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Abstract - Balance maintenance and upright posture
recovery under unexpected environmental forces are key
requirements for safe and successful co-existence of humanoid
robots in normal human environments. In this paper we
present a two-phase control strategy for robust balance
maintenance under a force disturbance. The first phase, called
the reflex phase, is designed to withstand the immediate effect
of the force. The second phase is the recovery phase where the
system is steered back to a statically stable “home” posture.
The reflex control law employs angular momentum and is
characterized by its counter-intuitive quality of “yielding” to
the disturbance. The recovery control employs a general
scheme of seeking to maximize the potential energy and is
robust to local ground surface feature. Biomechanics literature
indicates a similar strategy in play during human balance
maintenance.

Index Terms — Biped robot, disturbance rejection, balance,
posture recovery, potential energy.

1. MOTIVATION

Future humanoid robots are expected to freely reside
within common human environments and to be physically
more interactive with their surroundings. A key factor for
their successful co-existence with humans lies in their
capacity to withstand unexpected external forces without the
loss of balance. A failed postural recovery may result in a
fall which can badly damage the machine itself and/or injure
people in the vicinity. We wish to develop a control strategy
such that biped robots can appropriately respond to
unknown force disturbances from the surroundings.

This paper focuses on the specific problem of balance
maintenance during upright stance which is to be
distinguished from balance maintenance during gait. We
take our cue from biomechanics research [10] which points
out the very different nature of the two apparently related
problems and how human beings employ specific control
strategies to deal with them.

We recognize two main phases during a balance
maintenance scenario. The first phase is the reflex phase in
which the body generates a rapid movement to quickly
absorb a disturbance force. As the disturbance force
subsides, the body attempts to recover its original posture.
This is called the recovery phase.

In accordance with these two phases of the balance
maintenance scenario, we employ a two-phase control
strategy. The reflex controller rapidly generates an increase
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in angular momentum to correctly compensate for the
destabilizing effect of the disturbance. In doing so it accepts
a posture deviation. The objective of the recovery controller
is to compensate for this postural deviation. It is assumed
that the final destination of the robot is a statically stable
posture.

Biomechanical studies indicate that human beings adopt
a similar strategy in response to an unexpected perturbation
[11]. As shown in Fig. 1, the immediate effect of a loss of
balance in the forward direction is an accelerated rotation of
all the available limbs towards the front (clockwise). This
has the effect of reversing the direction of the ground
friction force from the forward (Fig. la) to the backward
direction (Fig 1b). This backward friction force causes the
center of mass (CoM), denoted by G, to travel backwards
and the center of pressure (CoP), denoted by P, to return
securely under the foot support, which is precisely what is
intended. Once comfortable, the forward rotation stops and
the body returns to a statically stable upright posture (Fig.
1c).
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Fig. 1. A typical strategy employed by human beings in response to an
unbalanced posture caused by a disturbance [11].

In the above example, Fig. 1b and Fig. lc represent the
reflex and the recovery phases, respectively.

Our dynamic analysis explains the interesting but
counter-intuitive forward acceleration of the body during
the reflex phase (Section 4). This movement is quantified by
the rate-of-change of the angular momentum. In the



recovery phase we seek to guide the system to its maximum
potential energy (PE), a strategy that is independent of the
local ground slope (Section 5).

Sugihara & Nakamura proposed a similar partitioned
strategy for disturbance absorption [18]. We will provide
the justification for this partitioning. In addition, we will
present fundamental physical measures for the control of
each phase.

2. ROBOT MODEL

We created a planar upright robot model as the basis of
our analysis and simulation. It is a single-leg plus HAT
(head-arms-trunk) model in the sagittal plane, somewhat
standard in the postural balance literature. The model
contains four limbs: the foot, shank, thigh, and HAT. These
rigid body limbs are inter-connected through three actuated
joints: the ankle, knee, and hip. The robot model is 175 cm
tall, with anthropometric link geometry and mass.

The foot is free to leave the ground; however, we
assume that friction is sufficient to prevent slip. The robot
has 4 kinematic foot/ground contact states as shown in Fig.
2. In the Flatfoot phase, the foot is flat against the ground.
In the Toe phase and Heel phase the foot pivots around the
toe or the heel respectively. In the Airborne phase, the foot
completely lifts off of the ground. The robot has three
degrees of freedom (DOF) in the Flatfoot phase, four DOF
in each of both the Toe and Heel phases and six DOF in the
Airborne phase. We developed a state-transition machine to
detect and trigger a switch to a different phase. For this
purpose we tracked a number of kinematic and kinetic
parameters such as the foot position, foot angle, ground
reaction-force (GRF), and the CoP.

The standard formulation for the equation of motion is,

T =M(q)4+C(g:9) +G(q). M

For n degrees of freedom: 7 is the nx1 vector of generalized
torques, M is the nxn inertia matrix, C is the nx1 vector of
Coriolis and centrifugal terms, G is the nx1 vector of gravity
terms, and ¢ is the nx1 vector of configuration variables.
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Fig. 2. A planar upright humanoid model for balance studies. The model
has 4 foot/ground contact states: Flatfoot, Toe, Heel and Airborne.

Most of our simulation revolves around the Flatfoot
model which is the most secured. The motion equation is

fully actuated for the Flatfoot phase with 7= (z, 7, ;)" and ¢
=(q. qx qn)". The Toe and Heel phases have one degree of
under-actuation, and the Airborne phase has 3 degrees of
under-actuation.

3. CONTROLLABILITY OF UPRIGHT BALANCE

Robotics literature uses a variety of terminologies to
imply the ability of a robot to survive a perturbation to its
planned states. Examples include: balance maintenance,
postural stability, dynamic stability, gait stability, tip-over
stability, and tumble stability. Unlike static stability, no
precise and universal definition of dynamic stability exists
[1, 3].

The disparate nature of the biped gait and posture
control and some existing confusion prompt us to clearly
indicate the scope of the current study. From the outset, we
wish to point out that home posture controllability, and not
what is loosely termed as stability, is our focus. Below we
present a conceptual description of our position.

The phenomena of balance and fall in legged entities
arise fundamentally due to the wunder-actuation and
unilateral force constraint at the foot/ground interface [2, 3].
The state of balance of such a system is captured by ground-
based points such as the CoP, which is also known as the
zero-moment point (ZMP) [2, 3, 9, 12, 13], and the FRI
point [3].

The CoP must remain within the convex hull of the
ground support area. As long as it is within the interior of
the foot, the system has greater flexibility to withstand
perturbation since the CoP can move in any direction along
the ground. Once the CoP reaches the boundary, it looses a
degree of freedom in its motion and the system becomes
under-actuated. This is depicted in Fig. 3, where the
possible movement directions of the CoP are indicated in
both the interior and at the boundary of the foot.

For a robot with a flat foot resting on a level surface, a
CoP within the interior of the foot implies that the foot is
stationary and flat against the ground. A CoP on the
boundary indicates that the foot is either pivoting about its
edge or on the verge of pivoting. For our robot model, a
CoP within the interior of the foot is represented by the
Flatfoot phase, while a CoP on the boundary is represented
by the Toe or Heel phase respectively.
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Fig. 3. Robot controllability is related to the CoP location in the foot
support area. While located within the support area, the CoP can move in
all directions, providing full controllability. At the perimeter, the CoP can

move in only certain direction, which results in the loss of a degree of

controllability.



Robotics literature often equates location of the
CoP/ZMP in the interior of the foot with the stability of the
robot [19-22].  This is not an accurate description of the
physical phenomenon, mainly because there is no agreed
upon definition of stability. For example, a robot can
maintain a flat foot and still tumble to the ground with its
trunk. On the other hand, the foot can start to turn on its toe
and still manage to bring itself back without falling. The
key is not stability but the robot’s controllability at the
current state.

The term controllability is usually associated with linear
systems where it refers to the ability of a controller to reach
a fixed final state from any given initial state [23]. An
equivalent description may be provided for our non-linear
system where the home posture is the final state and the set
of states from which the home posture is reachable is the
controllable space. Note however that the concepts of
controllability and reachability are completely equivalent
for linear systems but not for non-linear systems [23]. Our
description is equivalent to what has been recently
formulated in terms of viability theory [24].

Our objective in this paper is to maintain the
controllability of the robot. We will do so by regulating the
CoP to keep it in the interior of the foot, away from the
edge, and thus keep the system fully actuated.

4. REFLEX PHASE

A Disturbance Absorption

Disturbance absorption implies the ability of a robot to
withstand a disturbance without losing controllability.
Using the stated idea of the CoP regulation, we will be able
to identify the underlying physics of disturbance absorption.
We will also show that the disturbance absorption ability of
a biped is enhanced by divorcing it from posture recovery.

Let us explore the equation for the CoP. The CoP can
be computed from the external and inertial forces acting on
the system. For a planar ground surface, the position P of
the CoP with respect to a general point C on the ground:

”X(HG * e Xm(aG _g)_rCF XF)

= . (2)
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where rcp is the position vector from C to CoP, n is the

ground normal, g is the centroidal angular momentum, rce

Fep

is the vector from C to the CoM, m is the total mass of the
robot, ag is the CoM acceleration, F is the net “non-ground”
external forces, rcr is the vector from C to the point of
application of F, and R is the GRF.

If we apply this equation to our planar robot standing
on a horizontal surface and under a horizontal disturbance
force F, we obtain the following equation:

xP:%xG+%+)}FT% (3)

d=Ly+mg.

where xp is the x-coordinate of the CoP, x; is the x-
coordinate of the CoM, g . is the time-derivative of the

angular momentum about point C, and [ is the y-

component of the time-derivative of linear momentum. Note
that d is a positive quantity. When the robot starts out at the
standing position, it is at a singularity for motion in the y
direction and so the change in the y direction is relatively
small. It is very difficult for the CoM to fall faster than
gravity which is required to make d negative.

Let us examine (3). For static conditions, the CoP starts
out coinciding horizontally with the CoM. A positive F
tends to move the CoP in the forward or positive direction,
see Fig. 4. The larger the force, the closer the CoP gets to
the front edge of the foot. This can be countered by a
negative Hc which occurs when the robot “falls forward” in

the clockwise direction. The more the robot can increase its
rate of angular momentum, the larger a force it can absorb.
Alternatively, if the robot “resists” the force by holding
rigid or accelerating backwards, it will push the CoP further
ahead and closer to the edge. A human exhibits such
behaviour. Given a push in the back, the human accelerates
the torso and flails the arms to increase the rate of angular
momentum.

Any attempt at posture recovery during the disturbance
will oppose the increase in forward angular momentum. It
amounts to resisting the force and would push the CoP
closer to the edge. This is why the two phases, disturbance
absorption and posture recovery, need to be separated.

One problem is that the robot cannot rotate in an
accelerated fashion for a long time. As the robot rotates, the
CoM moves forward, making it a more and more difficult
problem to keep the CoP within the foot. We would thus
like to implement the disturbance absorption in such a way
as to keep the horizontal position of the CoM constant. We
can rewrite (3) by expressing the angular momentum about
the CoM rather than C,

H.-y.L F,
xP :xG+ G dyG X +dedtst (4)
d=Ly+mg.

Fig. 4. The upright robot subjected to a horizontal force disturbance, Fy;.

The middle term of this equation represents the “falling
forward” term that is used to absorb the disturbance. It now
allows us to isolate the component that moves the CoM



horizontally, L,. Due to the redundancy in our system, we
can control the angular and the linear momentum
independently. = We can now use HG to absorb the

disturbance while regulating 7 to limit the CoM forward

motion. The next section contains the models used to
control momenta.

B. Momentum Controller

Both L and Hg; are vector functions of the configuration
variables ¢ and their derivatives. They are linear with
respect to the derivatives. In matrix form they are expressed
as:

H; = A(q9)q ®)
L = D(g)q. (6)

In general, A and D are 3xn matrices and are functions
of ¢. For our planar robot, A4 is reduced to a 1x»n matrix and
D to a 2xn matrix. A and D are matrices that are “inertial”
in nature; their derivation is available elsewhere [6].

The formulae for the time-derivatives are:

H, = A(Qj+ A(q.9)q (7)
L= D(q)j+ D(q,4)q. ®)

The first row of (8) contains the x-component of the linear
momentum,

L.=Dg+D.g. )

The concept of the Disturbance Absorption controller was
to produce an j, to absorb the disturbance while regulating

L, to maintain the CoM. To that end, we solved for (7) and

(9) simultaneously using the Moore-Penrose pseudo-
inverse,

A + H'* —A .
g= Lo ‘? (10)
D.|\L -Dgq

X

We then used the following control law for the momentum:

H:; :kl(xP_xG)

.\ (1n
Lx = _kZLx
where k; is a positive gain. The desired torques were then
computed using (1) for the flatfoot phase.

Note, the controller in (10) is attempting to control the
joint accelerations on a second-order system. It is therefore
not stable; however, it is adequate for our purpose of
displaying the concept. A better control law is needed for a
practical implementation. We will present the simulation
results in Section 5 of the paper.

C. A Note on Linear and Angular Momenta

There has been recent interest in angular momentum
and its possible exploitation for biped balance and gait [4, 6,
8, 17]. Biomechanical investigations conjecture that
humans tightly regulate their angular momentum for a large
class of movements [17]. Goswami & Kallem proposed
H,, as an inherent physical measure of the postural stability

of a biped [4]. Hg has also been used by others as a tool for
generating and controlling humanoid motion [6, 8].

It can be shown, however, that neither Hg nor H ¢

sufficient as a complete descriptor of the controllability of a
biped. A redundant system such as a humanoid robot can
move about with infinitely many possible motions all of
which maintain zero Hg. It can swing about and fall to the
ground without creating any angular momentum, and we
have encountered this in our simulation.

5. RECOVERY PHASE

A. Maximum Potential Energy

The home posture should be an easily definable,
statically stable configuration that is applicable to all bipeds.
We suggest the home position to be the configuration of the
robot which minimizes the static joint torques. The static
torque components are gravity induced. They are
minimized when the gravity forces are passively supported
by the structure of the robot rather than being actively
compensated by the joint motors. Such a posture would
greatly reduce the energy expenditure, as we experience
from our effortless upright stance compared to one with a
bent knee.

Others have explored this idea in anthropomorphic
bipeds. Popovic has shown that humans minimize their
joint torques during motion [17]. Khatib, et al. use the
concept of minimal joint torques due to gravity to resolve
the redundancy of a humanoid in relation to a task [7], and
show that the resulting postures look natural for a human
being. We will expand this idea to a more general concept
that better defines the standing posture, and use it to create
simple control laws for posture recovery.

The static joint torques are expressed in the G vector of
the equation of motion (1). They are thus minimized when
the norm of G, ||G]||, is minimized. Note that G equals the
gradient of the potential energy function V,

o’

G=—
oq

(12)

This leads us to a more general concept for the standing
posture: the posture that maximizes PE.

This is a simple but powerful concept. Bipeds hold
their CoM at the highest location, storing the PE to draw on
it in moving in any direction with the least expenditure of
energy [15]. So the posture of maximum PE minimizes the
static joint torques as well as maximizes the mobility in the
horizontal plane.

B. Natural Posture Recovery (NPR)
We now have two concepts for defining the standing
posture: Maximum PE, and Minimum G. The two are



closely related with a few differences. Each leads to a
simple control law for standing posture recovery.

The first control law maximizes the potential energy by
guiding the robot to the peak of the 7 function. It uses the
property that the gradient points in the direction of steepest
ascent. The law was determined using (12),

q =kG. (13)

k is a constant positive gain. We will refer to this control
law as the Gradient method.

The second law finds the minimum G by relating the
rate-of-change of G to the rate-of-change of the joint
variables ¢. Since G is a function of ¢, we can find the
following Jacobian relationship:

¢=Jwa (14)
§g=J"G.
For n degrees of freedom, J is the nxn matrix of first-order
partials, 0G/0q. G is minimized by relating its time-
derivative to the error, G-G,;,. Any non-prismatic
manipulator will have a maximum for PE; hence, the
minimum ||GJ| occurs at G,,;,, = 0. The control law is thus:

4=-kJ"'G, (15)

where £ is a constant positive gain. We refer to this law as
the Hessian method, for reasons that we will see.

C. Understanding the Two Laws

As mentioned, the two laws are closely related with
small differences. For a scalar multi-variable function, a
local maximum occurs when it passes the first and second

derivative tests:
T
oV _
0w

7| 0%V,
q [ qu}q<0. (17)

In the first test (16), the gradient of V" must equal zero. This
occurs for all the stationary points of the function: any
local extrema or a saddle-point. In the second derivative
test (17), the nxn matrix [6°V/d¢’] is known as the Hessian
matrix. Evaluated at any stationary point, the left-hand side
of (17) indicates the nature of the point. It indicates
whether the point is a local maximum (less than zero), local
minimum (greater than zero), or a saddle-point (equal to
Z€ro).

For any non-prismatic robot, the potential energy
function is a continuous sinusoidal function with a global
maximum, global minimum, and several saddle-points. It
has no local extrema. Fig. 5 shows the potential energy of
our robot as a function of the ankle and knee joints.
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Fig. 5. The potential energy of our robot with a locked hip. Note its “well-
behaved” nature.

The J matrix in (14) is thus the Hessian of our potential
energy function.

The absence of any local extrema guarantees that the
Gradient method will find the maximum potential energy.
This occurs for one single posture. At this posture, the
static joint torques will also be minimized so that G = 0.
This minimum G criteria, however, has additional solutions
known collectively as the stationary points. There is one
maximum and one minimum configuration, as well as
several saddle-points. At these points, the potential energy
increases with respect to one joint and decreases with
respect to another. Fig. 6 shows examples of these
stationary configurations for our robot. Note, some of these
configurations may be inconsistent with other physical
considerations such as joint limits and ground contact.

Fig. 6. The “stationary points” where G=0: (a) maximum PE, (b) minimum
PE, (c) saddle-point.

D. Performance of the NPR Methods

We have tested both methods on our simulation. The
robot started out with a crouched pose and the two methods
were applied to recover its home position. They were
applied in real-time with no precomputed final position. We
developed a graphical simulation of the robot in OpenGL, a
graphics application programming interface, to show the
results. Fig. 7 and 8 contain snapshots of the frames.



Fig. 7. Natural posture recovery using the gradient method. The top marker
represents the CoM and the bottom marker represents the CoP. The frames
are taken in intervals of 0.5 seconds.

Fig. 8. Natural posture recovery using the Hessian method. The frames are
taken in intervals of 0.5 seconds.

For the given initial condition, both methods behaved
similarly. The gains determine the second-order behavior of
the response for both methods. They were chosen to
produce comparable behaviour and response times. Both
NPR methods have no consideration for the CoP position.
The CoP excursions can be limited by reducing the gains.
We thus used a variable gain—one that started small and
monotonically increased.

We observed several general differences between
the two methods. The Hessian method produced smaller
values and fluctuation in both the joint-torques and the CoP
position.  Unfortunately, the Hessian method has other
solutions as we described, and can run into singularities for
J. The Gradient method, on the other hand, is much more
computationally efficient. It produces behaviours that
appear very “natural.” It also tends to produce oscillations
about the final position that are more significant than the
Hessian method.

An additional simulation test for the natural posture
recovery scheme consists of positioning the robot on an
inclinable plane, such as a swinging table. We incorporated
both the variable kinematic constraint and the movement
dynamics of the swinging motion into the robot. The task of
the controller is to steer the robot to its home position while
the table surface oscillates sinusoidally. Fig. 9 displays a
series of snapshots where the robot successfully returns to
the home position.

We would like to highlight the strengths of the two
control laws. They are both able in real-time to guide the
robot to the posture that minimizes the static joint torques.
They apply a simple strategy that does not need any
numerical computation and does not need a pre-planned
configuration or trajectory. All they need is to construct the
PE function, which is very simple, and to feedback the joint
variables.

Fig. 9. The ground is rotating while the robot recovers its home posture
using the Gradient Method. The frames were shifted vertically to smoothly
display the rotation of the ground.

5. SIMULATION RESULTS

The full Reflex-Recovery control strategy was applied
to our robot. A horizontal disturbance force Fj, was
applied to the center of the trunk as shown in Fig. 3. The
overall controller applied the disturbance absorption
technique during the application of the disturbance force. It
then switched to the Hessian method for posture recovery as
the force subsided.

Based on a static analysis with locked joints, the
maximum F, our robot can sustain before the foot starts to
rotate is 96 N. In contrast, with the presented controller the
robot can withstand 300 N, a rather large disturbance force,
for a duration of 0.1 seconds. The controller succeeded in
absorbing the disturbance and recovering the natural
posture. Fig. 10 shows snapshots of the robot recovering.
Our current model does not have the knee joint limits; hence
we see the backward-bent knee.

6. CONCLUSION AND FUTURE WORK

An effective strategy for maintaining the postural
stability of bipeds involves two phases: a reflex phase and a
recovery phase. During a disturbance, the biped induces an
increasing angular momentum Hto fall along the direction

of the disturbance force to maintain controllability. This is
a strategy also witnessed in humans.

The biped then initiates a recovery strategy. Maximum
potential energy provides a compelling criterion for defining
the home posture. It also provides efficient, real-time
compatible control laws for posture recovery that are
independent of the ground slope.
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Fig. 10. A disturbance force of 300 N was applied to the robot for 0.1
seconds. The controller absorbed the disturbance during the first 0.1
seconds and then recovered the natural posture.



The stability of the robot depends on controlling the
rate-of-change of momentum. A robust controller for g,

and L is required. We would also like to formulate a
unified control strategy for natural posture recovery that
combines both methods for the advantages of each. Finally,
we would like to extend our model to include a full 3D
biped robot that incorporates joint limits and motor
saturation torques.
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