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Abstract hen 2003), robots realized flexible and robust locomotion
even in unknown environments.

A CPG controller is composed of a kind of recurrent neu-
ral network (RNN), called the neural oscillator network.

Animal’s rhythmic movements such as locomotion are
considered to be controlled by neural circuits called
central pattern generators (CPGs). This article presents

a reinforcement learning (RL) method for a CPG con- This controller receives a sensory feedback signal from a
troller, which is inspired by the control mechanism of physical system (controlled system) and outputs a control
animals. Because the CPG controller is an instance of torque to a physical system. Although there are connection
recurrent neural networks, a naive application of RL in- weight parameters in the neural oscillator network, there is
volves difficulties. In addition, since state and action no design principle to determine their values. This problem
spaces of controlled systems are very large in real prob- can be regarded as the exploration of the optimal solution
lems such as robot control, the learning of the value over the space of weight parameters, hence various learning

function is also difficult. In this study, we propose a
learning scheme for a CPG controller called a CPG-
actor-critic model, whose learning algorithm is based
on a policy gradient method. We apply our RL method

methods will be helpful for the exploration. Actually, there
exist studies in which genetic algorithm (GA) is employed
to determine the weight values (Ogihara & Yamazaki 2001)

to autonomous acquisition of biped locomotion by a (Ijspeert 2001). However, GA is not a learning scheme by
biped robot simulator. Computer simulations show our individual robots but a scheme over generations of robot en-
method is able to train a CPG controller such that the sembles. Then, we propose in this article a reinforcement
learning process is stable. learning (RL) method to determine autonomously the weight

values. In contrast to GA, RL is the learning framework
) based on individual trial and error, and has some analogy to
Introduction the developmental process of animal's motor controls. As
an example, an RL for a biped robot is analogous to a baby’s
acquisition of biped locomotion along its growth. The rela-

dynamic walking on irregular terrain. Although these stud- tionship of RL with the brain’s motor learning has also been

ies employed precise models of environments, itis necessary suggested (Fiorillo, Tobler, & Schultz 2003). ) .
for robots to be adapted to unknown environments when ap-  RL methods have been successfully applied to various
plied to real world problems (Morimoto & Doya 2001). Markov decision processes (MDPs) (Sutton & Barto 1998).
On the other hand, animal’s movement show rapid adapt- They can be straightforwardly applied to controllers with-
ability to environmental changes and robustness to distur- Ut internal states, a controller composed by a feedforward
bances. Such a mechanism has been studied both in bio- Neural network for example. Because the ‘policy’ in such a
logical science and in engineering. Existing neurobiological €aS€ can be defined by a mapping from a state of the target
studies have revealed that rhythmic motor patterns are con- SyStém to a control signal. However, such a straightforward
trolled by neural oscillators referred as central pattern gen- @PProach needs to acquire a high-dimensional policy when
erators (CPGs) (Grillnest al. 1991), and this CPG mecha- applied to real world problems like the control problem for

nism is good for both adaptability and stability of animals. & Piped robot. The approximation problem for a policy or a
Recently, there are many studies on locomotion or swim- value function then becomes high-dimensional. This makes

ming robots controlled by CPG controllers, motivated by the the exploration problem of the optimal policy very difficult.
animal’s locomotion mechanism (human (Taga, Yamaguchi, urthermore, the training of nonlinear function approxima-
& Shimizu 1991), mammal (Fukuoka, Kimura, & Cohen torsin ah|gh—_d|r_nen3|onal space is also difficult, which will
2003), hexapod (Barnes 1998), salamander (ljspeert 2001), be problematic in the value learning. On the other hand, a

; 7" CPG controller is beneficial for the robustness of a biped
or lamprey (Ekeberg 1993)). In (Fukuoka, Kimura, & Co robot to various environmental changes, because the robot

Copyright © 2004, American Association for Artificial Intelli- can be entrained to the rhythm inherent in the CPG. In addi-
gence (www.aaai.org). All rights reserved. tion, a control signal produced by a CPG controller is effec-

There have been many studies of locomotion robots (Hirai
et al. 1998) (Buehleget al. 1998), but few of them achieved



tively restricted within the space determined by the inherent CPG controller
rhythmic patterns of the CPG controller. Then, the searching

for the optimal policy becomes much easier than that with- A Wi
out any restriction. The output patterns of a CPG controller - - O
can be changed by mainly tuning the connection weights in e\
the neural oscillator network. The number of these parame- x
ters is often much smaller than that of the high-dimensional >
policy for the original control problem. ! ) O
When we consider a naive application of RL to a CPG I
controller, lowever, thepolicy becomes unstationary, be-
cause a control signal depends not only on a state of the )
target system but also on an internal state of neurons con-
stituting the CPG controller. Furthermore, the large amount
of computation is usually required to train an RNN. In order o .

to overcome these problems, we propose a new RL method
called the CPG-actor-critic model. In this model, the vari-
able part in the CPG controller is represented as a simple
feedforward neural network, then it is not required to train
the RNN as itself.

An RL is primarily formulated as to find the policy that Figure 1: Control scheme using a CPG controller
minimizes the cost on an Markov decision process (MDP)

(Sutton & Barto 1998). In conventional value-based RL Th . f a phvsical like a biped robot i i
methods, such as th@ learning, the value function which e motion of a physical system like a biped robot is ex
represents cumulative cost toward the future for a state (and pressed as .
an action) is obtained. Then the policy is updated to mini- z = F(z,7), @)
mize the value function over every state. In order to find the wherez andz denote the physical state and its timeiger
optimal policy, it is necessary to know the value function. In tive, respectivelyr denotes the control signal (torque) from
many real problems such as robot control, the computation the controller.F(x, 7) represents the vector field of the dy-
of the correct value function or its function approximation namics.
(Sato & Ishii 1999) is difficult, analytically or numerically, The physical system is controlled by a CPG controller as
because of the enormous size of the state and action spacesdepicted in Fig.1. The CPG controller is implemented as a
Furthermore, it has been supposed that the convergence of neural oscillator network, and outputs a control signabr-
these value-based RL methods is not guaranteed when em-responding to neurons’ states in the network. The CPG con-
ploying function approximators, due to the effect of approx- troller receives a sensory feedback sigadom the physi-
imation errors (Bertsekas & Tsitsiklis 1996). cal system.

In our method, the learning scheme is based on a policy ~ The neural oscillator network is an instance of RNNs, and
gradient method (Konda 2002). Policy gradient RL meth- the dynamics of thé-th neuron is given by
ods are not primarily based on value functions. In these Cin = —vi + I, ys = Ga() @)
methods, the policy parameter is updated based on the gra- Vi = TV S Y = i),
dient of average cost with respect to the policy parameter, where;,,y;, I; and(; denote the state, output, input, and
and it is possible to learn without value functions (Williams  time constant, respectively, of theth neuron. Outpuy;

1992). However, learning methods without value function s calculated from state; through the transfer functioff’.
take much computation time, then they had been less attrac- Actual function form forG,; is described later.

tive. Recently, a new actor-critic method, i.e., a policy gra- Input I; is given by
dient method incorporating a value function, has been pro-
posed, and its convergence was proved (Konda 2002). In I, = ZWijyj It 4 By, 3)

this actor-critic method, a lower-dimensional projection of
the value function is approximated instead of the true value ] ) )
function, because the po“cy gradient depends Only on the where the first term is the feedback Input from the other neu-
projection. The approximation of the projection is often eas- ons, the second term is the external input denoting the sen-
ier than that of the original one. sory feedback signal, and the third term is a bia5; repre-
sents the connection weight from tli¢h neuron to theé-th
neuron. The external input** is defined by

J

The training of our CPG-actor-critic model is based on
this actor-critic method. Weights of connections within the
CPG controller are optimized so as to control the biped Jent — ZA' w (4)
robot simulator proposed by (Taga, Yamaguchi, & Shimizu K Rk
1991). Simulation results show that stable locomotion can k
be achieved by the CPG controller trained by our RL ap- namely, a sum of the sensory feedback signaleighted by
proach. connection weight ;.



The control signal to the physical system,is given by a
weighted sum of the outputs of the CPG neurons:

Tn = Z Tnzyza
7

whereT,,; represents the weight.

®)

CPG-actor-critic model

An actor-critic method is one of the popular RL methods
(Sutton & Barto 1998). In this method, the actor is a con-
troller that transforms an observation of the target system
into a control signal. The critic predicts the cumulative or

average cost toward the future when the current actor is used
as a controller. The actor’'s parameter is updated so that the

cost predicted by the critic becomes small.

When we try to apply the actor-critic method to the CPG
controller, several difficulties arise. A naive application of
the actor-critic method (Fig.2(a)) is not suited for training
RNNs, because the critic's and actor’s learning is usually
based on temporally instantaneous errors called temporal
difference (TD) errors. Training of an RNN needs the “error-
back-propagation through time” (Sato 1990), which is not
suited for on-line learning and needs heavy computation.
Moreover, because a control signalis generated by the
CPG controller which has the internal dynamics given by
equation (2), the total system coupled with the CPG con-
troller has an dynamics:

(6)

This equation shows the existence of a hidden state variable
v. This makes the policy, which is a function from a state
to an action, not unique for any state; namely, the policy be-
comes unstationary. Since the policy gradient method we
employ is formulated under the condition that the policy is
stationary, its application to the learning task of an unsta-
tionary policy suffers from a remained variance. To formu-
late the learning scheme of the CPG controller as an MDP, it
is profitable that the physical system and the neural oscilla-
tor network are regarded as a unified system, a CPG-coupled
system (Fig.2(b)).

(ii:, V) = FCPG—coupled—system (157 v, T, I)
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Figure 2: CPG-actor-critic model

In our method, the CPG controller is divided into two
modules: the basic CPG and the actor, as depicted in Fig.3.
The basic CPG is a neural oscillator network whose con-
nection weight iSW /. The actor receives an input signal,
which is a pair of an output of the basic CPG and a sensory

bhasic. CPG..

PSS actor. ... ' .
: VVi'L :

Aik W?d

Figure 3: Actor and basic CPG

feedback signal, and outputs a control signal called an indi-
rect control signal to the basic CPG. Corresponding to this
separation, the input to the CPG neurdn(equation (3)), is
divided into two parts:

L o= I 4 7)

i = Wty + B 8)
J

u; = ©)

S Wy 4+ Aigwr,
k

J

where/"™ represents a feedback input from other neurons

through the fixed mutual connectid /™ and the fixed
bias inputB.

w is an indirect control signal and the output of the actor.
The actor is a linear controller, and receives an outpaoft
the basic CPG and a sensory feedback signalhe weight
parameter$V 2t and A;;, are adjustable, and are trained by
RL. The control torque to the physical system is calculated
by equation (5), and the weight paramefeis fixed. We
call the architecture above the CPG-actor-critic model.

The CPG-actor-critic model has two aspects. From the
control viewpoint, the CPG controller consists of the basic
CPG and the actor (Fig.3), which cooperatively controls the
physical system. From the RL viewpoint, the actor outputs
an indirect control signak to a CPG-coupled system which
consists of the basic CPG and the physical system (Fig.2(b)).
In the latter view, the actor is a linear controller without any
mutual feedback connections, hence there is no need to train
the RNN as itself. Another merit exists in this architecture,
namely, the actor is trained as to modify the entrainment be-
tween the physical system and the basic CPG.

The critic observes the CPG-coupled system state, i.e., a
basic CPG state and a physical system stateand predicts
the cumulative or average cost toward the future.

L earning Algorithm

The CPG-actor-critic model is trained according to the actor-
critic method based on the policy gradient method (Konda
2002). In the conventional value-based actor-critic method,
the critic approximates the value function on the state and
action spaces, and the actor parameter is improved to mini-
mize the cumulative cost in each state according to the eval-



uation by the critic. In order to acquire the optimal actor pa-  {¢}(s,u)|i = 1,---, M} is sufficient. Although the tru€
rameter, therefore, the critic is required to approximate the function may be a complex and high-dimensional mapping
value function with a high accuracy. Inthis case, the compu- of S x U — R, the number of policy parameters is often
tation amount necessary for training the critic will increase smaller than the dimensionality 8fx U — R, thus the ap-
as the state and action spaces become large, and inaccuratgroximation of the) function becomes much easier (Konda
critic badly affects the actor’s learning and makes the learn- 2002).

ing process unstable. In the policy gradient method, on the  In this method, the critic approximates the projectgd
other hand, the actor is trained based on the gradient (policy function. A linear parametric model is employed as a func-
gradient) of the average cost with respect to the policy pa- tion approximator:

rameter under a stationary condition, and the critic is used

for efficiently estimating the gradient through the approxi- M
r _ oy
mation of the value function. Roughly speaking, the policy Qb(s,u) = Z Tive(s, u), (13)
is updated as follows; when the state transition froto s’ =1
occurs by an actiom, the actionu is positively (or nega- wherer = {r;li = 1,--- , M} is a parameter vector of the

tively) reinforced, if the evaluation of this transition is larger  critic. The critic is trained based on stochastic approxima-
(or smaller) than the expected one. The policy gradient in- tion with an eligibility trace, i.e., a TDX) learning:
dicates the direction of the policy parameter to realize such

a reinforcement manipulation of actions. rie—ri+y0Z;, i=1,--- M. (14)
Attime, the actor receives a basic CPG's outpytind a Heres is a TD-error:

sensory feedback signal; which is a transformation at,,

and outputs an indirect control signa calculated by equa- § = c(St41,Uty1) + Qgii (St41,Utt1)

tion (9). The CPG-coupled system receives the actor output —QT (se ) — (15)
uy, and changes its state;, ;) to (v¢1, x+1) according 6,17t T ’

to the dynamics of the basic CPG and the physical system, whereZ = {Zili = 1,---, M} is the eligibility trace and
(1)-(8). After that, it is assumed that the critic receives an performs responsibility assignment of the TD-error (Bradtke
immediate cost (v, z¢, ). & Barto 1996), andy is the estimation of average cost.

~ Subsequently, a state of the CPG-coupled systen), Concurrently to this critic learning, actor paramefieis

is simply denoted bys. We formulate an MDP on the  ypdated to minimize the objective functiari®) according

state spac® and action spac® of the CPG-coupled sys- o the policy gradient. From equations (11) and (13), the
tem, assuming the cost function is given by a mapping following equation is derived:

c¢:SxU — R. p(s'|s, u) represents the probability that the

system changes its current state S to a next stateé’ € S 9 _ 0) — / dsd r i 16
when an action: € U is given. 89,-0‘( ) SeSm:U (s, w)@p(s, w)vp(s, ). (16)
A policy mg (u|s) defines the probability of an actianat

Qg is calculated by the current critic, and the actor is trained
by the gradient method using equation (16). The expectation
with respect tone (s, w) in equation (16) is approximated
by using the empirical distributiofis;, u;},t = 1,2,---.
Concretely, the policy paramet@y is updated by

a states, wheref = {6;|i = 1,--- , M } is a parameter vec-
tor. Itis assumed that a stationary distributigy{s, u) with
respect to the state-action pdis, u) exists under a fixed
policy mg. Under these conditions, the objective of the MDP
here is to obtain the optimal parame@¥"* that minimizes

the average cost: 0; — 0; — BQY(s, w)vh(s, u), (17)
a(9) = / dsdu c(s,u)ne (s, u). (10) wheref is the learning rate. The parameter update in the di-
seS,ucl rection of the gradient of the average cost function, equation

(16), is performed by repeating the individual update above.
Namely, equation (17) is the stochastic gradient method for
equation (16).

According to this method, the critic parameter may not

The gradient of the average cagtf) with respect to the
parameter; is given (Konda 2002) (Suttoat al. 2000)
(Marbach & Tsitsiklis 2001) by

0 _ i converge, while the actor parameter converges because the
391.0‘(0) = /SES well dsdu 16(s, u)Qo (s, u)vp(s, u), actor's training is based on the long run average of the
’ (11) critic’s output (Konda 2002). The behavior of the critic pa-
where rameter will become more stable if the actor parameter is
i B fixed for a certain period. Therefore, the actor’s (critic's)
va(s,u) = 00, In7e(uls). (12) parameter is fixed while the critic’s (actor’s) parameter is

updated during a single learning episode in the experiments

Equation (11) i lled th li dient, and ts that ,
quation (11) is called the policy gradient, and suggests tha described below.

the gradient of the objective function with respect to the pol-
icy parameter; is calculated by the expectation of inner .
product between thé) function andy} (s, w) over the sta- Experiment

tionary distribution. Then, itis not necessary to calculate the We apply our CPG-actor-critic model to a biped robot simu-
true @ function, but its projection to the space spanned by lator (Taga, Yamaguchi, & Shimizu 1991). The objective of



the simulation is to obtain a CPG controller that makes the where=;_; represents an indicator function of shank link-
robot simulator produce stable locomotion. (i=4,5), i.e..=; = 1(or 0) when the link: touches (or, is off)
The biped robot is constructed by five links connected to the ground.r; 2, 734 andrs ¢ represent the torques applied
each other, as depicted in Fig.4(a). The motions of these to hip, knee and ankle, respectivel§;” and7,” represent
links are restricted in a sagittal plane. Link-1is a point mass weights of the flexor and extensor, respectively, and their
and representative of the upper body. Each leg consists of values are fixed. A sensory feedback signal from the biped
thigh (link-2,3) and shank (link-4,5), and has three joints, robotisw = {az,as, a4=4, as, =5, 24, =5, 44Z4, 4555}
i.e., hip, knee and ankle. The length of thigh or shank is
0.5m or 0.6m, respectively. The robot is controlled by the Condition
torquer, - -- 76, €ach of which is applied to a single joint.  The dynamics of the CPG-coupled system is calculated by
When a shankis off the ground, the torque at the ankle joint  the Runge-Kutta integration with time interval 0.0001 sec.
is not generated. The action from the ground is modeled The |earning system observes the system state and outputs
as a spring-damper model, and the reaction force occurs ac- 4 control signal every 0.01 sec. The observation of each
cording to the displacement from the ground and the ankle  angylar velocity is smoothed over the 0.01 sec. interval.
velocity. (Taga, Yamaguchi, & Shimizu 1991). Itis not desirable to make all parameters of the CPG con-
A state of the biped robot is described by troller variable, because the CPG controller uses the prop-
erty that the motion of the physical system is entrained into
the inherent rhythm of the CPG controller. In this exper-
wherez; andh; denote the horizontal and vertical coordi-  iment, we assume for simplicity that all mutual connec-
nates of link-1, respectively, and represents the angle of  tion weights in the neural oscillator network are fixed, i.e.,

T = (xla hl;a2;a3;a4;a5;x-1; h15a2;a3;a4;a5>a

link-: from the vertical axis. Wact = 0. We also assume that connection patterns from
_ the sensory feedback signal to the CPG neurons have spe-
link cific forms, as in (Taga, Yamaguchi, & Shimizu 1991):
If" = 61wy — bows + H3ws + Oaws,
I3ezt = 910)2 — 920)1 + 93(4}4 + 94(.4}5,
Ig”” = Oswy, I?“ = Osws,
Igmt = —eewg — 97W4 — 98W7; (19)
If7Y = —fws — 7wz — Bsws,
Y = It fori=1,---,6,
where{6;|i = 1,---,8} are elements of the connection
(a) Biped robot simulator (b) Neural oscillator network weight A (equation (9)). The other elements Afare fixed
Figure 4: Structure of CPG-driven biped robot at zero. The policy, which outputs an indirect control signal

probabilistically to the CPG neurons, is given by a Gaussian
The structure of the neural oscillator network, which con-  distribution:

stitutes the CPG controller, is also adopted from (Taga, Ya- N (p,09), (20)
maguchi, & Shimizu 1991), as depicted in Fig.4(b). There wherey; = I5#t, (i = 1,---,6) andfy are the mean and
are 24 neurons; théth and the { + 12)-th neurons are  variance of the distribution, respectively. Then, the policy
called a primary neuron and a supplementary neuron, re- parametef6;|i = 1,--- ,9} is adjusted by our RL method.

spectively. Each supplementary neuron is solely connected \We assume that an immediate coft,, xy, u;) is deter-
to its primary neuron by excitation-inhibition mutual con-  mined only by the robot state at the next time step, 1,
nections. An output of théth primary neuron is given by and defined a&; . ;:

G;(v;) = max(0,y;), and an output of thej (+ 12)-th sup-

plementary neuron is given by the identical function. The &(x) = 0.1ep(x) + cf(x) +0.0002¢5(x)  (21)
weight of the mutual connectidi /@ (equation (8)) is also cn(x) = —(h1 — 0.9 — min(hy, hs))

adopted from (Taga, Yamaguchi, & Shimizu 1991). With—. i if |41] < 1

out any sensory feedback signal, each neuron in the basic cs(x) = {—561/|331| otherwise

CPG outputs rhythmic signals autonomously. A combina-

tion of two primary neurons and two supplementary neurons , (0.94¢,)? if0.94+c, >0
(2i—1,2i,2i+11,2i+12,i=1,--- ,6) behaves as a neu- cn(®@) = {0 otherwise )
ral oscillator, and each neural oscillator is responsible for
controlling the corresponding joint. whereh;(i = 4,5) represents the height of link- ¢;,(x)
Torquer;, which is applied to the-th joint is calculated encourages the robot not to fall down, andx) encourages
from the output of the CPG neurons: the robot to proceed to the forward directief).(x) incurs a
r = TPy TEys (=1, 4) large penalty when the robot falls down.

The maximum period in one learning episode was 5 sec.
7 = (=TFyei1+TFye)Zi 1 (i =5,6), (18) (500 time steps). If the robot tumbled before 5 sec., the



learning episode was terminated at that time. At the be-
ginning of each learning episode, the state of the robot was
initialized as a motion-less posture such that the two legs
slightly opened, the states of whole neurons were initial-
ized as0, and the angles of the legs were selected randomly
within a small range. At the beginning of the whole learning
procedure, the critic parametewas initialized simply a#.

Result

L earning from therandom initial value of the actor
parameter

First, we examined whether the actor parameter that gener-
ates stable walking can be acquired by our learning scheme
from a random initial value of the actor parameter with
which the robot hardly walks.

L earning from the actor parameter which hardly gener-
ates a walk At the beginning of the learning procedure,
the actor parameté was randomly initialized aroun@l
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Fig.5 shows the learning curve until 50,000 learning
episodes, where the horizontal axis denotes the number of
learning episodes. Fig.5(a) shows the average cost in one

time step. The average cost decreased almost monotonously,

implying that the learning successfully proceeded. After
about 25,000 learning episodes, a large drop off of the av-

erage cost was observed, suggesting a significant progress

of the learning occurred. Fig.5(b) shows the number of
time steps until failure, averaged over every 500 learning
episodes. After about 30,000 learning episodes, a good
CPG controller was acquired such that the robot seldom
fell down. Fig.5(c) shows the actor parameter. After
about 25,000 learning episodes, the parameter significantly
changed, while after 30,000 learning episodes, it almost con-
verged. Fig.5(d) shows the average output of the critic.
Large values at around 25,000 learning episodes reflected
the large drop off of the cost. When the critic’s output was
large, it caused large change of the actor parameter (equation
(17)).

According to our cost design (equation (21)), a large
penaltyc), is incurred when the robot falls down. There-
fore, there is large difference in the cost per step between

0.6
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of TD-error_failure episodes
o

o

parameter

Critic

-
n

e N

05 1

Height of hip

e
n

23 3 35 r?

Episodes

13 2
Figure 6: Analysis

learning episodes in which the robot falls down and does
not fall down. According to the policy gradient method, the
large difference between the actual and the expected value
function causes the large gradient. Therefore, a large vari-
ance among episodes produces a large gradient which ac-
celerates the learning. Fig.6 shows the detailed analysis
of the learning curve in Fig.5. Fig.6(a) shows the num-
ber of learning episodes in which the robot does not tum-
ble within every 100 episodes. The number of success-
ful episodes increased after about 20,000 learning episodes.
Concurrently to this increase, the variance of the TD-error
became large (Fig.6(b)) and the critic’s learning was acceler-
ated (Fig.6(c)). Depending on this critic’s learning, the actor
learning is considered to also be accelerated (Fig.5(c)).

Fig.7(a) and Fig.7(b) show an example gait pattern be-
fore learning and that after learning, respectively. In or-
der to evaluate the actor’'s performance, we repeated a test
task in which the robot was initialized at a motion-less pos-
ture and was controlled until the robot tumbled or 1000 sec.
elapsed. By using the CPG controller before learning, the
robot walked for 1.9 sec. on average. By using the CPG con-
troller after learning, on the other hand, the robot could walk
for 30.9 sec. on average. The performance of the CPG con-
troller was thus improved by our RL method. Among these
100 times tasks, however, stable walking for 1000 seconds
was achieved only once, because the learning converged to
a locally optimum solution.

1+
051
(V) il s Tma ¥—

(a) Before learning

.2 L —— . T T )
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(b) After learning
Figure 7: Gait patterns




Learning from the actor parameter acquired by the
above learning To escape from the local optimum, we
then re-initialized the critic parameter, and trained the actor
again. Fig.8 shows the learning curve until 150,000 learn-
ing episodes during this re-training. The vertical axis and
the horizontal axis are the same as those in Fig.5. The
average cost became temporally large after 25,000 learn-
ing episodes, but became eventually smaller than the initial
value, as shown in Fig.8(a).

After this re-training, Fig.9 shows examples of gait pat-
terns on a flat ground, an up-slope and a down-slope. Al-
though the learning process proceeded on a flat ground,
the robot was adapted flexibly to unknown environments,
slopes. Before re-training, the number of successful test
tasks in which the robot could walk stably for 1000 sec-
onds was only one out of 100, while it became 84 af-
ter re-training. This result shows that a better CPG
controller was acquired through this re-training process.
The connection weights from the sensory feedback sig-
nal were@r;, = {0.72,0.73,4.5,1.3,0.58,3.7,5.3,2.3},
which were quite different from the hand-tuned parame-
ter found in (Taga, Yamaguchi, & Shimizu 1998y =
{1.5,1.0,1.5,1.5,3.0,1.5,3.0,1.5}.

The actor parameter converged to a local optimum in the
previous experiment, and moreover there may be a lot of
local optima or plateaus in the parameter space. By intro-
ducing perturbation to the value approximation due to the
re-initialization of the critic parameter, the actor could find a
better policy in the current experiment. Because the learning

0.5

(a) Flat

(c) Down-slope
Figure 9: Gait patterns after re-training

evaluate this parameter, we repeated a test task in which the
robot was initialized to a motion-less posture and was con-
trolled on a flat ground, and an up- or down-slope of 2.9
degrees until the robot tumbled or 20 sec. elapsed.

Table.1 shows the number of successful tasks in such 100
tasks controlled bg ;1 andeﬂl‘gt. They exhibited compara-

ble performance becaufg; had already been a good con-

troller, while 84/¢* outperformed ;1 on up-slopes 84/

was robust to environmental disturbance such as up-slopes.
Since the control signal is produced probabilistically (equa-
tion (20)) according to our RL scheme, the stochastic nature
works similarly to the disturbance induced by the unknown
environments. Then, it is considered that the robust policy

process is stable according to our learning scheme based onagainst actual disturbance has been acquired.

the policy gradient method, such a re-training is applicable
in order to improve the policy.
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The comparison of RL and hand-tuned parameter

Next, we trained the CPG controller on a flat or a slope
ground starting from the hand-tuned paramétgt;.

Learningon aflat ground After 50,000 learning episodes

on a flat ground starting from the hand-tuned parame-
ter 8y, the actor parameter was changedaélzt
{1.46,0.96,1.39,1.49,2.73,1.33,2.72,1.23}. In order to

Table 1: The performance comparisorfof andeﬁgt

Our 07"

Flat 94 96
Up-slope 17 44
Down-slope 95 95

Learning on a slope To evaluate the effect of environ-
mental change in learning, the terrain was prepared as
an up-slope of 5.7 degrees. After learning of 15,000
learning episodes, the actor parameter becﬂrﬁ%’“e =
{1.51,1.00,2.55,1.51,1.66,1.39,2.87,1.47}. In order to
evaluate this parameter, we repeated a test task in which the
robot was initialized to a motion-less posture and was con-
trolled on a flat ground, and an up- or down-slope of 5.7
degrees until the robot tumbled or 20 sec elapsed (Table.2).

Table 2: The performance comparisorfgf and@’.o"*

Orr  Oy)"

Flat 96 96
Up-slope 13 41
Down-slope 41 98

Although the performance on a flat ground did not show



any difference, the performance on slopes was much im-
proved bye}fzp"‘ on @yr. The policy parameter which is

suitable for walking on slopes has thus been acquired by our
learning scheme. Moreover, although the learning episodes
are carried out on up-slopes, the performance on down-

slopes is also improved. The reason is probably similar to

that of the improvement bg /"

These two experiments suggest that a policy can be im-
proved such to adapt to new environments according to our
RL method.

Discussion
In this article, we proposed an RL method for a CPG con-
troller, called the CPG-actor-critic model, which is based on
a policy gradient method. We applied our method to an auto-
matic acquisition problem of biped locomotion. Simulation
results showed the CPG controller was able to generate sta-
ble biped locomotion.

In our method, the policy parameter is supposed to con-
verge to one of the local optima. In order to improve the pol-
icy by escaping from such a local optimum, we re-trained the
actor parameter by re-initializing the critic’'s parameter, and
then could obtain better one. Acquisition of the locomotion
by human being may have such a process. The locomotion
is unstable when a baby obtains it first, but is improved as it
grows. It may be important to forget past successful experi-
ence to obtain a better control, when the learner is caught in
a local optimum. We expect that the RL research provides
some intuitions on the animal’s developmental processes.

Although the simulation was successful, a lot of train-
ing episodes were still required. Therefore, it is difficult to
apply the method directly to real robots; it is necessary to
develop a more efficient algorithm which enables the robot
to learn fast. Moreover, the CPG’s internal weights were
fixed and only sensory feedback connections were adjusted
in the current study. It also remains a future study to adjust
the weights of our CPG's internal connections by our CPG-
actor-critic RL method.
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