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Abstract. An adaptive estimator model of human
spatial orientation is presented. The adaptive model
dynamically weights sensory error signals. More specific,
the model weights the difference between expected and
actual sensory signals as a function of environmental
conditions. The model does not require any changes in
model parameters. Differences with existing models of
spatial orientation are that: (1) environmental condi-
tions are not specified but estimated, (2) the sensor noise
characteristics are the only parameters supplied by the
model designer, (3) history-dependent effects and mental
resources can be modelled, and (4) vestibular thresholds
are not included in the model; instead vestibular-related
threshold effects are predicted by the model. The model
was applied to human stance control and evaluated with
results of a visually induced sway experiment. From
these experiments it is known that the amplitude of
visually induced sway reaches a saturation level as the
stimulus level increases. This saturation level is higher
when the support base is sway referenced. For subjects
experiencing vestibular loss, these saturation effects do
not occur. Unknown sensory noise characteristics were
found by matching model predictions with these
experimental results. Using only five model parameters,
far more than five data points were successfully predict-
ed. Model predictions showed that both the saturation
levels are vestibular related since removal of the vestib-
ular organs in the model removed the saturation effects,
as was also shown in the experiments. It seems that the
nature of these vestibular-related threshold effects is not
physical, since in the model no threshold is included.
The model results suggest that vestibular-related thresh-
olds are the result of the processing of noisy sensory and
motor output signals. Model analysis suggests that,
especially for slow and small movements, the envi-
ronment postural orientation can not be estimated
optimally, which causes sensory illusions. The model
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also confirms the experimental finding that postural
orientation is history dependent and can be shaped by
instruction or mental knowledge. In addition the model
predicts that: (1) vestibular-loss patients cannot handle
sensory conflicting situations and will fall down, (2)
during sinusoidal support-base translations vestibular
function is needed to prevent falling, (3) loss of
somatosensory information from the feet results in
larger postural sway for sinusoidal support-base trans-
lations, and (4) loss of vestibular function results in
falling for large support-base rotations with the eyes
closed. These predictions are in agreement with experi-
mental results.

1 Introduction

To control posture, postural orientation must be known.
Humans utilise multiple sources of sensory information
to orient themselves in space. When the visual scene or
support base is fixed, visual or proprioceptive informa-
tion is sufficient to define postural orientation with
respect to the gravitational axis and both can stabilise
posture (e.g. Peterka and Benolken 1995; Ishida et al.
1997). However, support-base rotation or visual scene
movement destabilise posture (e.g. Berthoz et al. 1979;
Bolha et al. 1999).

Proprioceptive and visual clues alone are insufficient
to distinguish ego-motion, visual scene and support-base
motion from each other. In that case the vestibular sys-
tem appears to be crucial in distinguishing ego-motion
from environmental motion (see also Mergner et al.
1991, 1992, 1995). This is demonstrated by experiments
in which for large movements of the visual scene (Peterka
and Benolken 1995) or large platform rotations (Maurer
and Mergner 1999), vestibular-loss patients — in contrast
with normals — were not able to maintain balance. By the
nature of the vestibular system, it is impossible to get an
ideal estimate of orientation of the head in space, espe-
cially for low-frequency movements (Cohen et al. 1973;
Mergner and Glasauer 1999). In most models of the
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vestibular system this non-ideal low-frequency behaviour
is included as a physical threshold (e.g. Borah et al. 1988;
Nashner et al. 1989; Hosman 1996). However, these
thresholds are based on perceptual thresholds for ego-
motion obtained from psychophysical studies (e.g. Clark
and Stewart 1969). There is evidence that vestibular-re-
lated thresholds are of central origin and depend on other
sensory clues (Mergner et al. 1995).

Among others (Borah et al. 1988; Gerdes and Happee
1994; Wolpert et al. 1995), we have described the
complex process of human spatial orientation with the
use of optimal estimation theory (Van der Kooij et al.
1999a). According to this view the control model has a
kind of internal representation (IR) which includes
‘knowledge’ of the body and sensor dynamics, and the
external environment. Using this representation the
control model makes an estimate of spatial orientation
using both the motor and sensory output signals. These
sensory and motor signals are integrated so that a min-
imum variance estimate of postural orientation is ob-
tained. Spatial orientation under various illusory
sensations (Borah et al. 1988) and specific multivariate
changes of postural sway due to altered visual or plat-
form perturbation conditions (Van der Kooij et al.
1999b) can be predicted using optimal estimation theory.
Optimal estimation theory, however, does not fully
explain how humans integrate multisensory information.
By using optimal estimation theory some ‘knowledge’ is
required of the precision of the different sensory systems
and of the external environment acting upon the body
and the sensory system. This ‘knowledge’ is usually
specified by power spectral density matrices of the sensor
noise and of the disturbances acting on the body. These
matrices are defined by the designer of the optimal esti-
mator (Kalman filter) and are usually used as design
variables. It is easy and tempting to use these power
spectral matrices to match model predictions with
experimental results. In models using a Kalman filter to
model spatial orientation, the system and sensor noise
statistics are used as ‘tuning parameters’ to mimic model
with experimental results (Borah et al. 1988; Gerdes and
Happes 1994; Wolpert et al. 1995). The statistical prop-
erties of external forces, support-base translations and
rotation, and visual scene motion have to be specified in
the human stance control model in order to obtain a
minimum variance estimate of spatial orientation. The
intriguing question of how humans solve the problem of
distinguishing ego-motion from motion of the environ-
ment can not be understood within the concept of a non-
adaptive observer like the (extended) Kalman filter; when
using a Kalman filter the statistical properties of envi-
ronmental motion are specified by the model designer.

Therefore, in this paper an adaptive estimator model
of human spatial orientation is presented where, besides
spatial orientation, ‘knowledge’ of the external envi-
ronment is estimated from the sensory output signals
instead of being specified by the designer. Only the
sensor noise characteristics have to be specified by the
model designer. We believe that the modified model is
biologically more realistic. The model is used to inves-
tigate:

1. Whether it is possible to estimate postural orienta-
tion based on sensory information only and use this
estimate to stabilise posture, without specifying
environmental conditions as is done in existing
models of spatial orientation.

2. Whether sensor noise properties can be found by
matching model predictions with experimental
results.

3. Whether the model produces vestibular-related
thresholds without including physical thresholds.

4. Whether vestibular-related thresholds can be under-
stood by the noisy properties of the sensory signals.

5. How sensory loss affects postural control and
orientation under different environmental conditions.

6. Whether experience and cognitive resources can be
modelled within this model, and how they influence
postural orientation and control.

2 Methods

Optimal estimator models of spatial orientation are
usually realised by including a Kalman filter (KF). The
working of the KF is a combination of two processes.
The first process uses the current estimate of spatial
orientation and motor outflow to predict the next
estimate of spatial orientation, by simulating the
dynamics using an Internal Model (IM) of the body
and environment. The second process uses an IM of the
sensory dynamics to predict the sensory output corre-
sponding to this predicted next estimate. The sensory
error — the difference between actual and predicted
sensory output — is weighted by the Kalman gain to drive
the estimate of spatial orientation, resulting from the
first process, to its true value. The elements of the
Kalman gain are determined by the uncertainty in
the predicted next estimate (caused for example by an
imperfect IM or uncertainties of the environmental
conditions) and the uncertainty in a sensory output
signal. These uncertainties are specified by the designer
of the KF as power spectral density matrices of the
sensor noise and of the external environmental variables
acting on the body. We modified our human stance
control model (Van der Kooij et al. 1999a) by replacing
the KF with and an adaptive KF. In the original model
the statistical properties of mechanical disturbances,
platform rotation and accelerations and visual scene
motion, had to be specified by the model designer. In the
modified model these statistical properties of the envi-
ronment acting on the body are estimated by the
adaptive KF simultaneously with the estimate of spatial
orientation based on sensory and motor output signals
only. Only the sensory noise levels have to be specified by
the model designer and they are assumed to be
stationary.

Besides replacing the extended with an adaptive KF,
the following modifications to the model were made

(Fig. 1):

1. Since, in this paper, we do not focus on inter-seg-
mental co-ordination but on postural orientation in



space, the segment was reduced to an inverted pen-
dulum model to save on computational requirements.
2. The model was linearised and converted to a discrete-
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Fig. 1. Schematic view of the modified human stance control model.
Standing person is modelled as an inverted pendulum exposed to
environmental variables. The person stands on a support base, which
can translate (s**) and rotate (6*°). External forces acting on the body
are support-base accelerations, external forces (F*), and gravity (g).
The modelled person looks at a visual scene at distance s**. The visual
scene can rotate around an axis (0"*). Different sensor systems are
modelled. Input to the muscle spindle is ankle joint angle. Input to the
canal systems is angular acceleration of the head. Inputs to the otolith

system are gravitational and linear accelerations of the head. Input to
the visual system is the distance between the head and the visual scene.
Input to the tactile afferents is shear force at the sole. Based on
delayed sensory output signals and synchronised control inputs, an
adaptive Kalman filter estimates postural orientation and environ-
mental conditions for times ¢ — . A predictor compensates for the
neural time delays (t = 100 ms). The controller to stabilise posture
with respect to the desired orientation uses the resulting estimate of
spatial orientation
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B is the control input distribution matrix;
G is the noise output matrix;
Hbody is the mapping of the body states onto the

sensory output vector;

is the mapping of the environmental states

onto the output vector;

D is the mapping of the control inputs onto the
sensory output vector.

HénV

In compact form (1) is given by:

X, = Ax;_ + Bup_ +wi_ (2a)

¥, = Hx; + Dug—1 + v, (2b)
The random vectors w,_;, and uy, are treated as
independent, non stationary, Gaussian, white noise
sequences with the properties

Elw,] =0, E[ww] 0i0;; (3a)

E[Qi] =0, E[Qiﬂj] = Ri(sij (3b>
where O; and R; are true moments about the mean of
the state and sensory output noise sequences, respec-
tively. Since changes in the external world are not
known a priori, these possible changes are included in
the IM as random walks; i.e. a differential equation
with stochastic inputs (w) (Van der Kooij et al. 1999a;
Appendix C). In our model, the strength of the state
noise, w, is related to the first derivatives of support-
base rotations, external disturbances, horizontal
support-base accelerations and visual scene motion
(Appendix C). So, in our model the state noise is
directly related to the physics of the external world. The
state noise only exists in the IM to model the external
world, but is not put into the model of the standing
person (in Fig. 1, w is not put into the model). Since in
this paper only finite motions of the environment are
considered, the assumption that w is zero mean
distributed (3a) is not restricting.

An optimal estimate for the system defined by (2) is
obtained with the standard KF: (Gelb, 1974)
state propagation

Xy = Aik—l + Buk_l

P = AP A" + O (42)
observation residual

z =y, — Hx, (4b)
Kalman gain

Ky = PHT[HPH™ + Ry ™ (4c)
state estimation

X =X + Kizg (4d)

P, =P, — K HP;

where ¥, and P, are the propagated state and error
covariance conditioned on observations prior to time #.

%, and P are the estimated values after the new sensory
output vector y, has been processed When the statistics
of state noise and sensor noise are known as a function
of time, the KF supplies an optimal estimate. However,
in many applications these statistics are not known a
priori. In most applications these statistics are assumed
constant and chosen a priori, based on experimental
data or design criteria.

An optimal filter for state estimation under unknown
noise statistics does not exist (Myers and Taply 1976).
Many suboptimal schemes have been derived. All
methods can be classified into two approaches: (1) the
direct approach identifying the KF gain from the data
directly (e.g. Juan et al. 1993), and (2) the indirect ap-
proach estimating the noise statistics first and then using
them to compute the Kalman filter gain (4). We followed
the second approach. We modified the method of Myers
and Taply (1976), to sequentially estimate the state noise
statistics. We assumed that the sensor noise statistics (R)
are constant and known. Myers and Taply derived an
unbiased estimator for QO given by (Appendix D):

N —1 .
“(‘77‘)@“31AT-3]} (5a)
1 N
9==) 4, (5b)
gj Eij_AXjfl —Buk,l (SC)

After the state estimation (4d), O is estimated based
upon the last N noise samples q, (G=k—N+1,...,k)
at time #. The diagonal elements’ of Q are always reset to
the absolute values of their estimates. For first N time-
steps of the simulation, Q is set to the initial value
Qo = GOF™ and Q is estimated for k > N.

2.2 Evaluation of the adaptive sensory integration model

First, the minimal set of sensory systems was determined
for which it was possible to obtain a stable estimate of
postural orientation without specifying environment
conditions. External disturbances (F**') and support-
base displacements (s*®) were applied to the model.
Sensory output signals were assumed to be ideal, i.e. not
distorted with noise (R ~ O). Next, the effect of imper-
fect sensory signals was investigated by adding white
noise to the sensory output signals. Model responses to
sinusoidal! movements of the visual scene were com-
pared with experimental results of visually induced

It is better to use stochastic inputs instead of sinusoidal inputs to
obtain the frequency response function of a closed-loop system.
However, in order to compare model responses with reported
experimental results, sinusoidal inputs were applied to the model



sway. Finally, model responses to sinusoidal support-
base rotations were calculated and qualitatively com-
pared with experimental findings. For all simulations the
mass of the pendulum was 80 kg, the length 1.8 m, the
height of center of mass (CoM) 1.1 m, and the moment
of inertia around CoM 24.8 kg m?. For all simulations
the controller was implemented as a PD controller with
K, = 1815 and K, = 560. The number of samples used to
estimate Q was N = 16. The initial value of Q was
Qo = GOZ™ with Of™ = I*" 1e—9, where I is a 4 x 4 unity
matrix. To initialise the filter for the first 14 seconds only
sensory noise was put into the model.

2.2.1 Minimal set of sensory systems. At first, the
modelled sensory systems were assumed to be ideal;
sensory output signals were not distorted with noise
(R ~ 0). Disturbances applied to the model were either a
combination of sinusoidal external disturbances (FX')
applied at a height of 1 m, and support displacements
(s*) or external disturbances only. The frequency of F
was 1 Hz and the amplitude 10 N. The frequency of s*®
was 0.5 Hz and its amplitude 10 cm. The ability to
maintain standing was examined for different scenarios:
(1) non-rotating support base and fixed visual scene, (2)
sway referencing the support base, keeping the ankle
joint constant, (3) sway referencing the visual scene,
keeping visual input constant, and (4) simultaneously
sway referencing the support base and visual scene.
Sway referencing the support base or visual scene is a
technique to position the support base or visual scene in
such a way that the orientation and/or distance of the
support base or visual scene remains constant relative to
the body, thereby eliminating proprioceptive and visual
clues about postural orientation with respect to the earth
vertical.

Sway referencing the visual scene and support base
was initiated at the start of applied perturbations. To
obtain minimal sets of sensory systems for the four
different scenarios, sensory loss was simulated by re-
moving the corresponding sensory system from the
model. Normalised peak-to-peak amplitudes of centre of
gravity (CG) sway angle (0c.(?)) are used to quantify the
effect of sensory loss for the four different scenarios.
Peak-to-peak amplitudes of postural sway were norma-
lised to the condition for which the visual scene was
fixed, the support base was not rotating, and no sensory
loss was modelled.

2.2.2 Model responses to sinusoidal visual scene displace-
ments. The effect of imperfect sensory signals was
studied by adding white noise to the sensory output
signals. Sensory noise was applied to the model for the:
(1) muscle spindle, (2) canals, (3) otoliths, (4) visual
system, and (5) tactile afferents (Fig. 1). The strength of
the noise for the five different sensory systems was
determined by trying to mimic the experimental results
of visually induced sway (Peterka and Benolken 1995).
Appropriate noise levels were found by trial and error.
Different sinusoidal visual scene displacements were
applied to the model. The following specifications of the
simulations are adapted in agreement with the experi-
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ments of Peterka and Benolken (1995). The visual scene
rotated around an axis that was co-linear with the ankle
joint axis and was located about 10 cm above the ankle
(in Fig. 1, s =0.65—(1.80—0.1) - sin(0"° — =/2)).
The visual scene was located about 65 cm from the
eyes. The model was evaluated for fixed and for sway
referenced support base conditions. Removing the
vestibular organ from the model simulated the perfor-
mance of vestibular-loss patients. The visual scene was
sinusoidally rotated at two different frequencies (0.1 Hz
and 0.2 Hz) and at six different amplitudes
(0.2°, 0.5°, 1°, 2°, 5° and 10°). All combinations were
applied for 60 s. All trials were repeated 30 times with
the same initial settings in order to average the effect of
sensor noise. Sway referencing was initiated at the start
of the sinusoidal visual scene motion. The CG sway
angle was used to evaluate the model response. Fourier
analyses of the CG angle and the visual scene angle time
series were used to calculate the amplitude of the CG
sway relative to visual scene motion. The discrete-time
Fourier transform of sampled CG sway angle and the
visual scene angle time series evaluated at frequency f
are defined as:

0€(f) = FI0%(7)] (6a)

0°(f) = F0"(0)]

where 0°(i) is the sampled CG sway angle and 6"(i) is
the sampled visual scene angle time series from the
simulations.

The frequency-response function between the visual
stimulus and CG sway is defined as:

0=
0"(f)

In general it is better to use the cross-spectral density to
calculate the frequency-response function. However,
since the data of Peterka and Benolken (1995) is used,
their approach is adopted and the quotient of the
Fourier transform of input and output signals is used to
calculate the frequency-response function.

The first cycle of CG angle and visual scene angle
time series were excluded from the Fourier analysis.
Fourier analysis was performed over a range of fre-
quencies to test whether the model showed a clear re-
sponse to the visual stimuli. Amplitudes of the CG sway
and of the frequency-response function were calculated
at the frequency of the visual stimulus.

(6b)

Hyeo(f) =

(7)

2.2.3 Model responses to sinusoidal support-base rotation.
Different sinusoidal support-base rotations were applied
to the model, the same as those applied in the
experiments Bolha et al. (1999). The noise levels found
earlier were applied to the model. The model was
evaluated for eyes open and eyes closed. Removing the
visual system from the model simulated the eyes closed
condition. The support base was sinusoidally rotated at
two different amplitudes (1° and 4°) and at six different
frequencies (0.025 Hz, 0.05 Hz, 0.1 Hz, 0.2 Hz, 0.4 Hz,
and 0.8 Hz). After initialising the filter, all combinations
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were applied for 60 seconds. All trials were repeated 30
times with the same initial settings in order to average
the effect of sensor noise. The frequency-response
function between the support-base rotation and the
CG sway (Hspoeg(f)) was obtained in the same way as

HVZCg (,f) (7)

3 Results
3.1 Minimal set of sensory systems

The model is able to resist external forces in the case of
ideal sensory output signals from muscle spindles, the
vestibular organ, the visual system, and tactile afferents
sensing shear forces from the sole (Table 1, A). Even for
sensory conflict conditions, like sway referencing the
support base or the visual scene, the model predicts a
stable posture. Loss of somatosensory or visual infor-
mation hardly affects posture, even when both the visual
scene and the support base are sway referenced (Table 1,
B, D and E). Without vestibular function the model
predicts stable standing if the visual scene and support
base are fixed (Table 1, C1). However, in case of sensory
conflicts the vestibular organ seems to be crucial.
Without a vestibular system, the model is not able to
obtain a stable estimate of posture, and falls are
predicted for those cases where sensory conflicts occur
in combination with small external disturbances (Table
1, C2—-C4). Surprisingly, the model predicts a decrease in
CG sway when proprioception is excluded. Although the
relative differences are considerable, the absolute differ-
ences are very small (maximal 0.05°). The differences are
difficult to interpret since only one specific stimulus was
applied to the model.

Table 1. Effect of sensory loss in the presence of external dis-
turbances. Four different scenarios are considered: (1) fixed support
base and visual scene, (2) sway referencing the support base, (3)
sway referencing the visual scene, and (4) sway referencing the
support base and visual scene. The effect of sensory loss was
modelled by removing different sensory systems. Shown are the
amplitudes of the CG sway angles, normalized to condition (Al):
fixed visual scene, non-rotating support base and no sensory loss.
In some conditions the model predicted instability (denoted by
crosses). Stars indicate excessive initial responses at the onset of the

These results are in agreement with the experimental
results of the sensory organization test (SOT) for nor-
mals and vestibular-loss patients (Black et al. 1988).
Normals were able to maintain standing during the
SOT, even when the support base or the visual scene was
sway referenced. Vestibular-loss patients were able to
maintain standing when sensory conflicts were absent.
However, in the case of sway referencing the support
base or the visual scene, the majority were unstable for
these sensory conflict situations.

When all sensory systems are included, the model is
able to resist a combination of external forces and sup-
port base displacements (Table 2, A). The effect of
somatosensory loss is different compared to the situation
without support base displacements (Table 1). Remov-
ing the muscle spindles or tactile afferents from the
model results in an increase in CG sway by a factor of
four (Table 2, B and E). For additional sinusoidal sup-
port-base displacements, the effect of vestibular loss is
even worse compared to the case of external forces only.
After removal of the vestibular system the model is not
able to maintain standing even when the support base is
not rotating and the visual scene is fixed (Table 2, C).

Not much is known about the contribution of skin
afferents to postural control. However, after anaesthesia
of both feet and ankles, subjects altered their postural
responses to sudden support-base displacements result-
ing in excessive body sway (Horak et al. 1990). This
experimental finding is in agreement with the predicted
increase in CG sway during platform translations due to
loss of tactile afferents (Table 2, E) or loss of muscle
spindles (Table 2, B). However, also in this case we
should be careful since only one specific stimulus was
applied to the model.

The inability of the model to stabilise posture without
vestibular function — but with reliable visual and muscle
spindle input (Table 2, C1) — is at first glance surprising.
Vestibular-loss patients are able to maintain standing
when exposed to sudden support-base displacements
even with eyes closed (Runge et al. 1998). The difference
with the model simulations is that these experiments
studied the effect of short support-base translations of a
few centimetres. However, vestibular-loss patients will

Table 2. Same as Table 1, but showing the effect of sensory loss in
the presence of simultaneously external disturbances and support-

disturbance base translations
A U R LI

Sensory loss 1 2 3 4 Sensory loss 1 2 3 4
A: No Loss 1 0.7 1 0.7  A:Noloss 1 1 1 1
B: Muscle spindle 0.8 0.9 1 1 B: Muscle spindle 4 4 4 4
C: vestibular 1" X* X X C: vestibular X X X X
D: vision 1 0.7 - - D: vision 1 1 - -
E: Tactile 0.8 1™ 1 1* E: Tactile 4 4* 4* 4




fall when exposed to continuous sinusoidal translations
of the support base even with eyes open (Buchanan and
Horak 1998).

3.2 Model responses to sinusoidal visual scene
displacements

The variance of signal noise for muscle spindles is:
Vepin = 1.1e — 6; for sole afferents: V. = 33; for semi-
circular canals: Vi = 0.21; for otoliths: Vi, = 65; and
for vision: V,;s = 1.2e — 5. For these noise intensities, the
model predictions match the experiment results (Fig. 2).
The amplitude of model-predicted visually induced sway
in normals depends upon stimulus frequency, stimulus
amplitude, and support-base condition (Fig. 2). The
amplitude of CG sway for sway referenced conditions is
larger than for fixed support-base conditions, for any
stimulus frequency and amplitude. The amplitude of CG
sway increases with stimulus amplitude until a satura-
tion level is reached. For sway referenced conditions the
saturation level is four times higher than for fixed
support-base conditions. The saturation level decreases
with increasing stimulus frequency. The instant at which
saturation occurs also depends upon stimulus frequency
and support-base condition. For sway referenced condi-
tions and for faster stimulus frequencies the CG sway
saturates at larger stimulus amplitudes.

In fixed support-base conditions the gain for normal
subjects is always less than unity (Fig. 3). For sway
referenced support-base conditions, the gain is larger
than unity for small stimulus amplitudes. The gain
decreases in proportion with the logarithm of stimulus
amplitude until the saturation effect occurs. Again,
model simulations are similar to the experimental

0.2 Hz

0.2 Q.5 1 2 5 10
Visual surround amplitude [deg]

Fig. 2. Mean centre of gravity (CG) sway amplitude induced by
visual scene motion as a function of stimulus amplitude. Model
prediction (solid lines) and experimental results (dotted; Peterka and
Benolken 1995) in normal subjects. Top: stimulus frequency 0.1 Hz;
bottom: stimulus frequency 0.2 Hz. Support base was fixed (boxes and
diamonds) or sway referenced (circles and crosses)
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Fig. 3. Gain of mean CG sway amplitude induced by visual scene
motion as a function of stimulus amplitude. Model prediction (solid
lines) and experimental results (dotted; Peterka and Benolken 1995) in
normal subjects. Top: stimulus frequency 0.1 Hz; bottom: stimulus
frequency 0.2 Hz. The support base was fixed (hoxes and diamonds) or
sway referenced (circles and crosses)

results. In Fig. 3 the non-linear input-output behaviour
is clearly seen; for linear systems, the gain would not be
dependent on the amplitude of the input stimulus.

Sensory errors arise due to sensory output noise,
external forces, and motion of the environment. It can
be clearly seen that for the smallest amplitude of visual
scene motion the sensory errors are dominated by sen-
sory output noise (Fig. 4, left and middle). For the
largest amplitude of visual scene motion, the visual scene
motion can be clearly seen in the sensory errors (Fig. 4,
right). From Fig. 4 it can also be understood why the
sensory output noises of the different systems differ
dramatically. Due to different sensor dynamics
(Appendix B), the sensitivity of the sensory organs dif-
fers as reflected in the sensory errors (Fig. 4, right). The
sensory output noises that were found are in proportion
to the changes in sensory output signal due to ego-mo-
tion or motion of the environment.

Stimulation results of CG sway in vestibular-loss
patients compared to the CG sway in normals for fixed
support-base conditions are shown in Fig. 5. For low
stimulus amplitudes the model predictions for normals
and vestibular-loss patients are similar. However, at
larger stimulus amplitudes, the saturation effect does not
occur for vestibular-loss patients. The model results of
vestibular-loss patients diverge from normals at higher
stimulus amplitudes. The amplitude where the results
diverge depends on stimulus frequency: for faster stimuli
the results diverge at lower stimulus amplitudes. For
large stimulus amplitudes the model predicts that the
falling of patients is caused mainly by excessive transient
response at the onset of the stimulus (results not shown).
These results for vestibular-loss patients agree well with
experimental results (Peterka and Benolken 1995).
Whereas in the experiment vestibular-loss patients were
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able to maintain standing for small stimuli amplitudes
while the support base was sway referenced, the model
was not able to estimate a stable posture for these
conditions.

3.3 Model responses to sinusoidal support-base rotation

The model-predicted CG sway for sinusoidal support-
base rotations is given by the gain of the frequency
response function Hgyoee(f) (Fig. 6). The predicted gain
shows a peak at 0.1 Hz. For slower stimulus frequencies
the gain is lower. For frequencies higher than 0.1 Hz,
the gain decreases and for normals reduces almost to
zero for a stimulus frequency of 0.8 Hz. Gain charac-
teristics also depended upon stimulus amplitude and

4
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1, g
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Visual surround amplitude [deg]

Fig. 5. Gain of mean CG sway amplitude induced by visual scene
motion as a function of stimulus amplitude. Model prediction of
normal subjects (solid lines) and vestibular loss patients (dotted lines).
Boxes: stimulus frequency 0.1 Hz; diamonds: stimulus frequency
0.2 Hz. The support base was fixed

74 0 74

0 the stimuli were applied after
Time [s] 14 s

visual condition. The gain decreases for larger stimuli
amplitudes at any stimulus frequency and at any visual
condition. For eyes closed, the gain at any stimulus
frequency and amplitude is higher than for eyes open.
The simulation results of vestibular-loss patients show
larger gain characteristics when compared to normals.
For low stimulus frequencies vestibular-loss patients
cannot suppress muscle spindle input, even when the
subjects had their eyes open (Fig. 6). For large support-
base rotations falling will result. However, the model
predicts that they are able to suppress muscle spindle
input at larger stimuli frequencies, thereby preventing
themselves from falling.

These results are in agreement with the experimental
study of Bolha et al. (1999). In this study the same
stimuli were used for which Bolha et al. found a ‘dip’ in
postural control performance at 0.1 Hz. This ‘dip’ was
partially compensated by the visual system. The model
predicts falling of vestibular-loss patients for large slow
platform rotations even when the subjects had their eyes
open. This is in agreement with experimental findings
where vestibular-loss patients indeed fell during support
base rotations of 8° with a dominant frequency of
0.2 Hz (Maurer and Mergner 1999).

The effect of experience or knowledge of the experi-
mental set-up was studied by resetting the initial value of
Qo = GOF™. The element of O corresponding to
support rotations was changed from le—19 to 1. This
can be interpreted as the expectation that the support
base will rotate, which results in a smaller response to
support-base rotations (Fig. 7). The effect of the initial
setting is larger for eyes open and for lower stimuli
frequencies.
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The effect of experience or ‘knowledge’ of the
experimental set-up was studied by resetting the
initial value of Qy = GO§™. The element of O™
corresponding to support rotations was changed
from le—19 (circles) to 1 (diamonds). This can be
interpreted as anticipating a support-base rotation.
Left: stimulus amplitude 1°; right: stimulus ampli-
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4 Discussion

Previous work (Van der Kooij et al. 1999a) demonstrat-
ed that to obtain a minimum variance estimate of spatial
orientation, humans should have:

1. An internal representation of the dynamics of the
body, the sensory systems, and the environment.

2. Knowledge of the precision of the different sensory
systems.

3. Knowledge of the amount of changes in visual scene
motion, motion of the support base, and external
forces acting on the body.

When the dynamics are linear this minimum variance
estimate is an optimal estimate. Spatial orientation can
be estimated optimally only if these three conditions are
satisfied. In our previous work, we assumed that these
three conditions were fulfilled. It is reasonable to assume
that due to a learning process humans have a knowledge
of the dynamic properties of their own body and their
environment, and of the reliability of their sensory
organs. However, the assumption that humans have a
(correct) knowledge of the amount of changes in the
environmental conditions is non-trivial. This is demon-
strated by common illusionary sensations where
ego-motion and motion of the environment are misin-

0.80.02 00 01 0.2
Frequency Support base rotation [Hz]

tude 4°; Top: normal subjects; bottom: vestibular-loss
patients. Eyes were open (dotted lines) or closed
(solid lines)

terpreted. A well-known illusionary ego-motion percep-
tion is the illusion that the train you are in is moving,
whereas actually the train on the other track is moving.

In the modified model we do not have to quantify
the changes in environmental conditions, as we have to
in the optimal model. These properties are now directly
estimated from sensory output signals, resulting in a
dynamical weighting of sensory error signals depending
on environmental conditions. The modified model was
applied to human stance control. With only five model
parameters specifying the precision of the sensory sys-
tems, experimental results of a visually induced sway
experiment (Peterka and Benolken 1995) could be
reproduced. The model predicted far more than five
data points, suggesting a strong predictive capacity.
Moreover, the model predictions for slow platform
rotations qualitatively resembled experimental results
presented by Bolha et al. (1999). Model predictions
show that:

1. Vestibular function is necessary to solve sensory
conflicts.

2. Vestibular function is not crucial when sensory con-
flicts are absent.

3. Tactile afferents in the feet play an important role
when the support base is translating.
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Fig. 8. Gain of mean CG sway amplitude induced by visual scene
motion as a function of stimulus amplitude. Model prediction of the
optimal (solid lines) and the adaptive (dotted lines) model. Boxes:
the support base was fixed, stimulus frequency 0.1 Hz; diamonds: the
support base was fixed, stimulus frequency 0.2 Hz; circles: the support
base was sway referenced, stimulus frequency 0.1 Hz; crosses: the
support base was sway referenced, stimulus frequency 0.2 Hz

4. Responses to motion of the visual scene and to sup-
port-base rotation are highly non-linear. The gain
depends on stimulus amplitude and frequency, and
on support-base condition (fixed or sway referenced).

All these model predictions are consistent with experi-
mental results. The presented adaptive model of sensory
integration is more realistic than the previously devel-
oped model (Van der Kooij et al. 1999a) and other
models of spatial orientation. It requires less assumptions
and model input parameters. Moreover, model predic-
tions and experimental results of visually induced sway
suggest that postural orientation can not always be
estimated optimally. Intuitively, to obtain an optimal
estimate of postural orientation when standing on a fixed
support visual scene motion should be ignored, since
visual clues in this particular case cause an illusionary
perception of ego-motion. Model simulations of visually
induced sway with the optimal model confirm this
intuitive finding. In contrast to the adaptive model, the
optimal model predicts almost no response to visual scene
motion, especially for larger stimulus amplitudes (Fig. 8).

Moreover, model simulations of support base rota-
tions (Fig. 9) also show that predictions of the adaptive
model (this paper) and the previous model (Van der
Kooijj et al. (1999a) do not coincide. The differences are
more pronounced for small and slow motions.

The fact that postural responses are shaped by a
person’s experience, intent, knowledge, and instruction
(Jacobs et al. 1997) is further evidence for the hypothesis
that postural orientation and control is not (always) an
optimal process. In the model this dependency is dem-
onstrated by the setting of the initial value Qy. In this
study, the initial value was reset for each simulation. But
in general Oy depends on prior experience, instruction or
knowledge, for example of an experimental protocol.

The vestibular organ is needed to distinguish ego-
motion from the motion of the environment. Especially
for slow and small movements, humans are not able to
distinct ego-motion from environmental motion as
demonstrated by experiments and model predictions. In
most models of spatial orientation this non-ideal or non-
optimal behaviour is included as a physical threshold
that is related to vestibular output signals. The existence
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Fig. 9. Gain of mean CG sway amplitude induced by rotational
motion of the support base as a function of stimulus frequency. Model
prediction of the optimal (solid lines) and the adaptive (dotted lines)
model. Boxes: eyes open, stimulus amplitude 1°; diamonds: eyes open,
stimulus amplitude 4°; circles: eyes closed, stimulus amplitude 1°;
crosses: eyes closed, stimulus amplitude 4°

of a perceptual threshold is proven (e.g. Hosman 1996).
However, there is no evidence for a physical threshold.
Interestingly, the modified model predicted a vestibular
related threshold: the saturation of visually induced CG
sway for sway reference condition is related to a ves-
tibular threshold (Peterka and Benolken 1995).

In addition, the model gives insight into the origin of
vestibular-related thresholds. Noisy sensory error signals
— the difference between expected and actual sensory
output signals — are used to obtain an estimate of spatial
orientation of posture and environment. Sensor noise
and changes in the external world (visual scene, support
base, forces) cause sensory errors. During slow and
small motion of the environment, the error signals
related to the vestibular system are dominated by noise
in the vestibular output signal (e.g. Fig. 4). Therefore,
these error signals are almost useless when updating the
estimate of spatial orientation and the amount of
movement of the environment, causing sensory illusions.
This however, does not imply, the existence of high
biological noise levels in vestibular output signals. Pre-
diction of high noise levels for a particular sensory
output signal should be interpreted so that the signal of
the corresponding sensory system is modelled unreliably.

In the present model it is hypothesised that humans
have a kind of internal representation of the dynamics of
the body, the sensors and the external world, and have
knowledge of the precision of different sensory systems.
There is much debate about the existence and location of
internal presentations in the brain that mimic the be-
haviour of the sensorimotor system and the external
world. Only indirect evidence of the existence of these
internal representations is available (e.g. Kawato and
Wolpert 1998; Wolpert et al. 1998; Angelaki et al. 1999;
Merfeld et al. 1999; Imamizu et al. 2000). An interesting
question is to what level of detail these internal repre-
sentations should correspond with reality. Should these
internal representations capture only the kinematics, or
should they capture both the kinematics and the
dynamics? In the present paper, the internal model was
an exact copy of the actual dynamics of the body, the
sensors, and the external world. In the future we will
study the effect of imperfect internal models by adding
additional state noise or simplifying the internal mod-
els. In this paper the internal models are modelled



explicitly; in some models of sensorimotor integration
these internal models are modelled implicitly. For ex-
ample, by assuming that the joint angles are known it
is implicitly assumed that there exist inverse models of
muscle attachments around a joint and of the muscle
spindle dynamics (e.g. Mergner and Rosemeier 1998).
In the present model, the estimated or internal states
can be equated to the perception of external forces
acting on the body, support-base displacements and
rotations, motion of the visual scene, and orientation
of the body in space. Perception of these states can be
accessed by psychophysical experiments, by recording
of eye movements, or by neural recordings. Predictions
of an optimal estimator model for human spatial ori-
entation of angular velocity and tilt perception corre-
spond well to animal neural recordings and human
psychophysical data (Borah et al. 1998).

An intriguing question is how an internal representa-
tion is obtained. Theoretically it is possible to derive an
internal representation from motor outflow and sensory
output signals (e.g. Mehra 1971) and also to estimate the
precision of different sensory systems from these signals
(e.g. Myers and Taply 1976). Although a simple inverted
pendulum model was used for body dynamics, there are
no fundamental limitations to the inclusion of more
segments, dimensions, or muscle models.

Further experiments are necessary to validate the
model for a wide variety of experimental settings. Special
attention should be drawn to the design of the experi-
ment, since model predictions suggest that postural re-
sponses are history dependent. In the future, the adaptive
sensory integration model will also be used to model the
perception of ego-motion and object motion, when at-
tempting to reproduce well-documented experimental
results (Mergner et al. 1991, 1992). The model will be
used in combination with experiments to identify and
quantify different balance disorders and their causes.

Appendix A: Tapped delay line as predictor
for time delays

An optimal estimator for a linear system including time
delays is the cascade combination of a Kalman Filter and
a predictor (Kleinman 1969). A discrete optimal predic-
tor is a tapped delay line (Fig. A1l). The tapped delay line
used in this paper is a forward simulation of the
discretised dynamics (4* = 4P, B* = BPed) of the pen-
dulum, using known previous control input (u;) from the
delayed estimate made by the adaptive Kalman Filter at

unit delay

Fig. Al. A tapped delay line to make an optimal prediction of the
current spatial orientation from the delayed estimate of spatial
orientation as obtained by the adaptive Kalman Filter at #_y, to the
current time #. It is a forward simulation of discretised dynamics
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t_n, to the current time #. N = 10, is determined by the
modelled neural time delay (r = 100 ms) and sample time
of the discreet model (unit delay = 10 ms).

Appendix B: Sensor dynamics

The sensory dynamics are approximated by linear
transfer functions (Borah et al. 1988).

afferent fire rate  5(s +4)
- s420

Muscle spindle model: —
joint angle

afferent fire rate

Semicircular model: .
angular acceleration

~0.574s(s + 100)
(s +0.1)(s +0.033)

90(s +0.1)
s+0.2

Otolith model: afferent fire rate B

specific force

.. afferent fire rate
Vision model:

distance head—visual scence

Tactile model: afferent fire rate _ s+ 0.01
force s+0.1
Appendix C
("7 100 0 0 07[6°,]
X 0100 0 O0fF
sl |0 0 1 T 4T 0| s,
Pl o0 0 1 T 0f]sP,
5P 000 0 1 0z,
Lss] L0000 0 0 1][ss ]
1 0 0 0]
01 0 0f[wl"]
L]0 0 0 0f b
00 0 0w,
0 0 1 0 |wys,
(0 0 0 I
54 xznv Aenvxenv + Gwenv (Al )

(A* = 4verd | B* = Brend) of the pendulum, using known previous
control input (u), N is number of forward simulation steps and the
unit delay is sample time of the discreet model



where T is the sample time
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Appendix D

For the sake of convenience, the derivation of the
estimator for Q is cited literally (Myers and Taply 1976).
Consider the linear dynamic state relation at a given

time #;, given by x; = Ax; | + Bu; | +w, |, where x; is

an n- vector and w; | ~ N(g, Q). The true states x; and

_, are unknown $o w;_; cannot be determined, but an
mtultlve approx1mat10n _, s

q. =% — A% (A4)

4, =% — A% — By,

where ¢ is defined as the state noise sample at time ¢;.
Note that the subscripts j contrast the noise sample from
the true unknown mean g. By hypothesis, the w;
for j = 1 — N are independent, and the parameters g and
Q are constant. If the ¢ is assumed to be representative of
the w;_;, they may be considered as independent and
1dentlcally distributed. Defining a parameter estimation
problem, let # be a random variable on the sample space
Q, from which is obtained the data 9 j=1— N.Based
on the measurements, the unknowi distribution of 2

characterised by ¢ and C, is to be estimated.
An unbiased estimator for g is the sample mean

1 N
=1y g, (AS)
=

An unbiased estimator for Q is obtained by constructing
the estimator for C,, the covariance of %:

N
. AT
A6
=5 1; ~ (g, ) (A6)
The expected value of this quantity is
E[C,) = ZAP, AT — P+ 0 (A7)

An unbiased estimate of Q, after substitution of (A6) is
given by
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