject to constraints may be implemented. For
example, () is parametrized by variables corresponding to
the size of perturbation and the relative amount of hip and
ankle strategies used, which are related to the constraints to
keep the feet flat on the ground. The controller is to evaluate
the state after a perturbation and then set then gain matrix
parameters. Preliminary experimental data are used to provide
rough estimates of equivalent parameter values used by the
CNS.

A. Formulation of Weighting Matrix on Controls

With state feedback, the closed-loop system poles can be
placed arbitrarily; matrix R models the effort associated with
movement of these poles. If R is chosen to be the identity

matrix,
1 0
r=p 1)

it will have the effect of weighting the relative costs of the
ankle and hip strategies equally. Equation (4) defines the basis
b, describing accelerations resulting from each strategy, so
that for equal neural effort, the hip strategy will produce
accelerations of larger magnitude than the ankle strategy.
The cost of executing the ankle or hip strategies is thereby
factored into R. Fig. 4(a) illustrates this cost in joint angular
acceleration space. Alterations to (14) can also be used to
change the relative weightings of the two strategies.

(14)

B. Formulation of Weighting Matrix on States

The Q matrix in (6) is chosen so as to simplify the equations
goveming the feedback gain matrix. First, Q is constrained
to be positive definite (rather than the LQR requirement of
positive semi-definiteness), so that there are no states other
than the origin (upright stance) that minimize the objective
on states. Second, () is constrained to weight only joint angle
deviations, excluding joint velocity weighting. Thus,

_2|Qu O
Q—02[0 0], (15)
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Fig. 4. (a) Three-dimensional plot of cost function on the controis. In
angular acceleration space, this function is modeled on the ankle-hip feasible
acceleration set, shown in the ankle-hip acceleration plane (see Fig. 3). (b)
Three-dimensional plot of cost function on the states. The [cm] objective,
which models the desire to avoid horizontal excursion of the body center of
mass beyond the support surface (unstable region), and the [up] objective,
which models maintenance of upright stance, combine to form this surface.
Note that minimum is at the origin, corresponding to upright position.

where ¢ is a scalar governing the relative weighting of @ and
R (the maximum singular value of Q;; € R2*? is constrained
to be unity, i.e., 7(Q11) = 1). Such a formulation reduces the
number of parameters needed to specify the objective to three
(for positive definite Q). This reduction comes at the expense
of control over the joint velocity weightings and hence, the
relative damping of the system. Instead, the inherent properties
of the LQR-designed controller are assumed to provide a well-

* damped control that adequately approximates both the desired

and actual behavior.

C. Selection of State Objectives

Although @ of (15) could be chosen by trial-and-error
selection of each entry, the specification of the state ob-
jectives is vastly simplified by choosing Q so that certain
physical quantities relevant to posture are regulated. These
choices reduce the solution space to be searched and reflect
the constraints imposed by the biomechanics of the system.
The control responses dictated by the regulation of each
physical quantity can be examined, providing clues as to
which combinations produce behavior most similar to that
observed experimentally. It is proposed that relevant quantities
include center-of-mass position, upright body position, and
head position.

It is assumed that the body is subject to constraints in ankle-
hip position space—that is, the horizontal location of the center
of mass should be regulated to remain within the base of
support, as in (2). This constraint can be modeled as a penalty
function of the form (cg;nt9)2 , where ccm = [—0.98 — 0.23]T
(see [19]), so that larger costs are associated with progressively
less balanced configurations. This center of mass stabilization
objective, [cm], is presumed to be a large factor in the state
cost function.

Because the CNS controls the body not only for balance
but for maintenance of upright stance, another factor in the
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TABLE I
Cost FUNCTIONS AND Q MATRICES FOR VARIOUS OBJECTIVE FUNCTIONS
Cost funcii ) . Obiecti
T
T g\’ =|Cenen i 0
(c2.8) Q. —[ e o} fem]
12x2 0
79 1 e e
d 2 [ 0 go} (up]
(en 9)2 Qu= C“c"‘o {hd]
M 070

cost function should be regulation of body position. This
hypothetical objective, [up], is of the form 874, so as to
penalize all positions away from upright stance.

The objective can also be based on the proposed desire to
regulate head position so as to provide a stable platform for the
eyes [2]. Head angle, which is not included in the state vector
T, can be regulated with respect to the horizontal regardless
of movement of the body, so that the stable platform can be
maintained without requiring alterations to objectives on Z,y,.
However, due to the existence of noise and thresholds in the
controller, deviations in head angle can be expected to increase
with increased body motion. To minimize this uncertainty, the
body should provide a stable platform for the head [hd] by
keeping the trunk vertical. As the trunk angle is derived from
the sum of the ankle and hip angles, a cost function (cf,8)”,
where cpa = [1 1)7, penalizes movement of the trunk away
from vertical.

The sample cost functions for hypothetical objective [up],
[cm], and [hd] are summarized in Table I. It is expected that
a cost function emulating human behavior would consist of
a combination of one or more of these costs. To gain insight
into the effects of each of these objectives, it is possible to plot
their resultant trajectories to gauge how various combinations
would perform. Ankle-hip trajectories for the [cm], [up], and
[hd] objectives are plotted in Fig. 5. The [cm] and [hd]
objectives were augmented with small proportions of [up] to
ensure positive definiteness. Note that [cm] produces curved
trajectories similar to the hip strategy discussed in [26], while
the [up] objective tends to attract the trajectory to the ankle
axis. The [hd] objective produces curved trajectories which
are opposite in direction to those from [cm]. This indicates
that combinations of [cm] and [up] might produce trajectories
similar to the ankle strategy. The form of such a combined
objective is shown in Fig. 4(b).

D. Parametrization of Objective

Final determination of Q involves selection of parameters
to specify combinations of the objectives discussed above. As
seen in (15), @ is specified by three independent entries, and
therefore three free parameters. With proper formulation, the
objective parameters may be interpreted in a number of phys-
ically meaningful ways. As formulated here, one parameter is
used to select the type of response, another selects the speed
or gain of the response, and one is left unused.

Using the proposed combination of [cm] and [up] objectives
as a framework, it is natural to choose a parameter y to govern
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Fig. 5. Ankle-hip trajectories for various objectives. (a) [cm] objective
(regulation of body center of mass) results in counterclockwise curved
trajectories. (b) [up] objective (regulation of upright stance) controls hip
angle quickly, followed by motion about the ankles toward upright. (c) {hd]
objective (minimization of excessive head motion needed to maintain level
gaze) produces curved trajectories opposite in direction to those of {cm].

the proportion of [cm] and [up] in Q. Another parameter o
can be used to regulate the overall magnitude of @ relative
to R, leaving one additional parameter, ¢, which is arbitrarily
defined as the rotation of the [cm] and [up] components in
the ankle-hip plane (about the vertical axis in Fig. 4(b)). This
parameter is left at ¢ = O in this formulation. The resulting
objective can then be written as

— a2 UQem + (1 - V‘)Qup
Q=0 F(4Qem + (1 — p)Qup)’

(16)

Ensuring that 0 < ¢ < 1 and o > 0 guarantees that Q) is
positive definite. Normalizing by the maximum singular value
of the numerator, 7°(e), guarantees that variation of 1 does not
interfere with the magnitude-scaling properties of ¢. Thus, the
entire response properties of the system are specified by the
two parameters u and o (leaving the third unused).

There are several functions that can be ascribed to x and ¢
so as to aid understanding. The proportion of [cm] and [up]
as governed by p is equivalent to specifying the ratio of hip
and ankle strategies. The parameter o is subject to a number of
interpretations relating to the speed or gain of the response. For
example, magnitude-scaling of @ with o also parametrizes the
gain matrix K. As discussed in Appendix A, the relation is

K, = [0K; VoK;) an

where K1, K> € $2*2 are nominal matrices found by solving
the Riccati equation with ¢ = 1.
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The relation between o and the center of mass acceleration
is also simplified. If the effect of the disturbance can be
modeled as a perturbation on the initial values of 6 while
having little effect on 6 (because the support surface is started
and stopped quickly), that is,

6
=5

then the linearized expression for horizontal acceleration of
the center of mass, Z.n, is a linear function of joint angular
accelerations [20],

(18)

Zem = cché
and can be related to z,. using (9) and (10), to form the relation

Sem = oy Bro Koz, (19)

For a minimum-phase system such as this, the maximum value
of |Z.;| occurs at initial time and is found by substituting
initial conditions into (19). Also substituting (17),

Elmaxl = ma.xlécml = |chmBr2K100| (20)
where 0y = [fank Ohip]T at initial time, so that there is a
linear relationship between o and 2| max |- This proportionality
implies that and can be used interchangeably as parameters.

The constraints (3) for keeping the feet flat on the ground
are similar in form to (18), implying that o is also linearly
related to heel- and toe-off conditions. Thus, the parameter o
has a direct relationship to the feedback K, the maximum
center of mass acceleration, and heel- or toe-off. Depending
on the application, ¢ can then be interpreted alternatively as
a measure of the relative cost of state deviations, the speed of
the response, the gain of the feedback, the amount by which
we are willing to move the system poles, or the danger of
lifting the toes or heels off the ground.

The actual values for ¢ and o are chosen by the control
selection center (Fig. 1(b)) based on the size of disturbance.
It is expected that the penalty [cm] is of greater importance
when responding to larger perturbations, when the constraint
of keeping the center of mass within the base of support
is likely to become active. As perturbations increase, the
acceleration of the body required to offset the perturbation
will also increase. The control selection center is therefore
expected to increase both y and o as pertubations increase
in size. The model implements the selected control for the
duration of the response.

E. Comparison with Experimental Observations

The model utilizing objective function (16) was compared
with natural human responses, where subjects were released
from various initial positions and allowed to return naturally
to upright stance. Ankle-hip trajectories were found to exhibit
a curved shape similar to those described in [26]. Thus,
the simple LQR objective scheme, in conjunction with body
dynamics, was sufficient to reproduce major characteristics of
human responses without need for more complex objectives
involving switching between strategies and minimizing the
number of muscles used [26].

Measured ankle and hip trajectories were used to find rough
estimates of parameter values and to test predictions on how
these parameters varied with initial conditions. Use of initial
conditions rather than platform movement as disturbance was
used to simplify the model validation procedure.

To compare with experimental results, objective function
parameters were chosen to best match experimental trajecto-
ries. The parameter o was used to scale the temporal response
to match natural responses, while p was adjusted to match
ankle and hip angle trajectories and model the enforcement of
constraints that become active as perturbations become larger
or initial conditions approach the position constraints of (2).
Simulations with these parameter values show that the model
(8), using objectives [cm] and [up], minimizing neural effort,
produces curved trajectories similar to those described in [26],
as shown in Fig. 6 (this is only a subspace of the full 4-D state
space, which is difficult to illustrate). For larger disturbances,
values of u = 0.997 produce reasonable matches, similar to the
kinematics of the hip strategy; for small disturbances, values
of u = 0.980 produce trajectories similar to the kinematics of
the ankle strategy. (Note that the small range of values for u
is an artifact of the parametrization, and is not indicative of a
sensitivity problem in the model or the CNS.)

For a given initial condition, Z|may| can linearly parametrize
o using (20). Elements of feedback gain matrices K, are
plotted versus varying values of Z|max (and hence o) and p
in Fig. 7. Note that the feedback gain increases with Z|max|»
verifying that control effort increases in magnitude with the
speed of the response required to offset a disturbance. As y
decreases, lowering the proportion of [cm] in the objective, the
relative proportion of ankle strategy is increased. Large values
of u produce gains utilizing higher proportions of the hip
strategy. This indicates that for a given Zmax|, ankle strategy
movements tend to require more control effort than hip strategy
movements.

Fig. 8 illustrates the performance of the controller for vary-
ing values of Z| mayx | and u. Note that susceptibility to lifting of
the heels off the ground, cf__,4, increases as Z| max | increases
and as u decreases (Fig. 8(a)). Thus, a secondary effect of the
[cm] objective is that the constraints (3) are not active for large
values of 4, so that the feet are automatically kept flat on the
ground. Fig. 8(b) shows that settling times (time for response
to return within 10% of zero) are fairly invariant with yu; the
choice of objective, and therefore strategy, has little bearing
on response time. ’

An important consideration in a biological system is that the
controller must be stable even with substantial transmission
delays. The maximal time delay tolerable before a system
becomes unstable may be estimated by determining the phase
margin of the system and dividing by the cross-over frequency
to find the largest tolerable pure lag. Maximum tolerable time
delays for varying values of 2 max| and u, are shown in
Fig. 8(c). Note that, except for slow responses (small values
of Z| max|), there is little variance in robustness to time delays
with respect to u. For very small disturbances that can be
stabilized with small 2., larger values of u, corresponding
to controls similar to the hip strategy, are more robust with
respect to time delays.
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Fig. 6. Comparison of experimental data (dotted lines) with computed simulations (solid lines). Data are from a typical subject released from various initial
positions, retuming to upright stance. Shown are ankle angle 6,,; versus time, hip angle 6y;, versus time, and 6y, versus O,nk. (a) Starting with ankle
extended, hip flexed. ¢ = 1.4, u = 0.997. (b) Starting with ankle flexed, hip extended. o = 2.4, & = 0.997. (c) Starting with ankle flexed, hip extended.
o = 1.6, g = 0.990. (d) Starting with ankle flexed, hip flexed. o = 0.6, u = 0.980.

V. DISCUSSION

A. Modeling Deficiencies

Many of the differences between experimental and simu-
lated trajectories can be attributed to simplifications in the
modeling and formulation of the objective. Errors in prediction
will arise due to flexibility within the human body segments,
and particularly, nonnegligible knee motion. In particular,
inclusion of knee motion in the model is believed to increase
fidelity to experimental results, though at the cost of increased
complexity. The additional degree of freedom increases the
dimension of the state vector, and may require one or more
additional parameters to form the cost function.

Knee motion can also be presumed to be dependent on the
direction of the disturbance. A person falling forward over

the toes might be expected to bend forward over the hips
while rotating backwards about the ankles slightly (thereby
moving the center of mass backwards), keeping the knees
straight and fully extended. A person falling backward might
be constrained from reversing this response due to limitations
on hip extension, and may rely on flexing the knees to move
the center of mass horizontally. Thus, knee motion, if modeled,
must be made dependent on the direction of the disturbance
and constraints on hyperextension. This nonlinearity could
be accounted for by using the gain-selector with two linear
models—one for each direction of perturbation.

The LQG controller produces an optimal return trajectory
that is a function of the states. To study platform perturba-
tions, it is necessary to provide reasonable estimates of initial
conditions on the states which are used to compute the return
trajectory. Because the platform imparts changed velocities,
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Fig. 7. Gain matrix elements K, versus Z|max| (maximum center of mass
acceleration) and . First row is gain feeding back to ankle strategy, and
second row feeds back to hip strategy. First column is feedback from ankle
position. Second column is feedback from hip position. Note that gain
increases, indicating larger control effort, as the speed increases. Decrease
of i causes greater proportion of ankle strategy. Increase in p causes greater
proportion of hip strategy.

as well as positions to the system, the initial conditions on
positions (used here to model standing up after release from
nonerect stance) must be augmented with velocity information.
Alternatively, perturbations may be modeled as exogenous
force or acceleration inputs, which would require additional
degrees of freedom for support surface movement.

The model here also relies on feasible acceleration sets
to model the cost of activating muscles. Other possible cost
functions utilizing metabolic or mechanical energy expenditure
(see, e.g., [31]) are difficult to implement using quadratic
functions. Minimization of neural effort serves as an adequate
cost in that it penalizes increased activation of muscles and
integrates this cost over the entire trajectory. It does not
account for the velocity of movement, whether the muscles
are lengthening or contracting, or whether muscles are co-
contracting. ’

Both regulator and estimator portions of the LQG controller
are implemented using steady-state feedback gains. Steady-
state gains are appropriate for the middle portion of a long
trajectory. Linear quadratic regulators are expected to use
time-varying gains near the end of a trajectory, when terminal
objectives, which are not part of the objective in the current
model, may have precedence. Similarly, state estimators are
expected to use time-varying gains near the beginning of
a trajectory, when initial conditions on the state estimate
may have precedence over the computed values (6]. The
use of steady-state gains greatly simplifies computation and
simulation, at the expense of accuracy at the initial and final
portions of the trajectory. This accuracy could be improved

by implementing a terminal objective and time-varying gains
for a finite-time task.

B. Analysis of Time Delay Robustness

The optimal control model appears to be useful for testing
motor control hypotheses, despite the deficiencies outlined
above. For example, it is possible to examine the robustness
of the ankle and hip strategies to transmission delays. (Note
that robustness of an LQG controller can be recovered using
loop transfer recovery {8].) Analysis (Fig. 8(b)) shows that
controllers utilizing the hip strategy (larger values of u) can
tolerate greater time latencies before going unstable than
those utilizing the ankle strategy (smaller values of ). These
findings are in contrast with those of [24], in which time
constants for the inverted pendula corresponding to the two
strategies were computed and compared. It was concluded
in [24] that because a response must be produced within a
quarter-period of the movement, the slower ankle strategy is
more tolerant to time latencies. The difference in results can
be explained by analyzing the feedback control system. State
feedback can be used to move system poles (and hence, time
constants) to arbitrary locations. This movement of poles is
limited by the cost of the control large feedback gains are
necessary to move poles far from their open-loop locations.
While the hip strategy is naturally faster than the ankle strategy
as shown in [20] and [24], it also requires smaller feedback
gains to achieve a given speed of response.

This analysis shows that when the controllers are analyzed
with respect to center of mass acceleration (2 max|)> 2 given
disturbance can be countered either by a hip strategy (4 =
0.997) with low gain, or an ankle strategy (u = 0.980) with
higher gain. Because the magnitude of feedback gain, rather
than the strategy used, is the primary determinant of time
delay robustness, there is little or no advantage to the ankle
strategy—a hip strategy can stabilize the body just as quickly,
but with lower gain. As a result, the hip strategy can actually
tolerate longer transmission delays while maintaining stability.

C. Interpretation of Objective Function

Once a cost function has been shown to produce a reason-
able approximation of natural behavior, it is natural to interpret
the objective being achieved. For example, the controller
introduced here appears to regulate center-of-mass position
above the support surface with an additional objective of
maintaining upright stance (the [cm] and [up] objectives).
The gain-selecting model that matches human behavior would
choose slow movements (small values for o) mostly of the
ankle strategy (1 =~ 1.00). for small disturbances. As dis-
turbances to posture become larger, the gain-selector would
choose progressively faster responses (larger values for o)
using the hip strategy (u = 0.98) to avoid lifting the feet off
the ground. The resulting controller behaves functionally like
the CNS, choosing the ankle strategy for smaller disturbances,
switching to the hip strategy for larger disturbances.

It is quite possible that such a cost function results in a
controller that approximates natural behavior well. It is also
quite possible that there exist neural circuits that compute
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Fig. 8. Performance of system versus Z| mqx | and u. (a) Susceptibility to lift-off of the heels, c{n,o, increases with speed of movement and use of ankle
strategy (low p). (b) Settling time from disturbance remains approximately the same for both ankle and hip strategies ([cm] and [up] objectives). Slower
movements have slower settling times. (¢c) Maximum tolerable time delay, calculated from phase margin of stabilized control system. Note that neither strategy
has a large advantage, but for extremely slow movements, [cm] objective appears most robust,

such a cost function. However, it is fruitless to attach an
interpretation (e.g., that the CNS desires to regulate position
of the center of mass) to the cost function, because there
are many other possible interpretations that produce the same
results. For example, a controller could be implemented using
a combination of [cm] and [hd] objectives, and with the
appropriate choice of rotation ¢, could exactly duplicate the
cost function (16). Such a controller was rejected based on
intuitive interpretations of ankle-hip trajectories in Fig. 5 and
to avoid use of additional parameter ¢. But none of the above
results provide any evidence for rejecting [hd] as a component
of the actual objective used by humans. The use of [cm] and
[up] objectives in (15) was based primarily on the desire to
reduce the size of the parameter space to be searched. Thus,
while intuition aids in formation of hypotheses concerning
objectives, and some objectives may be deemed unlikely after
examination of the trajectories, the results have limited utility
for interpretation.

Nevertheless, the existence of simple objectives is subject to
interpretation. Evidence that the CNS flexibly adjusts controls
based on mechanical constraints suggests that the CNS is
not subject to certain neural constraints, as hypothesized in
[26]. Rather, neural circuitry is programmed to stabilize the
body subject to the varying effects of external mechanical
constraints. More experimentation is required to accurately
describe the objectives which describe how this flexibility is
used. '

More careful models of the cost function can produce
predictions with greater fidelity to experimental results and
superior predictive capability. The three degree-of-freedom
quadratic cost function (15) could be replaced by more com-
plex, possibly nonquadratic functions. However, the successful
use of a simple quadratic function leaving velocity states
unweighted indicates that only a few states are important to
the CNS when adapting to changing situations.

Identification of significantly improved objective functions
is ultimately limited by feasibility of the experiments, res-
olution of the data, and inter- and intrasubject variability.
However, clever design of perturbations and conditions should

aid in identification of much finer details of the objective than
are discussed here. One use of these model mechanical systems
is to identify which of the many variants of these experiments
will provide the most powerful tests of competing hypotheses.

D. Compatibility Issues

Though more general nonlinear objective functions may
improve fidelity, the LQG controller has a number of inherent
advantages. First, the optimal return trajectory can be de-
scribed as either a feedforward trajectory or a feedback control
with constant gains in the steady state (see Section II). While
there is considerable debate concerning the proportion of feed-
forward and feedback used by the CNS [21], [12], this model
produces the same trajectories regardless of the proportion.
This also makes the model compatible with feedback error-
learning models [18], which incorporate both components.
More complicated optimal control formulations generally pro-
duce only feedforward trajectories, without feedback gains
which are of particular interest to neurophysiologists {10].
An exception is the technique of dynamic programming [33],
which is highly susceptible to problems of dimensionality.

Second, LQG is a simple technique for design of full-
state feedback systems compatible with those of [9], [3].
Such systems are also amenable to state space identification
techniques, providing further avenues for experimental study.

The linearity of the controller is disadvantageous in that it
requires a control selection center (Fig. 1) to estimate the size
of the disturbance and whether constraints are active, and to
select controller parameters (u and o) accordingly. However,
others have proposed a hierarchical motor control scheme
in which low-level regulation occurs in lower levels of the
CNS (such as the spinal cord), with successively higher levels
of feedback to portions of the brain [22]. The necessity of
a control selection center is therefore compatible with such
hierarchical control hypotheses.

The successful performance of the model does not, how-
ever, imply that the CNS functions as a linear quadratic
regulator and estimator; nor is it proposed that there are
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specific functions of the model (see Fig. 1) being performed
in specific locations within the CNS. In fact, the separation
of the regulator and the estimator in the model is only
due to mathematical (the certainty-equivalence principle) and
conceptual simplicity, and is not necessary in a controller
implemented in neural circuitry. The only presumption is that
for the specific operating conditions outlined here, the CNS
achieves the same functionality as the LQG model, in that
the system can stabilize against small perturbations, making
efficient use of body biomechanics and (redundant) sensory
information to produce the control.

The state estimator model of sensory output processing
has significant advantages over the Sherringtonian concept
of reflex loops from sensors to actuators [32]. The sugges-
tion that the CNS utilizes an internal model of the body
is compatible with data concerning responses to ambiguous
sensory information, such as circularvection [S]. Incorporation
of sensory information throughout the body to estimate states
may also explain the enormous degree of divergence and
convergence of neurons seen physiologically. The implication
is that output from sensors is not used directly as a trigger
or in multiplicative feedback to produce a response, as in the
Sherringtonian view. Rather, it appears that a complex set of
computations, including filtering and integration, as well as
summation of input, occurs prior to formation of the response.

E. Future Work

This model of control of balance appears to serve as an ideal
framework for studying responses to ambiguous sensory input.
This framework must be tested with additional experiments
similar to the preliminary trials described in Section IV. Such
experiments will reveal limitations to this model and indicate
areas in which additional complexity is required.

The model can also be used to study integration of sensory
information. Experiments in posture have explored alteration
of visual, proprioceptive, and vestibular input in conjunction
with platform perturbations [15]. Modeling can be used to
predict and explain many types of behavior arising from such
altered sensory input conditions.

The LQG controller can be used to study how system per-
formance is related to the precision of sensors. One approach
would be to describe the signal-to-noise ratio or precision
of each sensor with a power spectral density matrix. The
linear system with noise would then be modeled as a Gauss-
Markov random process [6], which can be used to predict the
covariance of the output states. Thus, loss of sensory input
could be modeled to calculate increases in uncertainty of the
state. Certain elements of the state estimate are affected by
some sensors more than others, so that a ranking of importance
could be established in terms of the amount a particular sensor
is relied upon in formation of the estimate.

* With age, various components of the neuro-musculo-skeletal
system are presumed to degrade [15]. Sensor noise, transmis-
sion delays, and actuator weakness may all increase in the
elderly. In addition, the internal model of the system and
the control may or may not adapt accordingly. The effects
of such adaptation may also be modeled in the LQE and LQR

components, so that predictions can be made to test hypotheses
concerning the process of aging or the effects of disease or
trauma affecting sensors.

VI. CONCLUSION

This work demonstrates first that biomechanics and task
requirements place substantial constraints on the set of mean-
ingful choices available to the CNS when it is faced with
the necessity of stabilizing the body. Second, the multilink
dynamics dictate not only feasibility, but also ease of achieving
certain combinations of joint angular accelerations. Third, the
decisions remaining to the CNS appear to be made so as to
preserve upright balance while maintaining an economy of
movement.

The proposed model therefore combines elements of biome-
chanics and sensor-based control and serves as a framework
for studying motor control objectives and constraints relevant
to the CNS. Aside from the formulation of objectives, it serves
as a convenient method for producing feedback gains that
can be used in control systems analyses to test motor control
hypotheses within a structure that is compatible with a number
of existing models and theories (e.g.; [3], [9]). Finally, the
integration of sensory input provides predictive and analytic
capabilities that are useful for studying sensory processing and
changes to the system.

APPENDIX A

The LQG controller is formed by augmenting the model
of (11) with sensor dynamics, and then selecting weighting
matrices for the linear quadratic estimator. Together, the
estimator and regulator form the full LQG controller. Loop
transfer recovery can be applied to adjust for loss of robustness
in the estimator-based controlier [8].

A. Inclusion of Sensor Dynamics

Sensor dynamics are integrated into the system equations of
form (7) if written in the form

Ty = Aszs + Byus

Ys = Csxzs + Dgu,

(A.la)
(A.1b)

where the sensor inputs are defined as u, = z,. The complete
system equations are put in the form of (7) by

zz[i"], Y=1ys, U=1Ur (A.2a)
A, O _ | B-

=[5 4} 2=[%)

C=[Ds Cs], D=0 (A.2b)

where y, is the sensory output available to the CNS.

B. Weighting Matrices for Linear Quadratic Estimator

The gains for the optimal state estimator are determined by
the power spectral density matrices W and V' of (7). Given a
reasonably accurate internal model and initial conditions, com-
puter simulations of an LQG system without injection of noise
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give accurate state estimates, rendering implementation of the
filter necessary only for prediction of state covariance matrices,
which describe the probable deviations from expected values.
The certainty-equivalence principle {6] also guarantees that the
LQR can be designed independently of the LQG. Therefore,
the state estimator is designed and implemented based on (8).

Note that the estimator can also be used to model direct
feedthrough of sensory measurements as in [10] by rendering
the internal model unreliable. This is done by increasing its
uncertainty (process noise w), so that the state estimator then
depends purely on sensors. The resulting covariance matrices
can be compared to those computed with an internal model
to determine the performance of the system with and without
an internal model.

APPENDIX B

The gain matrix K, of (17) is linearly related to parameter
o. This is shown by noting that
K,=R'BTS B.1)

where S is the stable steady-state solution to the Riccati
equation

§=-ATS-SA.+SB.R'BTS-5%Q=0 (B2
as described in [6]. Defining
Z = B,sR™'BY,
and rewriting (B.2) in block form combined with (15) produces
0 Sn 0 o0 83,2591 SEHZSy
- [o 521] - [s}q s{l] + [Sg;ZSu Sg;ZSzz]

_ [”20‘911 0] —o. (B.3)

0

Rearranging terms reveals

[02Q11 Su ] _[S52Sn SELZSn B
S Sa+S%h SL72Sy S5L2Sn|0

the upper-left block of which shows that solutions for Sy, are
linear in o. The lower-right block of (B.4) shows that Sy, is
therefore linear in /o.

Writing (B.1) as

S S

K, = R0 B
[ ,21[521 o

] =R .BL.[Sn S3]

B.5)
leads directly to (17).
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