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Abstract

As legged robots gain the abilities to walk and balance on more than just flat,
obstacle-free floors, they grow closer to fulfilling the potential of legged locomotion
shown by biological systems. To truly fulfill this potential these robots must suc-
cessfully traverse complicated, rough terrain, requiring the robots to step onto or
over various features of the environment. Furthermore, when a robot must spend a
significant amount of time supported by a single foot, the contact that foot makes
with the ground is very important for stability, requiring that the robot properly as-
sess foot placement to maintain balance during locomotion. This thesis will address
the problem of navigation for legged robots by using a global planning approach
built on top of existing walking and running controllers. The planning process will
reason about foot placement and contact configurations within the terrain, and
the connectivity of those contact configurations. This thesis will provide a general
global navigation strategy for a wide range of legged robots through complicated
environments, while utilizing the advantages of their legs, as well as ensuring their
safety and stability during locomotion.
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Figure 1: Example navigation problems for the robot to solve

1 Introduction

From examples in biology, we can see the great potential of legged systems. While they
do not match the efficiency of wheeled robots in many environments, we can see many
biological systems which exhibit great flexibility, agility and robustness in traversing ex-
tremely complicated terrains. Legged robotic systems, while they possess the ability to
step onto or over obstacles, move in any direction, and balance autonomously, have not
yet come close to the capabilities shown by biological systems. There are still many ar-
eas which need improvement for legged locomotion, including actuator and mechanism
design, balance control and robustness to disturbances, sensing of the environment, and
the ability for the robot to choose intelligent and appropriate actions for traversing ter-
rain. The focus of this work is in the area of intelligently choosing actions to safely and
efficiently traverse a given terrain. We build on top of existing balance controllers to
safely navigate a robot through complicated environments. Some examples of the type
of problem this thesis will attempt to solve are shown in Figure 1. For complex indoor
environments designed for humans, this includes dealing with furniture, walls, stairs,
doors, and previously unknown obstacles on the floor. For outdoor environments, this
includes the ability to navigate on rough terrain and uneven surfaces. Because legged
robots have the ability to step over and onto obstacles in their path, they are uniquely
suited to overcoming these difficulties. However, existing navigation planning methods
fail to consider these additional capabilities, because they were primarily designed for
wheeled mobile robots.

Due to the many degrees of freedom present on legged robots, we focus on methods
to reduce the dimensionality of the search space in order to find plans in a reasonable
amount of time, while still retaining the capabilities that make legged robots interesting.
This dimensionality reduction is accomplished by reasoning about the foot placement of
the robot, discretizing our search along the discrete changes in the hybrid dynamics of
the legged systems. This provides a natural way of breaking up the problem, allowing
us to apply discrete planners to find a safe sequence of foot placements through the
environment. The robot’s locomotion controller can then take the robot through each
stage of support, taking the robot from its start configuration to the goal.
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1.1 Problem Description

We can formally define the input of our problem as

I = (xinit, xgoal, e, U),

where xinit is the initial state of the robot, xgoal is the goal state, e is the environment,
and U is a set of control actions describing the actions of the robot. We can define a
function over all state-action pairs, describing how the state of the robot evolves:

ẋ = f(x, u)

In this formulation, the problem that the robot faces at every instant in time is to select
the “best” control action u ∈ U to execute. Using a planning technique which guar-
antees optimality is one way to find an entire sequence of “best actions”. While this
planning is often computationally expensive, it provides a global value, which avoids
the problem of getting stuck in local minimums. For the planning formulation, the
problem is to find a path through the state space from the start state to the goal
state, τ = (xinit, x1, x2, ..., xgoal) and the corresponding series of control actions P =
(u0, u1, u2, ..., un), which if executed on the given terrain will cause the robot to follow
the desired path. Given a cost function over these paths and actions ψ(τ,P , e) which de-
fines optimality, we want to find the path and associated control actions which minimize
ψ.

Unfortunately, for a legged robot, this problem quickly becomes intractable, due to
the number of degrees of freedom and the length of the path. Instead of planning at the
lowest level of motor commands, we can create abstractions which encapsulate “chunks”
of the robot’s path. This abstraction is an action set A, for which any action a ∈ A takes
the system from one state to another as defined by the relationship

xi+1 = Succ(xi, a, e).

Under this formulation, the problem is to find the sequence of actions from A which
will take the robot from the initial state to the goal state in the given environment.
The main difference between this formulation and the continuous formulation is that the
output sequence of states is no longer a continuous path through the state space, but
a discrete series of points which are connected through the use of our action model, A.
The implication of this difference is that performing collision checking on the individual
states is not sufficient to ensure a safe path. An action that can safely take the robot
between successive states in the given environment must be available for the path to be
valid.

In order to apply this planning approach we need to make an important decision,
namely, what are these actions, A, that the robot can take? Are they trajectories,
control policies, or something else? This choice of what the actions consist of and how
they are chosen has serious consequences for both how difficult the planning problem
becomes, as well as how much of the robot’s capabilities are used in the resulting plan.
As stated earlier, the full motion planning problem for all the degrees of freedom of a
legged robot can quickly become intractable. However, we can break this problem down
to a lower-dimensional subspace in an efficient way by looking at the structure of the
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problem. After performing our planning in this low-dimensional space, we can turn our
plan back into a full-body motion for the robot, allowing the robot to move to the goal.
This thesis investigates constructing useful action models and planners for the particular
problem of legged robots.

In choosing how to reduce our search space, we have several goals for our final action
representation:

Re-use of existing control. A great deal of research has been performed on the
subject of balance, walking, and running for legged robots. Ideally, our planning strategies
can make use of the controllers that have resulted from that research, rather than requiring
the planner to discover how to walk or run from scratch for each situation.

Planning simplicity. The fewer dimensions in our search space, the easier it is for
a planner to explore. Simplifying the planning space has a large impact on real-time
performance on a robot in real environments.

Capability usage. While we want to reduce the dimensionality of our problem and
simplify the actions for our planner, another goal is to make sure that we do not sacrifice
the unique abilities of legged robots in the process. We strive to find the right balance
between utilizing as many capabilities of the robot as possible while at the same time not
overwhelming the planner with too many details of the locomotion process.

Executability. In addition to having enough freedom in the planner to use the full
capabilities of the robot, we need to have enough information in the plan to ensure that
we are not exceeding the robot’s capabilities. Depending on the details of the robot and
its controllers, some dimensions may be safely ignored. However, it is important that we
do not reduce our problem to the point where the planned action sequences exceed the
abilities of the robot and controller.

2 Background

2.1 Biped Locomotion

Reliable walking biped robots have been developed only recently, although today there are
several humanoid robots in use around the world, such as Johnnie[55], HRP-2[36] and
HRP-3[2], H7[32], HUBO[71], WABIAN-2[68], Honda’s ASIMO[81], Sony’s QRIO[20],
and Toyota’s Partner robots. For these robots, comparatively little research attention
has been focused on developing complete global navigation strategies. Instead, most re-
search has focused on pre-generating stable walking trajectories (e.g. [27, 64, 93]), or on
dynamic balance and control (e.g. [77, 89]). Recently, techniques have been developed to
generate stable walking trajectories online[33, 65, 66, 67, 69, 72], though these results do
not account for obstacles. Sensor-based obstacle-avoidance techniques have been devel-
oped for bipeds navigating in unknown environments[92, 57], which have allowed robots
such as the Johnnie humanoid to adjust its path and step length in response to sensed
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obstacles[56]. However, such reactive methods can become trapped in local loops or dead-
ends, because they do not consider global information. In biomechanics, researchers have
studied the problem of how humans perform local planning over irregular terrain based
on visual feedback[73, 74].

There have been several running biped robots which store energy of the running mo-
tion in springs during stance, to be released on the next stride[1, 78]. For a planar running
biped, control schemes were designed and implemented to enable placing the feet at de-
sired locations[29], although the problem of how to choose those desired footholds was
not addressed. The Bow-leg hopper[94] was constructed in such a way that most of the
system parameters were fixed or self-stabilizing (body pitch, leg stiffness, energy inser-
tion), and only one control parameter was free (leg angle at touchdown). The controller
used a planner to perform a forward search using potential leg angles of future steps as
its action set to find a sequence of actions that could be safely executed.

2.2 Quadrupeds and Hexapeds

For quadrupeds and hexapeds, the issue of balance is much simpler than the two-legged
case for most situations, so more research effort has been put into negotiating difficult
terrain than with biped robots. In fact, because of the increased inherent stability,
many control schemes and robots have been developed which use open-loop gaits which
self-stabilize over a wide region of the state space, allowing for blind locomotion over
difficult terrain[13, 37, 82, 95]. To optimize these robots’ motions when traveling over flat
terrain, many researchers have studied gait generation for speed and efficiency[16, 39]. For
quadruped robots, adaptive gait generation and control on irregular terrain and among
obstacles has been previously studied [21, 28, 38], allowing reactive changes in gait for
extra stability and speed over rough terrain. These approaches do not consider global
information or produce global paths. In addition, there have been many mutli-legged
robots which rely on static stability, which slowly and carefully move through rugged
environments[4, 5, 8, 30, 59, 60, 63, 90].

2.3 Navigation Planning

Global path planning and obstacle avoidance strategies for mobile robots and manipula-
tors have a large and extensive history in the robotics literature (e.g. see [31, 48, 51] for
an overview).

In the path planning literature, related approaches using classical AI search or dy-
namic programming[9, 41] have been applied to finding collision-free motions. Some
examples include car-like robots[7], kinodynamic planning[19], calculating sequences of
pushing motions[58], planning for constrained systems[6], optimal control of manipulators[10,
83], and a variety of planning problems in a game-theoretic framework[50]. Ultimately,
planning problems in robotics can be cast as discrete heuristic search problems involving
cost metrics, sets of candidate actions, and goal regions.

Current planning approaches for legged robots lie along a spectrum based on how
much of the robot’s underlying details are considered. At one end of the spectrum, every
detail is considered, and solving the navigation problem involves solving a giant motion
planning problem for all degrees of freedom of the robot. This approach is used for
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short-term motions, such as whole-body manipulation[44], but can quickly become too
computationally expensive for locomotion problems. However, planning the details for
the whole body has been used to connect different configurations as part of a locomotion
plan[26, 34]. Other systems have used local planning on a step-by-step basis, allowing
the robot to adjust its gait locally in response to the sensed terrain, usually in a statically
stable manner[5, 42, 30, 91].

At the opposite end of the spectrum are planners which ignore all the details of the
legs, and instead treat the robot as if it was a wheeled robot and “steer” it through the
environment. Global navigation strategies for mobile robots can usually be obtained by
searching for a collision-free path in a 2D environment. Because of the low-dimensionality
of the search space, very efficient and complete (or resolution-complete) algorithms can be
employed[85]. These techniques have been applied to biped humanoid robots, resulting in
conservative global navigation strategies obtained by choosing an appropriate bounding
volume (e.g. a cylinder), and designing locomotion gaits for following navigation trajec-
tories computed by a 2D path planner[43, 76]. However, this always forces the robot to
circumvent obstacles rather than using the ability to traverse obstacles by stepping over
or onto them. For the QRIO robot, this approach has been augmented with additional
actions such as stair climbing and descending, allowing the robot to use some more of
its capabilites[80, 23]. Other applications of this approach use heuristics to generate a
2D body path for the environment, and then fill in the details along that path with lo-
cal planning for the legs[54]. Another approach planned ways to adjust HRP-2’s body
posture to fit into the available free areas along a path[35].

Other approaches build action models which fall somewhere between these two ex-
tremes, trying to simplify the planning problem while still retaining the useful abilities
of the robot. One action model uses straight sequences of footsteps to the edges of ob-
stacles (similar to a visibility graph), combined with turning in place and stepping-over
actions to cross through obstacle-filled environments[3]. Climbing robots have used rea-
soning about individual footholds combined with probabilistic motion planning to find
motion plans for wall-climbing[12, 11, 25]. Recently, several approaches have used foot-
steps as an action model for moving through an environment for both bipeds[26, 70] and
quadrupeds[52]. Finally, planning for multi-legged robots is a similar problem to that of
finger-gaiting in manipulation[14, 15, 24], where instead of manipulating an object, the
robot can be though of as manipulating the world underneath it. This thesis is based on
previous research in footstep planning by Kuffner and colleagues[45, 47].

2.4 Planning in Graphics

Other related techniques in computer animation that use footprint placement for motion
specification have been developed for bipeds[22, 88, 84], and quadrupeds[40, 87]. Large
datasets of captured human motion are now available, and techniques have been developed
to synthesize animations based on artist specified goals and splicing together segments
of motion capture data [53, 49]. However, the focus in these works is on providing a
realistic-looking motion, rather than ensuring that the path is executable by a physical
robot.
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3 Footstep Planning

3.1 Choosing an action set

To create an action set for legged robots that can use the full capabilities of the robot,
yet still plan quickly, we examine the structure of the legged locomotion problem.

Let S be the set of all possible states of the robot, including the robot’s joint positions,
velocities, and world position and velocity. We can classify them by the support config-
uration, the set of contact points between all parts of the robot and the environment,
which I will refer to in this document as a stance. Let L be the set of all stances the
robot can have in the environment. For any given stance `i ∈ L, there exists some surface
of associated robot states Xi that fit within the particular constraint. Any motion the
robot takes will move through a sequence of these surfaces. For a walking biped, any
possible path involves switching back and forth between various single and double sup-
port regions, the double support surface being the intersecting regions of adjacent single
support surfaces. This classification provides a natural way to break up the problem
into discrete chunks, in order to build our action set, A. By planning a path first as
a sequence of constrained surfaces through which the motion must pass, we can signifi-
cantly reduce the dimensionality of the search and simplify the checking of environment
constraints, without the need to sacrifice the robot’s capabilities. For the walking biped
example, every path will be made up of a sequence of double support phases, connected
by paths through a single support phase. This thesis explores this action representation
of planning for stances of the robot, studying the stability of individual stances, and their
connectivity in the environment.

This breakdown also provides a very natural level of abstraction for behaviors/controllers.
The behavior or controller can handle the unconstrained degrees of freedom of the robot
to maintain balance, while the planner plans in the space of changing support constraints.
In this document I will refer to the set of contact points between a foot (or other part of
the robot) and the environment as a foothold. Thus the current stance is made up of the
union of the current set of footholds. Finally, the motion the robot takes between one
stance and another will be called a footstep.

In this way, our action set A becomes the set of possible footsteps the robot can
make. Collision checking becomes a matter of evaluating footholds and stances at the
border between actions, as well as the motion of the connecting footsteps. The planning
process with this action model breaks the full motion planning problem into a planning
problem in the reduced the dimensionality of relevant stances, L, and then the problem
of generating footsteps, paths through those constraint surfaces, X.

To re-use existing control strategies with this action set, we can use one of many
previously developed locomotion controllers to solve the problem of connecting various
stances. For our walking biped example, we can use the stances from the planner as
input to a walking controller which then generates a dynamically stable motion taking
the robot from one foothold to the next.
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3.2 Connectivity of stances

One of our goals was to ensure the executability of generated plans. Adding a controller
will add extra constraints to the valid robot states, depending on the particular capa-
bilities of the controller or behavior. The use of particular controllers can also limit the
capabilities of what the system can do. For our walking biped example, a controller may
not be able to handle large step lengths, or stances involving the knees or hands, or air-
borne states. The planner’s problem is then to find a sequence of stances in L which take
the robot from the start to the goal, such that the stances and the surfaces connecting
those stances lie within the capabilities of the available controllers. The resulting path
through L will jump from one point in that space to another, not in a continuous path.
Thus, we need ways to determine the connectivity of the points in L with regard to the
system.

The dimensionality reductions possible are determined by the minimal information
needed to determine the connectivity of stances for a given robot and controller. For
example, some controllers (such as those for H7, HRP-2, and LittleDog) limit the body
velocity enough that the connectivity of adjacent stances is independent of walking speed.
Thus, for these systems, the planning state space can be reduced to just the space of
stances, L, significantly reducing the dimensionality of the space the planner must explore.

To ensure that our sequence of stances can be followed, we need to know two important
pieces of information based on the robot and controllers. First, we need to know which
stances are valid. This involves evaluating the terrain to determine if it is indeed a
place to which the robot and controller can step. Second, we need to know how the
potential trajectories of the robot affect the connectivity of the valid configurations. This
is determined by both the kinematic reach of the robot, but more importantly by the
limitations of the underlying controller which will be tasked with moving from one support
state to another. The connectivity problem can be phrased as the question: given two
support states and the environment, can the controller safely move from one to the other?

This second piece of information I will refer to as the action model of the robot. It
encodes the capabilities of the robot and its controller, allowing the robot to generate
plans which will be executable by the underlying system.

In this thesis we restrict contact with the environment to the robot’s feet, so planning
in the space of stances becomes the problem of choosing a sequence of footholds in the
environment. Our action model thus describes what stepping actions can be made from
the current state of the robot.

4 Implementation for a Biped Robot

Acting upon this idea of navigation planning based on footstep choice, we have con-
structed planners for various robots in different settings. These planners allow the robots
to autonomously navigate through complicated environments. This section describes
some early work involving the implementation of a basic footstep planner for the naviga-
tion of a biped robot.

The planner takes as input a map representing the terrain to plan over, an initial and
goal state, and an action model consisting of a discrete set of possible footsteps that can
be taken. This set represents a fixed sampling of the full space capabilities of the robot.
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Algorithm 1: PlanPath(xinit, xgoal, e,A)

//Initialize search (state, cost, expected, parent);
Q.Insert(sinit , 0, 0, NULL);1

while running time < tmax do2

xbest ← Q.ExtractMin();3

if GoalReached(xbest, xgoal) then4

return xbest;5

end
foreach a ∈ A do6

xnext ← T (xbest, a, e);7

cl ← LocationCost(e, xnext);8

cs ← StepCost(e, a);9

ce ← ExpectedCost(e, xnext);10

Q.Insert(xnext, xbest.cost+ cl + cs, ce, xbest);11

end

end

If a path is found, the planner returns the solution as an ordered list of the footsteps that
should be taken to reach the goal. The planner itself is implemented as an A* search
over the possible footsteps of the robot to find the optimal sequence. The algorithm for
this planning is given in Algorithm 1.

4.1 Representations

Biped Robot Representation: For evaluating footholds, we model the biped as its
footprint rectangle (but any other polygon would be acceptable) at each step. We repre-
sent the state of the robot by

(x, y, θ, s) ∈ <2 × [0, 2π)× {L,R},

where x and y are the coordinates of the center of the rectangle in a fixed world coordinate
system, θ is the angle between the y-axis of the world coordinate system and the forward
direction of the foot, and s denotes the support foot (left or right). Notice that there is no
joint information, and no velocities or body position included in this state representation.
In this case our state representation is merely the foothold the robot will stand on during
its footstep. As mentioned earlier, the path will jump between different points in this
space, so the start and goal do not have to be in the same connected component of the
(x, y, θ) space.

Environment: The terrain map M is represented by a grid of cells. Each cell c is
represented by

(x, y, h, i) ∈ <3 × {0, 1},

where (x, y) is its location in the grid, h is the height of that cell, and i is an information
value used to encode extra information about the validity of the terrain that may not
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4 actions 8 actions 13 actions 20 actions

Figure 2: Footstep action sets. The actions displayed are only those for the left foot
(relative to the right foot shown in black).

be apparent from its shape. Together, the cells create a height map representing the
shape of the terrain the planner must overcome. The information values provide extra
knowledge of the terrain, for places which appear to be safe to step on but should be
treated as obstacles. This representation is easily generated from sensor data or other
available representations of the terrain. It provides a simple way to represent many
different kinds of environments, with the restriction that it cannot model certain details,
such as overhangs or the areas underneath tables the way a full 3D representation can.

Action Model: The actions of the robot in this model are the footsteps which the
robot can make, represented by

(x, y, θ, c, hhigh , hlow , hobst) ∈ <2 × [0, 2π)×<4,

where x and y represent a relative displacement in the robot’s current coordinate frame,
θ represents the relative orientation change of the robot, and c represents the cost of
making the step. hhigh and hlow represent the allowable relative height change the action
can make from one step to the next, and hobst represents the maximum relative height
of an obstacle that this action can step over. The set of actions the planner uses are
sampled from the range of footstep location for which the robot’s controller is capable
of generating trajectories. The action set is constructed in such a way as ensure that
all states generated by applying the actions are reachable for the robot. The parameters
hhigh , hlow , and hobst are used to verify that connectivity in the presence of the terrain.
Four examples of footstep action sets that we used in our experiments are illustrated in
Figure 2. The actions are grouped into sets for the left and right feet, the two sets being
mirror images of each other.

4.2 State Evaluation

The planner evaluates all transitions from a state, generating three costs for each one.
First is the location cost L(x), which evaluates the actions’s destination state as a po-
tential foothold. This cost uses a variety of metrics to quickly compute how viable a
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location is for stepping onto. Second is a step cost S(xnext, a, xcurrent), which computes
the cost of reaching the state xnext by taking the action a ∈ A from the current state
xcurrent. This cost describes the connectivity of xnext and xcurrent. This cost includes the
action’s associated cost, a penalty for height changes, as well as an obstacle clearance
check of the terrain between the foot’s last position and the new foothold. Finally, the
third cost is a heuristic R(xcurrent, xgoal) which estimates the remaining cost to reach the
goal state. This remaining cost can be computed in several ways, for example using the
Euclidian distance to the goal, or the result of a traditional mobile robot planner. These
three costs are then used by the planner to determine the cost of each node in an A*
search. Note that the location cost is independent of the action or current state of the
biped, and thus can be precomputed for all locations if desired, rather than computed
for the needed states at run-time.

Location Metrics To evaluate a location’s cost, we would like to know exactly how
the foot would come to rest on the surface, which parts of the foot would be supported,
and be able to build a support polygon of the foot based on which parts of the foot are
touching the ground and evaluate how stable that support polygon is. Unfortunately,
this is very expensive to exactly compute. Instead, we use a set of metrics which can
be quickly computed and serve to approximate this ideal location cost. To be useful,
a metric should be quick to compute, invariant to the resolution of the heightmap, and
should eliminate or penalize an unwanted form of terrain while not eliminating or heavily
penalizing good terrain.

To compute the metrics, we first determine the cells in the heightmap which will
be underneath the foot for a particular step. This gives us a set of cells, C, to use
with each of the metrics defined below: Each of the metrics has both a weight and
a cutoff value associated with it. If any metric passes its cutoff value, the location is
discarded. Otherwise, the location’s cost is the weighted sum of these metrics. Below
are descriptions of the five metrics currently used for terrain evaluation. Each metric’s
scoring of an example terrain is shown to the right, with blue areas as the lowest cost,
up to red as the highest. The weighted sum of these metrics is shown in Figure 3.

The slope angle of the surface at the candidate loca-
tion. Perfectly horizontal surfaces are desired. The
slope angle is computed by fitting a plane hfit(x, y) to
the cells in the location.

The “roughness” of the location. A measure of the
deviation of the surface from the fitted plane. Com-
puted by averaging the difference in height of each
cell to the plane’s height at the that cell.

1

N

∑
(x,y,h,i)∈C

|h− hfit(x, y)| (1)

12



The “stability” of the location. This metric evaluates
the curvature of the location. While perfectly flat is
desired, curving down at the edges is penalized more
than curving up at the edges. This metric is computed
using a weighted sum of the heights (convolving with
a dome-shaped filter).

1

N

∑
(x,y,h,i)∈C

([h− hfit(x, y)]g(xf , yf )) (2)

xf and yf are x and y in the foot’s coordinate sys-
tem. g(x, y) is the dome-shaped filter. Restrictions
on g(x, y) are that it should be higher in the center
than on the edges, and it should sum to zero over the
area of the foot. The filter we used was:

g(x, y) = cos
(

2πx

w

)
+ cos

(
2πy

l

)
(3)

w and l are the length and width of the foot.

The largest bump of the location. Bumps above the
fitted plane are much worse for a location than holes
in the plane. This metric finds the largest deviation
above the plane.

max{h− hfit(x, y)} , (x, y, h, i) ∈ C (4)

The “safety” of the location. This refers to the area
around the location. Its purpose is to take into
account the possible inaccuracy of foot positioning.
This can be computed using the roughness and largest
bump metrics, using the cells around the foot loca-
tion.

Step Cost The step cost computes the cost to the robot of making a particular footstep.
In addition, it will determine if a particular footstep can be executed in the presence of
obstacles (by returning infinite cost if it is unexecutable). The cost of taking a step is
given by:

S(xnext, a, xcurrent) = ca + wh|H(xnext, xcurrent)| (5)

ca is the cost of the action a. H(xnext, xcurrent) is the height change between the state
xnext and the current state of the robot xcurrent. wh is the penalty for height changes,
chosen manually based on the user’s desire to try to avoid paths that go up or down.
If the height change is outside the action’s allowable range, xnext is not reachable from
xcurrent, and the step is discarded. An obstacle collision check is also done to determine if
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Figure 3: Left: an example terrain. Right: the weighted sum of the foothold metrics.
Blue is for the lowest cost areas, up to red for the unsteppable areas.

Figure 4: A quadtree built to encode the maximum height of the terrain in each region
allows for fast computation of swing leg feasibility.

the foot can safely clear all the cells along the path from its previous location to its new
location. Because this path may include many cells, quadtrees that encode the maximum
height are used to quickly check for collisions (see Figure 4). If collisions are found, once
again xnext is not reachable from xcurrent, and the step is discarded.

Estimated Cost Heuristic A mobile robot planner that plans outward from the goal
state to the initial state provides a useful estimate of remaining cost, with the results
stored in a grid which discretizes the workspace. During the footstep planning, the
remaining cost can then be found in constant time. This heuristic takes more information
about the environment into account than a Euclidean distance metric, but has several
disadvantages besides the extra preprocessing time. Mobile robot planners look for a
continuous path through the configuration space or workspace that connects the initial
and goal states. Because the biped has the ability to step over obstacles, it does not
require a continuous path through the workspace. The result of this difference is that
the mobile robot planner can severely misjudge the cost of a location. In an environment
with a long, low, thin obstacle, the mobile robot planner will provide lower cost to areas
which send the biped the long way around instead of stepping over the obstacle, resulting
in an overestimate. Also, it can underestimate when finding a path that one foot can fit
though, but where there are not actually alternating footholds the robot can step on. In
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Figure 5: Examples of heuristics. Left: Euclidean heuristic. Notice that for the first
half of the path, the heuristic does not provide useful information. Right: Heuristic from
traditional mobile robot planner.

Figure 6: Example plans generated by the planner.

general, the time complexity of A* search is an exponential function of the error in the
heuristic used [75]. So while in many environments, this heuristic performs much better
than Euclidean distance, the worst case can be an arbitrarily large overestimate. Some
examples of heuristics are shown in Figure 5. For the Euclidean heuristic, the first half
of the path has approximately the same value, while the heuristic from the mobile robot
planner pushes the planner in the correct direction from the start. In this example, the
more informed heuristic planned the same path in one-fourth the time.

Using these representations, metrics, and heuristics, we now have the necessary com-
ponents to search through the space of footholds, and plan paths through many different
types of terrains. Examples of the paths generated for some environments are shown in
Figure 6.

4.3 Online Execution

There are several additional components necessary to control a legged robot for real-
time operation in a complicated environment. The complete system we use is shown
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Figure 7: Overall system used to control a robot

in Figure 7. First, a sensing system must provide adequate information to the planner
to initially find a path. Second, we need to translate the footstep plan into commands
for the low-level locomotion controller which will generate the full motion for the robot.
For example, when HRP-2 is walking up or down stairs, or stepping over obstacles on
the floor, the walking controller must be told both the footstep locations and how to
modify the swing leg trajectory to avoid collisions with the environment. For the ASIMO
humanoid, the plan must be translated into the particular navigation commands for the
robot that will cause the feet to reach the desired steps. Third, we must be able to adjust
for new sensor data and changes in the environment which necessitate a change in the
plan.

For sensing systems, we have used many different sensors and approaches to gather
the needed data. Some sensor systems which have been used for this footstep planning
include stereo vision[17], color segmentation[62], real-time motion capture data[86], and
edge-based model tracking[61].

For determining the swing leg trajectory, our approach has been to move the foot
directly from one support to the next, adjusting the height to avoid the terrain. By
moving the foot along a straight line in the x− y plane, the cells in the height map can
be re-mapped to a representation of (d, h), where d is the distance along that line, and h
is the height of the terrain in that cell. This representation is a one-dimensional height
map from which we construct a convex hull of the terrain. This convex hull (combined
with a safety margin) is then used to build a spline over the terrain for the foot to follow.

While executing the plan, the robot can run into many additional difficulties. Execu-
tion error can result in the robot deviating from the plan, sensor error can result in the
initial plan being unexecutable, or the environment can change, rendering parts of the
plan invalid. We deal with these errors in several ways. The first is to have the low-level
execution constantly be eliminating error in the plan following to return to the correct
sequence of stances. As long as the connectivity of the robot’s state with the rest of the
path is not broken, the robot can return to correct motion, even in the presence of execu-
tion errors. When the error is large enough that connectivity is not maintained, or when
new knowledge of the environment invalidates part of the existing path, the plan must be
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adjusted to remain feasible and still reach the goal. In many of our implementations, this
adjustment is accomplished by constantly replanning while the robot walks, generating a
new plan at every step. We limit the planning time to fit within one or two step cycles,
which introduces a planning horizon. As a result, in difficult terrains we may not have a
complete plan by the end of the cycle. But because we are replanning at every step, we
can begin executing a partial path, and be assured of a new path by the end of the next
step.

If the planner cannot plan all the way to the goal, it can no longer guarantee com-
pleteness and the quality of the partial path becomes crucial. The partial path should
take the robot in the “right” direction, in order to find a complete path in the future.
In addition, with a limited sensing horizon, planning all the way to the goal may not be
possible or desirable. Instead, the robot must rely on other estimates for the areas that
the planner has not yet explored, or where sensor data is lacking. This limited horizon
places extra importance on the heuristic used, so that a partial path will still be taking
the robot along a route from which it will be able to find a continuing path to the goal.
The mobile robot planner heuristic discussed so far was tuned by hand to generate rea-
sonable values, but recent research by Ratliff et al.[79] has allowed the heuristic to be
trained from example footstep paths, resulting in speedups of over 100 times the basic
Euclidean heuristic, and 20 times the hand-tuned heuristic for some sample terrains.

With all of these components assembled, we have been able to plan through obstacle-
filled environments, with moving obstacles, a moving goal, and terrains that require the
robot to step onto and over obstacles. An example trial with a moving goal and moving
obstacles are shown in Figure 8 with the plans overlaid on the world.

5 Dynamics

In the previous algorithm, the state of the robot used in the planner only contained
the support configuration. However, in many cases, the connectivity of two points in
different support configurations is dependent on more of the full state of the robot. This
section describes extensions made to the planning process to account for some vehicle
and environment dynamics.

For the ASIMO robot, the effects of the commands that we send the robot varies with
the body velocity of the robot. Figure 9 shows the difference between executing actions
from a stand-still, and executing the same actions while already moving forward. In this
case, the planner’s representation of state must include some notion of body velocity, and
the action model must describe how the connectivity of support configurations changes
with the different possible velocities.

For ASIMO, there is a layer of control that we have cannot access. As a result, we
do not have access to the full state information of the robot. However, we do know the
history of commands we have sent. By measuring the robot’s response to sequences of
commands, we were able to build a forward model of the output motion of the robot. We
found that augmenting our state representation with the previous two commands given
to the robot was sufficient to describe the effect of the robot’s velocity on the subsequent
command. Thus, our state representation becomes

(x, y, θ, s, a1, a2) ∈ <2 × [0, 2π)× {L,R} × Z2
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Figure 8: HRP-2 replanning through an environment with moving obstacles and a moving
goal. The generated footstep path is overlaid onto the world.
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Figure 9: Body velocity dependence of the effects of the actions. The black blocks
represent the location of the right foot, and the rectangles are the resulting locations
of the left foot from each commanded action. The commands given to the robot are
not shown. Left: Effects of commanded actions from standing still. Right: Effects of
commanded actions from full speed forward walking.

, where a1 and a2 are the previous two commands sent to the robot.
The action model was created by having ASIMO perform sequences of commands,

and recording the resulting motion. The motion was captured using the Vicon1 optical
system. Twelve cameras were used, and each one captures data with a frequency of 120
Hz and a resolution of 1000 x 1000. Six markers were placed on the robot’s feet. From the
positions of these markers, we determined the positions and orientations of both the left
and right feet. We then computed the relative displacements of the feet from this data.
We chose a set of seven actions for each foot, and with the displacements dependent on the
previous two actions, we captured 343 sequences of commands to cover all possibilities.
Parsing this data gave us a mapping from a state and action to the output state for
the each of the seven selected actions, which was then used as a lookup table during
planning. This modeling would not have been necessary if we had access additional to
additional state information directly from the robot, but it does demonstrate that we
can in some cases build compact forward models for complicated systems even when the
underlying controller is not well-understood. Using this mapping meant that the robot
dynamics were all accounted for during the initial planning, and that paths through a
static environment could be executed with no replanning necessary.

A relatively straightforward extension allows us to plan for known environment dy-
namics. While the state representations discussed did not include time, it is a relatively
easy task to augment the state representation with time, and modify the action model to
include the duration of the various actions. Therefore, when changes in the environment
can be predicted, the state evaluation for a particular state can be performed against

1Vicon is a trademark of Vicon Motion Systems, Ltd.

19



Figure 10: ASIMO navigating in an environment with static obstacles.
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Figure 11: The LittleDog robot executing a plan over rough terrain.

the predicted future state of the environment, allowing the robot to navigate through
dynamic environments without the need for replanning. This was also implemented for
the ASIMO humanoid robot, in environments with predictably moving obstacles[18].

6 Quadruped planning

The algorithms described this far have all been using biped robot models and applied to
humanoid robots. However, legged robots can come in many forms, with more than just
two legs. This section describes some of our work on planning for a quadruped robot.

One significant change between a biped and a robot with 4 or more legs is that the
extra legs mean that the robot no longer needs to spend time supported by a single
foothold. For a biped, it is imperative to ensure that each foothold is secure, so that the
robot can support itself solely from that particular location. However, with a quadruped
robot, each foot is less important than the combination of feet which make up the total
contact configuration with the environment. In addition, quadrupeds and hexapeds have
much greater inherent stability due to their larger bases of support. This greater stability
also changes the importance of individual footholds, as a small slip or stub for a quadruped
is not the emergency it is for current biped robots. Finally, when moving to more legs,
the feet are often much simpler, often nearly point feet, which changes the criteria for
what constitutes a “good” location to step to.

However, having stated that, it is still possible to use the previous biped planner
with few modifications and successfully plan for a quadruped robot. While it is the
combination of footholds that is important for each step, a set of excellent of individually
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excellent footholds will provide excellent support, with the additional constraint of a
sufficient support polygon between the footholds. This allows us to still process location
costs individually over the terrain and be able to traverse a wide range of environments.

In addition to treating the footholds in the same manner as the biped planner, the
action model can still largely treat the robot in the same manner as a biped. In our
current implementation, the planner uses the front legs similarly to how it planned for a
biped, and then has the rear legs follow along through the terrain. While this is not as
useful a model if the robot needs to move backwards or perform lots of turning maneuvers,
it provides a simple action representation for walking across interesting terrains.

We have implemented a planner for the quadruped LittleDog (shown in Figure 11).
This planner is based on the previously described biped algorithm. The state has been
augmented to include the four legs of the robot, with each action changing the configura-
tion of one of them. In addition, the location cost metrics changed to reflect the different
needs of point feet. While a bump under the foot was a large problem for a biped, causing
the foot to not lie flat, it is not such an important issue for point feet. Instead, the metric
is reversed, penalizing holes and dropoffs from which the foot can slip. Also, a walking
biped often can generate large forces and torques through friction, which prevents the feet
from slipping. With many point feet the force is more distributed, so in more challenging
environments the footholds need to provide a larger degree of shape closure to hold the
feet in place during stepping motions.

Furthermore, for the kinematics of this robot and the terrains involved, the legs them-
selves can easily collide with the terrain in many cases. We are not currently considering
support configurations with more than just the feet in contact, so these become invalid
step locations. We add this to the location cost by computing the space the leg will need
for the given location, leg, and direction, and make sure that area is clear of terrain fea-
tures. All of these terrain location costs are precomputed over a discretization of position
and orientation and used as a lookup table at runtime.

As a result of these modifications and extensions to the biped planning algorithm, The
LittleDog robot has successfully traversed a variety of different terrain setups. Figure 12
shows a quadruped plan being generated over one rough terrain example, along with the
results of the pre-computed location costs.

7 Adaptive action set

A large drawback to the action models described this far is the fact that the actions the
robot can take are limited to a very small subset of the robot’s potential. By using a
fixed set of actions, the planner can only solve problems for which that particular action
set “fits.” We can choose that action set so that it can still traverse a wide variety of
terrains, but ultimately, certain terrains will be untraversable simply because the needed
action was not a part of our model. To illustrate this problem imagine sets of stairs,
where the particular desired step length for climbing them might not be in the action set.
An example is would be stepping stones across a river, where a very specific sequence of
actions is required to negotiate the terrain. To remove this action set limitation, we need
the action model to be capable of making any action that the robot and controller are
capable of performing. This section describes some of our previous work extending our
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Figure 12: An example terrain with pre-computed location costs shown and the resulting
footstep plan for a quadruped walking from the left to the right.

action model to provide more complete coverage of the true action space of the robot.
Because the robot and controller are generally going to have a continuous space of

actions available to them, adding all possible actions or even a large fixed number of
samples to one giant action set to try at run time is not practical, due to the increase
in branching factor. To maintain a constant branching factor b, we would like to only
use the best b actions available for a particular state taking into account obstacles in the
environment. Unfortunately, we cannot know what the best actions are without solving
the problem, and choosing the best b actions according to our heuristic will likely result
in a clump of actions, precluding any significant search over the space.

Other than our heuristic value, we also want to maximize the reachability of the
next step. If we want to be sure that we are not cutting off some part of the space
from our search unnecessarily, we must make sure that the expansion in the search has
the potential to reach as many states as possible. Unfortunately, finding an action set
maximizing the reachability of the next step in the presence of arbitrary obstacles is itself
a computationally difficult problem. Our current approach to this problem is to use a
reference set of actions, which provide good reachability, and allow those actions to adjust
to the particular terrain via a local search.

The new action model in our implementation has largely the same representation as
our previous action models, with the exception of an explicit definition of the reachability
of the robot and controller. Because the action may now adjust locally, the actions may
leave the realm of executability which was previously built into the action model via the
fixed sampling. The explicit definition of reachability allows the local search to move the
action up to the edge of feasibility, but not beyond. During planning, when an action
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Figure 13: Adapting actions to the terrain with stairs.Left: Several actions from a fixed
set of action samples (the open rectangles) provide invalid steps (marked red), with no
valid action from the set climbing the stair. Right: The reference actions are adapted to
find the closest fit in the terrain. With the result that the robot now has actions which
can directly step up onto the stair.
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Figure 14: HRP-2 climbing stairs using adaptive actions

is applied, if it results in a valid footstep, the algorithm is unchanged. However, if the
footstep is invalid for some reason, the algorithm begins successively testing the nearest
locations in the environment up to a certain radius for a valid step. If one is found, it is
inserted into the queue and the planner moves on to the next action. Figure 13 shows the
adjustment performed as a result of the local search to one action for a particular terrain.
This method provides a constant branching factor, while still allowing the planner to find
paths where very specific steps are required.

For static environments, such as the quadruped example, the location costs are all
pre-computed, so this local search can be performed at low computational cost. In fact,
the ability to adapt the actions to the terrain became critical to allowing the quadruped
to traverse some of the more difficult terrains, where valid footholds become sparse.

This same approach is usable in real-time planning, when the location costs have not
been pre-computed. However, in this case, the system is limited by how many locations
it can process in the given time limit, which restricts the environment complexity and
length of the path with can be planned for. This system has been used on the humanoid
HRP-2 to traverse environments in which the desired actions were not a part of the
reference set. The robot, shown in Figure 14, had a desired step length of 27cm, while
the stairs themselves were 30cm long. The planner adjusted the step location through its
local search, allowing the robot to smoothly climb the stairs without explicitly needing
the correct action for that staircase known in advance.

8 An Intelligent Joystick

A slight departure from the planners described thus far comes from incorporating human
control to pilot the robot, instead of using full autonomy. Joystick control has previously
been used in positioning and navigation for current humanoid robots[46], although this
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(a) Conventional joystick (b) Intelligent joystick

Figure 15: Comparison of Conventional vs. Intelligent Joystick output given a command
to walk forward in the presence of obstacles.

work does not account for obstacles and ammounts to “steering” the robot. More direct
control of individual legs has been implemented as far back as the GE truck[63], which
used force feedback for the operator to indivually control the legs. The Adaptive Sus-
pension Vehicle used several different operating modes[90], one allowing the operator to
directly control foot placement, a low-speed mode which progressed by “feeling” the ter-
rain, a more autonomous mode where the joysticks control body position and orientation
and foot locations are determined more autonomously, and a higher speed walk which
did not account for obstacles. The framework described in this proposal can also be used
for human control by replacing the planning portion with a value function generated
provided by the user. The location and step evaluation can remain the same, with the
choice of the “best” action resulting from how well each possible action matches the user’s
input. This section describes some of our previous work developing a control scheme to
provide user control over the path the robot should take. The result of this system is an
“intelligent” joystick control, which can safely avoid obstacles and choose footholds while
obeying the user’s navigational choices.

The idea of an intelligent joystick can be compared to riding a horse: the rider pro-
vides high-level control inputs about which direction to travel, but the horse handles all of
the details of locomotion, including the complexities of selecting suitable foot placements
and the overstepping of obstacles along the way. In the case of a legged robot, the joy-
stick controls the overall movement direction of the robot, but the system autonomously
selects foot placements and trajectories which best conform to the user’s command given
the constraints of balance and terrain characteristics. Figure 15 demonstrates how the
intelligent joystick modifies the foot locations during a command to walk forward. A
naive joystick controller generates the same walking pattern, regardless of obstacles in
the path. An intelligent joystick will place the feet at the most suitable locations it can
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Figure 16: Foot placement selection for a joystick command of forward while turning to
the right

Figure 17: Robot controlled via intelligent joystick. The given command is “forward and
turning to the right”. The intelligent joystick executes the command while splaying its
feet outward to avoid the small obstacle.

find while still making forward progress as commanded.
For controlling the humanoid robot in our experiments, we use a 3-axis joystick. This

provides a simple mechanism to command forward motion, sideways motion, and rotation
simultaneously through one interface.

Given a robot state xcurrent, an environment, e, and a joystick command (ẋ, ẏ, θ̇),
the system’s task is to determine the best walking action to follow the user’s command
that will still maintain balance when the environment is taken into account. In other
words, determine the next stance state xnext, which satisfies balance requirements with
respect to the environment, e, and brings the robot’s velocity as close to the commanded
(ẋ, ẏ, θ̇) as possible. To accomplish this, the system chooses a target location where it
would like the next foot to land based on the commanded velocity and step period, and
then evaluates that location and the locations nearby in the same manner as the adaptive
actions described earlier to determine the closest location to the desired target location
that is most suitable for stepping onto. Figure 16 illustrates the selection of a target foot
placement from a joystick command. This location is then sent to the walking control
subsystem of the robot, for walking trajectory generation. The overall control algorithm
is described in Algorithm 2.
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Algorithm 2: Joystick Control algorithm

previous ← initial value;
step ← initial value;
while still walking do

// Gather information

env ← GetEnvironment();
robot ← GetRobotLocation();
joy cmd ← GetJoystickCommand();
// Compute start, target locations

start ← ComputeStanceLocation(robot, step);
target ← ComputeTargetLocation(start, joy cmd);
// Get step from Footstep Server

step ← GetNextStep(env, start, previous, target);
// Update robot command

if step = NULL then
StopWalking();

else
SendRobotCmd(step);
WaitForNextStep();
previous ← start;

end

end

This form of control has been implemented for the humanoid HRP-2, allowing for easy
human control and steering of the robot through environments with obstacles, without
requiring the human to specify low-level control of foot placement or leg trajectories. A
trial involving colored-paper obstacles on the floor is shown in Figure 17.

9 Proposed Work

For this thesis I propose to develop a general framework for planning for a wide variety
of legged robots through rough terrain. This framework is based on reasoning about the
successive support configurations in a robot’s motion, determining the suitability and
connectivity of various stances in the environment.

9.1 Action model exploration

I propose to explore strategies for creating, representing, and efficiently planning with
footstep-based action models. To date, we have developed action models to to efficiently
navigate four different legged robots. These action models allow the robots to use their
legged capabilities to traverse obstacle-filled environments, step onto and over obstacles,
climb and descend stairs, and handle some vehicle and environment dynamics. We have
extended these action models to plan for a quadruped robot through a series of rough
terrain setups. Furthermore, we have designed action sets which can adapt to the terrain
during the planning process.
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Adapting the available actions to the terrain is an important part of using more of the
robot’s total action capabilities while keeping the branching factor of the search small.
However, the current implementation involves a blind local search of the terrain near the
reference action’s foothold. This is not very expensive when foothold costs have been
precomputed, but when those costs are computed online, they become a computational
bottleneck in rough terrain. To speed this process, I propose to develop “smarter” met-
rics, which can provide not only information about the foothold cost, but additional
information about how the footstep could be adjusted to improved that cost. This ad-
ditional information can be used to improve the local search to find valid footholds with
fewer terrain evaluations.

We will experimentally evaluate the benefits of this approach and all the previous
action models on the HRP-2 humanoid in environments with long paths and dynamic
obstacles.

9.2 Intelligent joystick through rough terrain

I propose to explore methods of allowing humans to provide high-level control of legged
robot navigation, while hiding the complexities of balance, joint movement and foot
placement from the user. We have developed a joystick-based control which has allowed
HRP-2 to be manually driven in the presence of obstacles, intelligently placing its feet and
maintaining balance while following the user’s commands. The current implementation
of the intelligent joystick has only been tested on flat terrain. Together with the new
adaptive actions described above, I propose to extend the intelligent joystick work to
traverse rough terrain with a low response time, potentially adjusting several times during
each step to both avoid dynamic obstacles and respond quickly to user input.

This control will be evaluated on the HRP-2 humanoid and the Toyota iFoot walking
chair.

9.3 Navigation planning for running robots

I propose to extend the models currently used to allow for more complicated vehicle
dynamics. While the planning for Honda’s ASIMO had to account for body velocities,
the final motions were not highly dynamic. We would like to extend this planner to
handle highly dynamic actions, such as running. To handle these actions, we will use
two approaches. The first approach, similar to the Bow-leg hopper and ASIMO planner,
is to plan for a sampling of the control space of the robot, predicting the next foothold
from the current state and the set of chosen control actions. The second approach is to
encode how much the body velocity can be modified by control actions during a step,
and choose desired footholds in the computed reachable region. From the footholds,
we then computed the desired control parameters for following the desired path. These
approaches will be compared on a robot running in simulation.

10 Contributions

The contributions of this thesis are a framework for approaching legged locomotion nav-
igation, a series of planners for the navigation of legged robots through complicated
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environments. Another contribution is the exploration of various methods of action repre-
sentation to reduce the planning dimensionality for various legged robots and controllers,
and strategies for evaluating foot placement and compactly representing the connectiv-
ity of those foot placements. These contributions are immediately applicable to existing
humanoids, and other legged robots. Additionally, this thesis will explore a high-level
joystick interface to controlling legged robots in real-time. This interface can allow for
easy manual control of legged robots in the presence of obstacles, as well as an interface
for recently developed “walking chairs.”

11 Proposed Schedule

Task Date
Planning for biped navigation in 2D and 3D done

Planning using additional velocity dependencies done
Online replanning for biped done

Planning for quadruped navigation in 2D and 3D done
Adaptive local search for foot placement Winter 2006
Human-controlled adaptive search in 3D Spring 2007

Planning for running biped Spring 2007
Defend and Write thesis Summer 2007
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