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Abstract. A model is presented to study and quantify the
contribution of all available sensory information to
human standing based on optimal estimation theory. In
the model, delayed sensory information is integrated in
such a way that a best estimate of body orientation is
obtained. The model approach agrees with the present
theory of the goal of human balance control. The model
is not based on purely inverted pendulum body dynam-
ics, but rather on a three-link segment model of a
standing human on a movable support base. In addition,
the model is non-linear and explicitly addresses the
problem of multisensory integration and neural time
delays. A predictive element is included in the controller
to compensate for time delays, necessary to maintain
erect body orientation. Model results of sensory pertur-
bations on total body sway closely resemble experimen-
tal results. Despite internal and external perturbations,
the controller is able to stabilise the model of an
inherently unstable standing human with neural time
delays of 100 ms. It is concluded, that the model is
capable of studying and quantifying multisensory inte-
gration in human stance control. We aim to apply the
model in (1) the design and development of prostheses
and orthoses and (2) the diagnosis of neurological
balance disorders.

1 Introduction

Humans perform a seemingly simple task, such as
standing, more or less automatically. Sometimes we
forget how hard we have worked to establish stable
standing. Only after a disabling event (e.g. stroke or
amputation) or during ageing are we reminded about the
complexity of this seemingly simple motor task. Study-
ing human stance control is not only important from a
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scientific point of view to unfold the mysteries of motor
control but ultimately leads to new designs of prostheses
and orthoses and rehabilitation approaches. In human
stance control, the nervous system receives delayed
information from a multisensory system. Using this
delayed information, the nervous system estimates body
orientation relative to an a priori unknown environ-
ment. With this estimate, the nervous system then
controls a skeletal structure powered by muscles to
maintain or achieve a desired orientation in this
unknown environment. Standing is not an easy and
straightforward task for the nervous system since:

1. In an a priori unknown environment, exact estima-
tion of body orientation is not possible because the
nervous system receives all sensory information with
a certain time delay (Kleinman 1969). Thus, the
nervous system can only provide a best possible es-
timate.

2. The estimation of body orientation involves an in-
tegration of different sensory systems each with its
own coordinate frame (Mergner et al. 1997).

3. The sensory signals may not always be reliable as, for
instance, in patients with sensory deficits (Horak et
al. 1990) or in sensory illusion situations (Bles and
Dewitt 1976).

In an experimental setting, multisensory integration is
studied by using patients with sensory deficits (Horak
and Macpherson 1996) or by manipulating sensory
systems (Black et al. 1988). Unfortunately, manipulation
of sensory system(s) and quantifying of sensory deficits
are difficult to accomplish and cannot always be well-
defined. An additional problem is that experimental
results can be confounded by the subject’s intent and
experience (Jacobs and Burleigh-Jacobs 1998). Argu-
ments for using mathematical modelling are that models
(1) provide a systematic framework, (2) allow systematic
manipulation of parameters and (3) assist the experi-
menter to define experimental conditions and explain
experimental results. In this paper, we present a model
to study and quantify the contribution of the available
sensory information to human standing based on
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optimal estimation theory (Gelb 1974). Optimal estima-
tion theory has proven its power in modelling man-
machine systems (Kleinman et al. 1970), the optokinetic
system and vestibulo-ocular reflex (Robinson 1977) and
human spatial orientation (Borah et al. 1988).

2 Model

The model consists of a person standing on a movable
support base (Fig. 1). The support base can rotate and/
or translate. Two types of perturbations can be simu-
lated and applied to the model: internal and external.
Examples of the former are breathing, heart rate or
muscle tremor. Examples of the latter are sudden bus
stops, platform perturbation experiments or simply a
push applied to the body. Given these perturbations, it is
the controller’s goal to maintain erect standing.

The structure of the model is subdivided into four
parts (Fig. 2; details in the following sections):

1. Body dynamics — a three-link segment model repre-
senting a standing person on a movable support
base;

2. Sensor dynamics — transfer functions representing
input-output relations of five different sensory sys-
tems;

3. Sensory integration centre — optimal estimation
model representing the integration of all available
multisensory information providing a best estimate
of body orientation;

4. Action control centre — controller representing the
selection of muscle actions based on the best estimate
of body orientation as provided by the sensory in-
tegration center.

2.1 Body dynamics

A standing person on a movable support base is
modelled by a three-link segment model in the sagittal
plane. The three segments represent the shank, thigh and
trunk. The segments are connected by friction-free hinge
joints. The muscle actions are modelled as a torque
actuator at each individual joint. The inputs to the
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Fig. 1. A three-link segment model attached to a movable support
base. The model consists of shank, thigh and trunk ¢;(i = 1..3) is the
segment angle, s, s,] is the position of the support base, and o is the
support base angle
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Fig. 2. Flow diagram of the human stance control model. Body
dynamics describes a standing person controlled by muscle actions
(us) and exposed to unknown perturbations (wg). Sensor dynamics
relates the sensory input (yy) to the sensory output (ysn ). The delayed
sensory output distorted by noise (v) and the muscle actions are input
to the sensory integration centre which makes a best estimate of body
orientation (Xy). Based on this estimate the action control centre
selects muscle actions in order to maintain standing and to achieve a
desired orientation of the body (x¢)

segment model are muscle actions (ug) and optional
internal and external perturbations (wy). The outputs of
the segment model () are the kinematics and dynamics
of the three linked segments. The equations of motion
are derived following Euler-Lagrange formalism and
written as a set of coupled first-order differential
equations (Appendix A):

Xse(t) = fau(rse(2), use(2), wse (1), 2) (1)

where f; is a non-linear function of the system states
(x5, 1.e. segment angles and angular velocities), the
muscle actions (ug), unknown disturbances (wg) and
time (7). The output of the segment model contains the
physical quantities which are used as input to the model
of sensor dynamics (Appendix B):

ai(1) = g (xa(8), ust (), al2), ) (2)

where g 1s a non-linear function of the system states
(xst), the muscle actions (ug), time (f) and a vector «
representing the platform kinematics and disturbances
other than support base accelerations (w},):

a(t) = [sx(2); $x(2); 8:(); 5,(0); 8 (1): $(0); 005w (1)) (3)

2.2 Sensor dynamics

Five different sensory systems are modelled:

Muscle spindles are assumed to sense the joint angles
and joint angular velocities.

2. Otolith organs are assumed to sense translational
accelerations of the head.



3. Semicircular canals are assumed to sense rotational
accelerations of the head.

4. Skin afferents are assumed to sense the shear and
pressure forces in the sole of the foot.

5. The visual system is assumed to sense the position
and the velocity of the head.

Each sensory system is characterised by its own specific
dynamics (Borah et al. 1988) and is expressed by:

Xsen = fsen (xsen(t);yst(t)a t) (4)
and
Ysen = gsen(xsen(t)aya(t)a t) + U(t) (5)

where fin and gen are functions of the sensor states
(xsen) and the sensory input (Vg), Vsen 1S the sensory
output, and v(¢) is the sensory signal noise. The sensory
signal noise (v(¢)) is modelled as zero mean Gaussian
noise with spectral density matrix ¥V (¢) [denoted by
v(t) = N(0, V(1))

2.3 Sensory integration centre

Kleinman (1969) proved that the best estimate of the
system states for a linear system, with time delay and
signal noise, is obtained by the cascade combination of a
Kalman filter and a linear predictor. The Kalman filter
produces a best estimate of the system states of a linear
model by using both the motor outflow (‘efference copy’)
and the sensory output ("afference copy’) with a model
of the motor system (‘internal representation’). These
sensory and motor signals are integrated in such a way
that the overall uncertainty in the state estimates is
minimised. The working of the Kalman filter is a
combination of two processes, which together contribute
to the state estimate (Wolpert et al. 1995). The first
process uses the current state estimate and motor
commands (muscle actions) to predict the next state by
simulating the movement dynamics with a forward
internal model. The second process uses a model of the
sensory dynamics to predict the sensory output corre-
sponding to this predicted next state estimate. The
sensory error, the difference between actual and predict-
ed sensory output, is weighted by the Kalman gain to
drive the state estimate resulting from the first process to
its true value. Sensory errors arise when the internal
representation is not an exact copy of the motor system,
because of mechanical disturbances or when the
efference/afference copies are distorted by noise. The
relative contributions of both processes to the final
estimate are modulated by the Kalman gain so as to
provide optimal state estimates. The elements of the
Kalman filter are the ratios between statistical measures
of the uncertainty in the predicted next state (caused by
an imperfect internal representation, an imperfect copy
of motor commands or external mechanical distur-
bances) and the uncertainty in a sensory output signal.
Thus, the Kalman gain is ‘proportional’ to the uncer-
tainty in the estimate and ‘inversely proportion’ to the
sensory signal noise reflecting the precision or reliability
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of a sensory signal. If the sensory signal noise is large
and the uncertainty in the predicted state is small, then
the sensory error is due chiefly to the sensory signal
noise, and only small changes in the state estimate
should be made. On the other hand, small sensory signal
noise and large uncertainty in the state estimates suggest
that the sensory errors contain considerable information
about errors in the estimate. Therefore, the difference
between the actual and the predicted measurement will
be used as a basis for strong correction of the state
estimates. Hence, the Kalman gain is specified in a way
which agrees with an intuitive approach to improving
the estimate.

In the absence of sensory output, in our case due to
time delays, the predicted next state estimate (made by
the first process) cannot be corrected by sensory feed-
back, and the Kalman filter reduces to an optimal pre-
dictor. A best state estimate of a system with sensory
delays is to first make a best estimate of the states for
which sensory information is available (Kalman filter)
and then use this estimate of a delayed state as a basis to
make a prediction (predictor) of the current state to
compensate for the time delays.

In our model, the linear case is extended to the non-
linear case by the cascade combination of an extended
Kalman filter and a non-linear predictor (Fig. 3). The
difference from the linear case is that the internal rep-
resentation is no longer linear, and although the math-
ematics becomes more complex, the principle remains
the same. In order to use the extended Kalman filter
equations, (1—4) need to be rewritten to obtain the cor-
rect form of the system states equation:

xst(t) fst(xst(t)vuSt(t):a(t)J)
X(t) = xsen(t) = fsen(xsen(t)agst(xsl(t)auSl(t)va(t>vt)vt)
a(r) Aqa(?)
0
+ 0
Gaw,(t)
= f(x(8), ust(2),1) + Gw(t) (6)
ug(t)
v uo(t)
A Non | a Extended |«—"-2
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Fig. 3. Flow diagram of the sensory integration centre. The extended
Kalman filter generates a best estimate of the delayed system state
(%st(24)) based on the synchronised muscle actions (ug(z4)) and the
delayed sensory output (ven(Zd)). The difference (¢(7q)) between the
real sensory output and the estimated sensory output is used to correct
the estimate of the delayed state. The non-linear predictor generates
the best estimate of the current state (¥ (¢)) from the estimate of the
delayed state based on known muscle actions (ug(¢))
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where x(¢) is the extended state vector, and a(¢) is
expressed as a stochastic differential equation (Appendix
C), A, and G, are time-invariant matrices and
w, &= N(0,W,). The strength of the noise, w,, corre-
sponds roughly to the possible range of variation in
support base accelerations (Sy,S5,), the support base
angular velocity (&) and disturbances other than support
base accelerations (w}). In order to use the extended
Kalman filter equations, (5) needs to be rewritten to
obtain the correct form of the sensory output equation:

Ysen = g<x(t)7ust(t>a t) + U(t) (7)

Finally, given (6) and (7), the extended Kalman filter
obtains a minimum variance estimate of the delayed
state, (¢ — 1):

x(ta) = f(&(ta), ust(ta), ta) + K (ta)e(ta) (8)

where ¢4 =t — 1, K(24) is the Kalman gain (see Appendix
D), and &(#4) is the difference between the real sensory
output and the estimated or predicted sensory output:

8(ta) = Yen(ta) = Psen(ta) ©)

where the estimated sensory output is a function of the
estimated state and muscle actions:

Vsen(td) = g(%(ta), ust (ta), ta) (10)

The non-linear predictor obtains the best estimate of the
current system state Xy (¢) from the summation of %y (4)
and the time integral of body dynamics according to:

Ful) = (i) + / fa(8), (&), ) de ()

2.4 Action control centre

The action control centre selects the muscle actions in
order to maintain erect standing based on the best
estimate of body orientation as provided by the sensory
integration centre. The muscle actions are obtained by a
regulator that minimises the objective function:

o0

J= /0 (o = x0)" Qi = o) + uliRors ) de (12)
where R, and Q, are weighting matrices, penalising
muscle actions and deviations from the desired position,
respectively. Segment angles and angular velocities,
corresponding to erect body orientation, are grouped
in a vector x,. After linearizing the body dynamics (1)
around the desired orientation (xg), the linear quadratic
regulator minimises this objective function (Kwaker-
naak and Sivan 1982) and is given in state feedback
form by:

us (t) = —L(%x(¢) — x0) (13)

where L is the feedback gain. This linearization is
allowed since small deviations from the desired orienta-
tion occur (Khang and Zajac 1989).

3 Results

The influence of sensory manipulation on total body
sway during quiet stance is studied by changing the
reliability of individual sensory systems (Fig. 4). In the
model, this is accomplished by calculating the centre of
mass distribution for different spectral density matrices,
V(t) (Appendix E). A high value of V' (¢) corresponds to
an unreliable/perturbed sensory system. The model
results show that perturbation of one sensory system
results in an increase in total body sway. In addition, the
increase in sway is different for each sensory system that
is perturbed. Combined effects of perturbing two or
more systems are more than the sum of the individual
effects of sensory perturbations. For all simulations of
sensory perturbations, the model remained standing.

It is important to note that the model results closely
resemble the experimental results of sensory perturba-
tions on total body sway (Fig. 4; Simoneau et al. 1995).
These results lend confidence in the capability of the
model to study and quantify multisensory integration in
human stance control.

A. Model predictions
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Fig. 4. The effect of sensory perturbations on total body sway
(expressed as percentage increase of body sway compared with the
body sway when no sensory system is perturbed): model predictions
(A) and experimental results (B) (adopted from Simoneau et al. 1995)
[ves vestibular system, vis visual system, som somatosensory system
(skin afferents in soles of the feet)]



The stability of the controller is studied by applying
quasi-random internal perturbations at each individual
joint (Fig. 5). Despite these perturbations, the controller
is able to stabilise the model of an inherently unstable
standing human with a neural time delay of 100 ms.
However, applying the same internal perturbations after
removing the predictive element from the sensory inte-
gration centre results in unstable standing, i.e. the per-
son falls down (not shown).

Applying external perturbations, here a horizontal
support base acceleration, the controller stabilises the
model of a standing human (Fig. 6). The model remains
standing during the perturbation and returns back to the
erect position when the perturbation stops. The correc-
tive response is mainly accomplished by muscle actions
around the ankle joint.

The sensory output (Fig. 7) that results from this
horizontal perturbation is integrated in such a way that
a best estimate of body orientation is obtained. When
the model returned to the erect position, the sensory
output returns to its stationary value. Only an offset in
the horizontal position of the head corresponding to the
support base displacement remains.

Again, removing the predictive element from the
sensory integration centre causes the person to fall.
Apparently, the predictive element plays a crucial role in
the human stance control model. In general, time delays
have a destabilising effect on model performance
(Palmor 1996). The role of the predictive element is to
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Fig. 5A,B. Results of a 20 s simulation during which the three-
segment model was exposed to internal perturbations. The internal
disturbances (A) were modelled as the sum of three sinuses with
different frequencies and applied as additive joint torques. The model
remains standing as is shown by the phase portraits (B)
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Fig. 6A-D. Results of a 1 s simulation during which a three-segment
model was exposed to an external perturbation, namely a horizontal
support base displacement (A). Despite the perturbation, the
controller is able to stabilise the model of an inherently unstable
standing human with a neural time delay of 100 ms. The model
remains standing during the perturbation and returns back to the erect
position when the perturbation stops (B). The predictive element
compensates for neural time delays: actual (solid) and predicted
(dotted) segment angular velocities are shown (D)

compensate for neural time delays. This compensation is
perfect in the absence of perturbations; the actual and
predicted segment angular velocities coincide (Fig. 6).
However, this compensation is not perfect in the pres-
ence of unknown perturbations; the actual and predicted
segment angles and angular velocities exhibit a signifi-
cant phase lag (Fig. 6).

4 Discussion

An important aspect of the model is the use of optimal
estimation theory, which enables us to model multisen-
sory integration in human stance control. In the model,
all delayed sensory information is integrated in such a
way that a best estimate of body orientation is obtained.
This model approach agrees with the present theory of
the goal of human balance control, i.e. to achieve
effective weighting of all sensory information to
maintain a stable vertical and horizontal alignment of
the body with respect to the individual’s intent,
experience, instruction and environment (Jacobs and
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Fig. 7. Selection of the sensory output of a 1 s simulation during which the three-segment model was perturbed by a horizontal support base
displacement (same as in Fig. 6). Shown are the sensory output signals of the different sensory systems used by the sensory integration centre to

obtain a best estimate of body orientation

Burleigh-Jacobs 1998). In addition, the use of optimal
estimation theory enables us to quantify the effects of
sensory manipulations and/or deficits.

The presented multi-segment control model of human
stance is non-linear and explicitly addresses the problem
of multisensory integration. This is in contrast to other
models which are linear and do not explicitly address the
problem of multisensory integration (e.g., Barin 1989;
Igbal et al. 1993; Johanson and Magnusson 1991; Kuo
1995). These models have in common that they utilise a
form of state feedback, assuming that the nervous sys-
tem is able to derive the exact system states from sensory
information. This is not a realistic assumption, since
neural time delays and noisy sensory signals make an
exact state reconstruction practically impossible (Klein-
man 1969). In addition, sensory dynamics is not in-
cluded in these models. However, the present model
results show the importance of sensory dynamics as is
nicely demonstrated by the influence of sensory manip-
ulation on total body sway.

The use of the Kalman filtering theory assumes that
the control model would have some knowledge of body
and sensory dynamics, precision of the different sensory
systems and a representation of the environment. Thus,
the control model ‘knows’, for example, that activating
the soleus will result in backward body movement and
that the muscle spindles are sensitive to muscle stretch-
ing and shortening. Note that within the Kalman theory
this knowledge does not have to be perfect since the
Kalman filter also corrects for deviations of the internal
representation from the true motor system. For an op-
timal estimate, the control model should also have
knowledge about the environment. Interestingly, the

control model has only ‘knowledge’ of the environment
through its senses. To study this problem, one can make
use of adaptive filtering theory (Myers and Taply 1976).

In the future, we intend to apply the model to the
design and development of prostheses and orthoses.
Here it is important to study the effect of sensory loss on
the stability of a standing person with a prosthesis or
orthosis. In addition, the contribution of added artificial
sensory feedback from the prosthesis/orthosis on the
stability of the patient will be investigated. Secondly, the
model could be useful in the diagnosis of neurological
balance disorders. Here experiments with different pa-
tient populations will provide important parameters
that quantify their stability in standing. These parame-
ters will be used by the model to quantify the contri-
bution of different sensory systems in standing. The
model will be extended with models of muscle dynamics
and models of passive joint structures to create a more
realistic musculo skeletal model. In this paper, the
simulations performed did not produce hyperextension
of the joints. Therefore, the results are not influenced by
neglecting the passive joint structures. In the more
general case, these structures can play an essential role,
e.g. by backward translation of the support base. In-
clusion of these passive structures will also have impli-
cations for the modelled action control centre, since the
body dynamics are no longer linear around the erect
posture. In this case the linear quadratic controller has
to be replaced with a non-linear control scheme. How-
ever, in this paper, our focus has been on developing a
model for multi-sensory integration and not on studying
the role of non-linear effects and non-linear control
schemes.



The model will also be extended to three dimen-
sions and to more body segments, for instance, in-
cluding head-neck mechanics and sensory interactions
(Peng et al. 1996). Finally, the current model predicts
the effects of sensory manipulations during quiet
stance very nicely. However, to apply the model for
diagnosis, new experiments have to be designed to
validate it for a wide variety of different balance dis-
orders and perturbations.
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Appendix A. The equations of motion

The model of the human body consists of three linked segments
(shank, thigh and trunk). The segments are connected by friction-
free hinge joints. The model is planar and accounts only for ante-
roposterior motion of the body. It also assumes that the mass
centre of each segment lies on the line connecting the two adjacent
joints. The foot is assumed to be flat on the ground. The equations
of motions are derived by means of the Euler-Lagrange method.
The equation can be written in compact form as:

M(®)0 = B(@)6” + G(®) + R(uy + w,) + D(®)S (14)

where

0= (@1, @2, @3] is a vector with segmental angles (3 x 1)

M(O): is a symmetric inertia matrix (3 x 3)

B(0®) is an anti-symmetric matrix (3 x 3)

G(0©) is the gravitation vector (3 x 1)

R is a transformation matrix relating joint torque to
segmental torque (3 x 3)

Ut vector with control joint torques (3 x 1)

wh vector with disturbance joint torques (3 x 1)

D(©) support base disturbance matrix

S = [5,5)] vector with platform accelerations

The elements of vectors and matrix in (14) are given below.
I;(i = 1..3) is the moment of inertia of the ith segment relative to
the centre of the corresponding segment, m;(i = 1..3) is its mass and
L;(i = 1..3) is its length.

1,1) = (gm1 +my + m3)L7 + 1,

1,2) = M(2,1) = (3mz + 2m3)Li Ly cos(p; — @)

1,3) = M(3,1) = gm3 L1 Ly cos(¢p; — 3)

2 2) = (%mz + mg)L% + 1

2,3) = M(3,2) = ImyL, Ly cos(g, — ¢3)

3,3) =imL3 + 1

1,2) = -B(2,1) = %(mz + 2m3)L1 Ly sin(@; — @)

1 3) = —B(37 1) = %}’VI3L1L3 sin((pl — q03)

2 3) = —3(37 2) = %}’VI3L3L2 sin(rpz — q03)

) = —(3m1 +m> +m3)gLy cos(¢;)
) = —(Gma + m3)gLy cos(p,)

) = —sm3Lag cos(¢5)

) = $(my + 2my + 2m3)L; cos(e,)
)= f%(ml + 2my 4 2m3 )Ly sin(g;)
) = 3(ma + 2m3)L> cos(¢,)

) = —%(WQ + 2}’VL3)L2 sin(qoz)

)

)

= %m3L3 cos(¢ps)

= —Im3Lssin(¢p;3)
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Equation (1) is obtained by substitution of x4 (i) = ¢, (i =1:3),
X (i +3) = ¢;(i = 1:3) and wy = [T 5, 5,]" in (14).

Appendix B. The sensory input

The sensory input is lumped in the vector y, which contains: the
ankle, knee and hip angles (0, 0, 03), the ground reactions force in
the normal direction ( Fy,) and in the tangential direction (Fy) to
the sole, the centre of pressure (CoP), the rotational (vh;) and
translation (vh,, vhs) accelerations sensed by the semicircular canals
and the otolith organs, the position (Xhead,Vhead) and velocity
(*heads Vheaq) Of the head in relation to a visual reference frame. Two
visual reference frames are defined, one relative to the support base
and one relative to the fixed world.

Yst = [617 027 037F‘gn7ﬁ‘gt7 C0P> Ubl ) Ub27 Ub37
Xhead, 15 Vhead, 1 sxhead,l 7)>heud,1 s Xhead,2»

Phead2s Xhead 25 Vhead 2) (15)

B.1 Joint angles

0y =0 -« 02 = @, — o 03 = @3 — @, (16)

B.2 Ground reaction forces and the centre of pressure

Fon = (miot)((F + 5y — g) cos(o) + (¥m + Sy) sin(a))
Fyt = (mio) (= (in + 3y — g) sin(a) + (¥m + 3x) cos(x)) (17

Hseg
CoP = <QXm +ZI,*§D,> /Fgu
i=1

where my, is the total mass of the segment model, /(i = 1..3) is the
moment of inertia of the ith segment relatively to the ankle joint, ¢,
is the rotational acceleration of the ith segment, o is the support
base angle, iiy, i, are the support base accelerations, (xy,ym) are the
centre of mass coordinates relative to the support base:

Nseg Nseg

Xm = Z C;cos(@;), Ym = Z Cisin(g;) (18)
p =1

and (¥n,J,,) are the accelerations of the centre of mass relative to
the support base:

i *Ci(COS((Pi)Qb? + sin(¢;) ;)
i=1 (19)

Nseg

Vm = Z Ci(— Sin(‘/’i)ﬁb? + cos(;) ;)

i=1

Xm =

with C;(i = 1 : nyg) are constants:

1 &
C = <§m,-L[ + Z m[L‘/-> /mm (20)

j=i+l
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B.3 Accelerations sensed by the vestibular system

Ub] = (7)3

(j‘:head + :Szx) Sin(§03 + 250) - O}hcad + ‘.S:y - _C]) COS(QDS + 250)
vby = (¥head + 3x) €08(@3 + 257) + (heaa + Sy — 9) sin(ez + 25°)

(1)
where ¥nead, Jheaq are the accelerations of the head relative to the
support base:

Ub2 =

Nseg

Xhead = Z —Li(cos(fpi)d’iz + sin(¢;);),
=1
Neg

Fheat = Y Li(—sin(g,) @7 + cos(;) ;) (22)
=1

B.4 Vision relative to the support base

Nseg Nseg

Xhead,] = ZL,' cos(®;)  Yhead1 = ) Lisin(g;) (23)
i=1 i=1
g e

Xhead,] = Zl —Lisin(@;)®;  Yhead1 = ZlLi cos(@;)@; (24)
i— i=

B.5 Vision relative to the fixed world

Xhead,2 = Xhead,] + Sx  Vhead,2 = Vhead,1 1 Sy (25)

Yhead,2 = Xhead,l T 5x  Jhead2 = Vhead,1 T Sy (26)

where (sy,s,) is the support base position and (s, $,) the support
base velocity.

Appendix C. Vector a expressed as a stochastic differen-
tial equation

Since support base kinematics and the unknown disturbances are a
priori unknown and can vary in time, these variables can be ex-
pressed as a stochastic differential equation (Gelb 1974):

S 0100000000 0][ s
5 0010000000 O[] s
§ 000000O0O0O0O0 O[] &
kN 00001 00000O0[| s
5, 0000010000 O0[| &
a=| 5 |[=|0o000000000 0[5
8 00000001000 %
i 000000O0O0O0O0O 5
Wi (1) 0000000000 0wl
W5 (2) 0000000O0O0O0O0 O0f|w,()
Wi(3)] L0 000000000 0f[w3)]

where 4, and G, are time-invariant matrices and w, =~ N(0, %;).
The strength of the noise, w,, should correspond roughly to the
possible range of variation in support base accelerations (3y, 5,) and
other disturbances (wy).

Appendix D. The Kalman filter equations

The Kalman gain which the drives the estimated state to the true
state is expressed by:

K(ta) = P(ta)H" (3(ta), usi(1a))V ™" (ta))

where P is the error covariance matrix, £ {)E(td))?T (ta)}, given by the
differential equation:

(28)

P(ld) =F()E(ld)7 Mst(td), td)P(ld) + P(l‘d)FT()?(l‘d)7 ust(td), ld)

+ GW(ta)G" — K(ta)V (ta)K" (1a) (29)
where
). _ 0f (x(ta), usi(ta), ta)
F( (td)’ Sl(td)Jd) N ax(td) x(ta)=%(ta) (30)
and
N ag(x(td)v uSt(td)7td)
H(x ) Ust s =—F 31
(*(ta), ust(ta), ta) ax(1y) )il (31

Appendix E. The covariance of the center of mass

A closed form expression for the centre of mass distribution is
obtained by linearizing the human stance control model around
erect position (xo). When F and H are linear time-invariant ma-
trices and ¥ and W are time- invariant spectral density matrices,
(28) and (29) reduce to:

K(ta) = P(ta)Hy V™! (32)
and

P(ta) = FoP(ta) + P(1a)Fy + GWG™ — K (1) VK™ (1) (33)
where

Fy = F(x0,0) Ho = H(xo,0) (34)

For t; = oo, the error covariance matrix reaches a steady-state
value, P, and therefore:

FoPs + P Fy + GWGT — P HI™OPL =0 (35)
0000 0 0]
000000
100000
000000
000000
01 0 0 0 0|w,=4d,+Gum, (27)
000000
001000
000100
000010
00000 1]




which is an algebraic Ricatti equation and can be solved for Py.
The steady state Kalman Gain is:

Ko = P HI V! (36)

By linearizing the human stance model around the desired or-
ientation, a closed-form expression for the covariance of the centre
of mass is obtained. Unknown disturbances (wg) are zero mean
Gaussian noise with spectral density matrix W. The covariance
matrix of the system states is (Kleinman 1969):

E{xs(1)x} =exp(d7) P} exp(4”)
/ exp(40) Gy Wy Gl exp(4” o)d o

+/ exp(da) exp(41)PLH V- \H*P?,
0
x exp(A”t) exp(4” 0)do (37)

where P* and H* denote, respectively, the elements of P and H
corresponding to the system states (xy), and sensor states (xsen) and:

A=A4-BL

axSl Xst :X& st =0,ws =0
_ afsl(xst,ush Wstt)
=T e
Wst X=X 5t =0,w5 =0
B= af% (xstAusty Wst)
61451 xx‘:xg‘,us‘ =0,wy =0

A closed form expression for the covariance of the centre of mass
is:

e} =E{la

=[C G GG G G (38)

G GlxexilC G c3]T}

where C; (i = 1 : ny,) are constants, see (20).

Appendix F. Simulation parameters

All simulations were performed in Matlab (Mathworks). Para-
meters of the segmental model in the simulation are: m is the mass
of a segment, L is the length of a segment, and 7 is the moment of
inertia of a segment relative to the centre of the corresponding
segment. Segment 1 is shank, 2 is thigh and 3 is trunk. Parameter
values are: m; =4kg, my=7kg and m3; =48kg;, L; =0.6m,
L, =0.5m and L3 = 0.8m; I, = 0.12kgm?, I, = 0.1458 kgm? and
I; =226kgm?; and g = 9.81 ms~2. The neural time delay (1) is
100 ms. Parameters for the Kalman filter equations are the spectral
density matrices ¥ and W,. All non-diagonal elements of V" are zero
and the diagonal entries are:

V(1,1) =V (2,2) = V(3,3):022e5
V(4,4) = V(5,5) =V (6,6) =0.7
V(7,7) = V(8,8) = V(9,9) =2
V(10,10) = V(11,11) = ¥(14, 14) = ¥(15,15) = 4.9¢-5 and

V(12,12) = V(13,13) =

In the case of a sensory perturbation, the corresponding diagonal
element of ¥ was set to 1 e6. All non-diagonal elements of W, are
zero. In the case of internal perturbations, the diagonal entries are:

V(16,16) = V(17,17) = 3.7¢-5

Wa(2,2) =
= VVA(SaS) =

W,(3,3) = 1.6e-3 and
Wa(6,6) = le-29
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In the case of a horizontal support base perturbation, the di-
agonal entries are:

VVa(L l) = VVd(zz) =
W,(4,4) = 1e-29, W,(5,5) —

W,(3,3) = 1.6e-3 and
land W(6,6) = 1e-29

The spectral density matrix W used in the expression for the
covariance of the centre of mass (37) is a diagonal matrix where in
the case of internal perturbations:

Wa(1,1) = Wy (2,2) = Wy(3,3) =0.11  and
Wi (4,4) = Wy (5,5) =0
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