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 Abstract - Balance maintenance and upright posture 
recovery under unexpected environmental forces are key 
requirements for safe and successful co-existence of humanoid 
robots in normal human environments. In this paper we 
present a two-phase control strategy for robust balance 
maintenance under a force disturbance. The first phase, called 
the reflex phase, is designed to withstand the immediate effect 
of the force. The second phase is the recovery phase where the 
system is steered back to a statically stable “home” posture.  
The reflex control law employs angular momentum and is 
characterized by its counter-intuitive quality of “yielding” to 
the disturbance. The recovery control employs a general 
scheme of seeking to maximize the potential energy and is 
robust to local ground surface feature. Biomechanics literature 
indicates a similar strategy in play during human balance 
maintenance.   
 
 Index Terms – Biped robot, disturbance rejection, balance, 
posture recovery, potential energy. 

 

1. MOTIVATION 

Future humanoid robots are expected to freely reside 
within common human environments and to be physically 
more interactive with their surroundings. A key factor for 
their successful co-existence with humans lies in their 
capacity to withstand unexpected external forces without the 
loss of balance. A failed postural recovery may result in a 
fall which can badly damage the machine itself and/or injure 
people in the vicinity. We wish to develop a control strategy 
such that biped robots can appropriately respond to 
unknown force disturbances from the surroundings. 

This paper focuses on the specific problem of balance 
maintenance during upright stance which is to be 
distinguished from balance maintenance during gait. We 
take our cue from biomechanics research [10] which points 
out the very different nature of the two apparently related 
problems and how human beings employ specific control 
strategies to deal with them.  

We recognize two main phases during a balance 
maintenance scenario. The first phase is the reflex phase in 
which the body generates a rapid movement to quickly 
absorb a disturbance force. As the disturbance force 
subsides, the body attempts to recover its original posture. 
This is called the recovery phase. 

In accordance with these two phases of the balance 
maintenance scenario, we employ a two-phase control 
strategy. The reflex controller rapidly generates an increase 

in angular momentum to correctly compensate for the 
destabilizing effect of the disturbance. In doing so it accepts 
a posture deviation. The objective of the recovery controller 
is to compensate for this postural deviation.   It is assumed 
that the final destination of the robot is a statically stable 
posture. 

Biomechanical studies indicate that human beings adopt 
a similar strategy in response to an unexpected perturbation 
[11]. As shown in Fig. 1, the immediate effect of a loss of 
balance in the forward direction is an accelerated rotation of 
all the available limbs towards the front (clockwise). This 
has the effect of reversing the direction of the ground 
friction force from the forward (Fig. 1a) to the backward 
direction (Fig 1b). This backward friction force causes the 
center of mass (CoM), denoted by G, to travel backwards 
and the center of pressure (CoP), denoted by P, to return 
securely under the foot support, which is precisely what is 
intended. Once comfortable, the forward rotation stops and 
the body returns to a statically stable upright posture (Fig. 
1c). 

 

 
  (a)     (b)          (c) 

Fig. 1. A typical strategy employed by human beings in response to an 
unbalanced posture caused by a disturbance [11]. 

 
In the above example, Fig. 1b and Fig. 1c represent the 
reflex and the recovery phases, respectively.  

Our dynamic analysis explains the interesting but 
counter-intuitive forward acceleration of the body during 
the reflex phase (Section 4). This movement is quantified by 
the rate-of-change of the angular momentum. In the 
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recovery phase we seek to guide the system to its maximum 
potential energy (PE), a strategy that is independent of the 
local ground slope (Section 5). 

Sugihara & Nakamura proposed a similar partitioned 
strategy for disturbance absorption [18].  We will provide 
the justification for this partitioning.  In addition, we will 
present fundamental physical measures for the control of 
each phase. 
 

2. ROBOT MODEL 

We created a planar upright robot model as the basis of 
our analysis and simulation.  It is a single-leg plus HAT 
(head-arms-trunk) model in the sagittal plane, somewhat 
standard in the postural balance literature.  The model 
contains four limbs: the foot, shank, thigh, and HAT.  These 
rigid body limbs are inter-connected through three actuated 
joints: the ankle, knee, and hip.  The robot model is 175 cm 
tall, with anthropometric link geometry and mass.  

The foot is free to leave the ground; however, we 
assume that friction is sufficient to prevent slip. The robot 
has 4 kinematic foot/ground contact states as shown in Fig. 
2. In the Flatfoot phase, the foot is flat against the ground. 
In the Toe phase and Heel phase the foot pivots around the 
toe or the heel respectively. In the Airborne phase, the foot 
completely lifts off of the ground. The robot has three 
degrees of freedom (DOF) in the Flatfoot phase, four DOF 
in each of both the Toe and Heel phases and six DOF in the 
Airborne phase.  We developed a state-transition machine to 
detect and trigger a switch to a different phase. For this 
purpose we tracked a number of kinematic and kinetic 
parameters such as the foot position, foot angle, ground 
reaction-force (GRF), and the CoP. 

The standard formulation for the equation of motion is, 
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For n degrees of freedom: τ is the nx1 vector of generalized 
torques, M is the nxn inertia matrix, C is the nx1 vector of 

Coriolis and centrifugal terms, G is the nx1 vector of gravity 
terms, and q is the nx1 vector of configuration variables.  

 

Airborne

Flatfoot ToeHeel  
 

Fig. 2. A planar upright humanoid model for balance studies.  The model 
has 4 foot/ground contact states: Flatfoot, Toe, Heel and Airborne. 

 
Most of our simulation revolves around the Flatfoot 

model which is the most secured.  The motion equation is 

fully actuated for the Flatfoot phase with τ = (τa τk τh)T and q 
= (qa  qk  qh)T. The Toe and Heel phases have one degree of 
under-actuation, and the Airborne phase has 3 degrees of 
under-actuation. 

 
3. CONTROLLABILITY OF UPRIGHT BALANCE 

Robotics literature uses a variety of terminologies to 
imply the ability of a robot to survive a perturbation to its 
planned states.  Examples include: balance maintenance, 
postural stability, dynamic stability, gait stability, tip-over 
stability, and tumble stability. Unlike static stability, no 
precise and universal definition of dynamic stability exists 
[1, 3].  

The disparate nature of the biped gait and posture 
control and some existing confusion prompt us to clearly 
indicate the scope of the current study. From the outset, we 
wish to point out that home posture controllability, and not 
what is loosely termed as stability, is our focus. Below we 
present a conceptual description of our position. 

The phenomena of balance and fall in legged entities 
arise fundamentally due to the under-actuation and 
unilateral force constraint at the foot/ground interface [2, 3].  
The state of balance of such a system is captured by ground-
based points such as the CoP, which is also known as the 
zero-moment point (ZMP) [2, 3, 9, 12, 13], and the FRI 
point [3]. 

The CoP must remain within the convex hull of the 
ground support area.  As long as it is within the interior of 
the foot, the system has greater flexibility to withstand 
perturbation since the CoP can move in any direction along 
the ground.  Once the CoP reaches the boundary, it looses a 
degree of freedom in its motion and the system becomes 
under-actuated.  This is depicted in Fig. 3, where the 
possible movement directions of the CoP are indicated in 
both the interior and at the boundary of the foot.  

For a robot with a flat foot resting on a level surface, a 
CoP within the interior of the foot implies that the foot is 
stationary and flat against the ground.  A CoP on the 
boundary indicates that the foot is either pivoting about its 
edge or on the verge of pivoting.  For our robot model, a 
CoP within the interior of the foot is represented by the 
Flatfoot phase, while a CoP on the boundary is represented 
by the Toe or Heel phase respectively. 

 

 
 

Fig. 3. Robot controllability is related to the CoP location in the foot 
support area. While located within the support area, the CoP can move in 
all directions, providing full controllability. At the perimeter, the CoP can 

move in only certain direction, which results in the loss of a degree of 
controllability. 
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Robotics literature often equates location of the 
CoP/ZMP in the interior of the foot with the stability of the 
robot [19-22].   This is not an accurate description of the 
physical phenomenon, mainly because there is no agreed 
upon definition of stability.  For example, a robot can 
maintain a flat foot and still tumble to the ground with its 
trunk.  On the other hand, the foot can start to turn on its toe 
and still manage to bring itself back without falling.  The 
key is not stability but the robot’s controllability at the 
current state.  

The term controllability is usually associated with linear 
systems where it refers to the ability of a controller to reach 
a fixed final state from any given initial state [23]. An 
equivalent description may be provided for our non-linear 
system where the home posture is the final state and the set 
of states from which the home posture is reachable is the 
controllable space. Note however that the concepts of 
controllability and reachability are completely equivalent 
for linear systems but not for non-linear systems [23]. Our 
description is equivalent to what has been recently 
formulated in terms of viability theory [24]. 

Our objective in this paper is to maintain the 
controllability of the robot.  We will do so by regulating the 
CoP to keep it in the interior of the foot, away from the 
edge, and thus keep the system fully actuated. 
 

4. REFLEX PHASE 

A   Disturbance Absorption 
Disturbance absorption implies the ability of a robot to 

withstand a disturbance without losing controllability.  
Using the stated idea of the CoP regulation, we will be able 
to identify the underlying physics of disturbance absorption.  
We will also show that the disturbance absorption ability of 
a biped is enhanced by divorcing it from posture recovery. 

Let us explore the equation for the CoP.  The CoP can 
be computed from the external and inertial forces acting on 
the system. For a planar ground surface, the position P of 
the CoP with respect to a general point C on the ground: 
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where rCP is the position vector from C to CoP, n is the 
ground normal, 

GH& is the centroidal angular momentum, rCG 
is the vector from C to the CoM, m is the total mass of the 
robot, aG is the CoM acceleration, F is the net “non-ground” 
external forces, rCF is the vector from C to the point of 
application of F, and R is the GRF. 

If we apply this equation to our planar robot standing 
on a horizontal surface and under a horizontal disturbance 
force Fdist, we obtain the following equation:  
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where xP is the x-coordinate of the CoP, xG is the x-
coordinate of the CoM,

CH&  is the time-derivative of the 

angular momentum about point C, and 
yL&  is the y-

component of the time-derivative of linear momentum. Note 
that d is a positive quantity.  When the robot starts out at the 
standing position, it is at a singularity for motion in the y 
direction and so the change in the y direction is relatively 
small.  It is very difficult for the CoM to fall faster than 
gravity which is required to make d negative. 

Let us examine (3).  For static conditions, the CoP starts 
out coinciding horizontally with the CoM.  A positive Fdist 
tends to move the CoP in the forward or positive direction, 
see Fig. 4.  The larger the force, the closer the CoP gets to 
the front edge of the foot. This can be countered by a 
negative 

CH& which occurs when the robot “falls forward” in 
the clockwise direction.  The more the robot can increase its 
rate of angular momentum, the larger a force it can absorb.  
Alternatively, if the robot “resists” the force by holding 
rigid or accelerating backwards, it will push the CoP further 
ahead and closer to the edge.  A human exhibits such 
behaviour.  Given a push in the back, the human accelerates 
the torso and flails the arms to increase the rate of angular 
momentum.   

Any attempt at posture recovery during the disturbance 
will oppose the increase in forward angular momentum.  It 
amounts to resisting the force and would push the CoP 
closer to the edge.  This is why the two phases, disturbance 
absorption and posture recovery, need to be separated. 

One problem is that the robot cannot rotate in an 
accelerated fashion for a long time.  As the robot rotates, the 
CoM moves forward, making it a more and more difficult 
problem to keep the CoP within the foot. We would thus 
like to implement the disturbance absorption in such a way 
as to keep the horizontal position of the CoM constant.  We 
can rewrite (3) by expressing the angular momentum about 
the CoM rather than C, 
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Fig. 4. The upright robot subjected to a horizontal force disturbance, Fdist. 

 
The middle term of this equation represents the “falling 
forward” term that is used to absorb the disturbance.  It now 
allows us to isolate the component that moves the CoM 

x

y

+

Fdist

P
C

x

y

+
x

y

x

y

++

Fdist

P
C



horizontally, Lx.  Due to the redundancy in our system, we 
can control the angular and the linear momentum 
independently.  We can now use 

GH&  to absorb the 
disturbance while regulating 

xL&  to limit the CoM forward 
motion.  The next section contains the models used to 
control momenta. 
 
B.  Momentum Controller 

Both L and HG are vector functions of the configuration 
variables q and their derivatives.  They are linear with 
respect to the derivatives.  In matrix form they are expressed 
as: 

 
qA(q)HG &=       (5) 

.qD(q)L &=       (6) 
 

In general, A and D are 3xn matrices and are functions 
of q.  For our planar robot, A is reduced to a 1xn matrix and 
D to a 2xn matrix.  A and D are matrices that are “inertial” 
in nature; their derivation is available elsewhere [6].   
The formulae for the time-derivatives are: 

 
q)q(q,AqA(q)HG &&&&&& +=     (7) 

q)q(q,DqD(q)L &&&&&& += .    (8) 
 
The first row of (8) contains the x-component of the linear 
momentum, 
 

.qDqD xxx &&&&& +=L      (9) 
 
The concept of the Disturbance Absorption controller was 
to produce an 

GH&  to absorb the disturbance while regulating 

xL&  to maintain the CoM.  To that end, we solved for (7) and 
(9) simultaneously using the Moore-Penrose pseudo-
inverse, 
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We then used the following control law for the momentum: 
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where ki is a positive gain.  The desired torques were then 
computed using (1) for the flatfoot phase.   
 Note, the controller in (10) is attempting to control the 
joint accelerations on a second-order system.  It is therefore 
not stable; however, it is adequate for our purpose of 
displaying the concept.  A better control law is needed for a 
practical implementation.  We will present the simulation 
results in Section 5 of the paper. 
 
C.  A Note on Linear and Angular Momenta 

There has been recent interest in angular momentum 
and its possible exploitation for biped balance and gait [4, 6, 
8, 17].  Biomechanical investigations conjecture that 
humans tightly regulate their angular momentum for a large 
class of movements [17].  Goswami & Kallem proposed 

GH&  as an inherent physical measure of the postural stability 
of a biped [4].  HG has also been used by others as a tool for 
generating and controlling humanoid motion [6, 8]. 

It can be shown, however, that neither HG nor GH&  
sufficient as a complete descriptor of the controllability of a 
biped.  A redundant system such as a humanoid robot can 
move about with infinitely many possible motions all of 
which maintain zero HG.  It can swing about and fall to the 
ground without creating any angular momentum, and we 
have encountered this in our simulation. 
 

5. RECOVERY PHASE 

A.  Maximum Potential Energy 
The home posture should be an easily definable, 

statically stable configuration that is applicable to all bipeds.  
We suggest the home position to be the configuration of the 
robot which minimizes the static joint torques.  The static 
torque components are gravity induced.  They are 
minimized when the gravity forces are passively supported 
by the structure of the robot rather than being actively 
compensated by the joint motors.  Such a posture would 
greatly reduce the energy expenditure, as we experience 
from our effortless upright stance compared to one with a 
bent knee. 

Others have explored this idea in anthropomorphic 
bipeds.  Popovic has shown that humans minimize their 
joint torques during motion [17].  Khatib, et al. use the 
concept of minimal joint torques due to gravity to resolve 
the redundancy of a humanoid in relation to a task [7], and 
show that the resulting postures look natural for a human 
being.  We will expand this idea to a more general concept 
that better defines the standing posture, and use it to create 
simple control laws for posture recovery. 

The static joint torques are expressed in the G vector of 
the equation of motion (1).  They are thus minimized when 
the norm of G, ||G||, is minimized.  Note that G equals the 
gradient of the potential energy function V, 
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This leads us to a more general concept for the standing 
posture:  the posture that maximizes PE.   

This is a simple but powerful concept.  Bipeds hold 
their CoM at the highest location, storing the PE to draw on 
it in moving in any direction with the least expenditure of 
energy [15].  So the posture of maximum PE minimizes the 
static joint torques as well as maximizes the mobility in the 
horizontal plane. 
 
B.  Natural Posture Recovery (NPR) 

We now have two concepts for defining the standing 
posture:  Maximum PE, and Minimum G.  The two are 



closely related with a few differences. Each leads to a 
simple control law for standing posture recovery. 

 The first control law maximizes the potential energy by 
guiding the robot to the peak of the V function.  It uses the 
property that the gradient points in the direction of steepest 
ascent.  The law was determined using (12), 
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k is a constant positive gain.  We will refer to this control 
law as the Gradient method. 

The second law finds the minimum G by relating the 
rate-of-change of G to the rate-of-change of the joint 
variables q.  Since G is a function of q, we can find the 
following Jacobian relationship: 
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For n degrees of freedom, J is the nxn matrix of first-order 
partials, ∂G/∂q.  G is minimized by relating its time-
derivative to the error, G-Gmin.  Any non-prismatic 
manipulator will have a maximum for PE; hence, the 
minimum ||G|| occurs at Gmin = 0.  The control law is thus: 
 

G,Jq 1−−= k&      (15) 
 

where k is a constant positive gain.  We refer to this law as 
the Hessian method, for reasons that we will see. 
 
C. Understanding the Two Laws 

As mentioned, the two laws are closely related with 
small differences.  For a scalar multi-variable function, a 
local maximum occurs when it passes the first and second 
derivative tests:   
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In the first test (16), the gradient of V must equal zero.  This 
occurs for all the stationary points of the function:  any 
local extrema or a saddle-point.  In the second derivative 
test (17), the nxn matrix [∂2V/∂q2] is known as the Hessian 
matrix.  Evaluated at any stationary point, the left-hand side 
of (17) indicates the nature of the point.  It indicates 
whether the point is a local maximum (less than zero), local 
minimum (greater than zero), or a saddle-point (equal to 
zero). 

For any non-prismatic robot, the potential energy 
function is a continuous sinusoidal function with a global 
maximum, global minimum, and several saddle-points. It 
has no local extrema.  Fig. 5 shows the potential energy of 
our robot as a function of the ankle and knee joints. 

 
Fig. 5. The potential energy of our robot with a locked hip. Note its “well-

behaved” nature. 
 
The J matrix in (14) is thus the Hessian of our potential 
energy function. 

The absence of any local extrema guarantees that the 
Gradient method will find the maximum potential energy.  
This occurs for one single posture.  At this posture, the 
static joint torques will also be minimized so that G = 0.  
This minimum G criteria, however, has additional solutions 
known collectively as the stationary points.  There is one 
maximum and one minimum configuration, as well as 
several saddle-points.  At these points, the potential energy 
increases with respect to one joint and decreases with 
respect to another.  Fig. 6 shows examples of these 
stationary configurations for our robot.  Note, some of these 
configurations may be inconsistent with other physical 
considerations such as joint limits and ground contact. 
 

(a) (b) (c)(a) (b) (c)

 
 
Fig. 6.  The “stationary points” where G=0:  (a) maximum PE, (b) minimum 

PE, (c) saddle-point. 
 
D. Performance of the NPR Methods 
 We have tested both methods on our simulation.  The 
robot started out with a crouched pose and the two methods 
were applied to recover its home position.  They were 
applied in real-time with no precomputed final position.  We 
developed a graphical simulation of the robot in OpenGL, a 
graphics application programming interface, to show the 
results.  Fig. 7 and 8 contain snapshots of the frames. 
 
 



Fig. 7.  Natural posture recovery using the gradient method. The top marker 
represents the CoM and the bottom marker represents the CoP. The frames 

are taken in intervals of 0.5 seconds. 

 
Fig. 8. Natural posture recovery using the Hessian method.  The frames are 

taken in intervals of 0.5 seconds. 
 
 For the given initial condition, both methods behaved 
similarly.  The gains determine the second-order behavior of 
the response for both methods.  They were chosen to 
produce comparable behaviour and response times.  Both 
NPR methods have no consideration for the CoP position.  
The CoP excursions can be limited by reducing the gains.  
We thus used a variable gain—one that started small and 
monotonically increased. 

 We observed several general differences between 
the two methods.   The Hessian method produced smaller 
values and fluctuation in both the joint-torques and the CoP 
position.  Unfortunately, the Hessian method has other 
solutions as we described, and can run into singularities for 
J.  The Gradient method, on the other hand, is much more 
computationally efficient.  It produces behaviours that 
appear very “natural.”  It also tends to produce oscillations 
about the final position that are more significant than the 
Hessian method.  

An additional simulation test for the natural posture 
recovery scheme consists of positioning the robot on an 
inclinable plane, such as a swinging table.  We incorporated 
both the variable kinematic constraint and the movement 
dynamics of the swinging motion into the robot. The task of 
the controller is to steer the robot to its home position while 
the table surface oscillates sinusoidally. Fig. 9 displays a 
series of snapshots where the robot successfully returns to 
the home position. 

We would like to highlight the strengths of the two 
control laws.  They are both able in real-time to guide the 
robot to the posture that minimizes the static joint torques.  
They apply a simple strategy that does not need any 
numerical computation and does not need a pre-planned 
configuration or trajectory.  All they need is to construct the 
PE function, which is very simple, and to feedback the joint 
variables.   

 
 

Fig. 9. The ground is rotating while the robot recovers its home posture 
using the Gradient Method. The frames were shifted vertically to smoothly 

display the rotation of the ground. 
 

5. SIMULATION RESULTS 

The full Reflex-Recovery control strategy was applied 
to our robot.  A horizontal disturbance force Fdist was 
applied to the center of the trunk as shown in Fig. 3.  The 
overall controller applied the disturbance absorption 
technique during the application of the disturbance force.  It 
then switched to the Hessian method for posture recovery as 
the force subsided. 

Based on a static analysis with locked joints, the 
maximum Fdist our robot can sustain before the foot starts to 
rotate is 96 N.  In contrast, with the presented controller the 
robot can withstand 300 N, a rather large disturbance force, 
for a duration of 0.1 seconds.  The controller succeeded in 
absorbing the disturbance and recovering the natural 
posture. Fig. 10 shows snapshots of the robot recovering.  
Our current model does not have the knee joint limits; hence 
we see the backward-bent knee. 
 

6. CONCLUSION AND FUTURE WORK 

 An effective strategy for maintaining the postural 
stability of bipeds involves two phases:  a reflex phase and a 
recovery phase.  During a disturbance, the biped induces an 
increasing angular momentum 

GH& to fall along the direction 
of the disturbance force to maintain controllability.  This is 
a strategy also witnessed in humans.   

The biped then initiates a recovery strategy.  Maximum 
potential energy provides a compelling criterion for defining 
the home posture.  It also provides efficient, real-time 
compatible control laws for posture recovery that are 
independent of the ground slope. 

 

0 s 0.5 s 1 s 1.5 s 2 s 2.5 s 3 s 4 s 5 s0 s 0.5 s 1 s 1.5 s 2 s 2.5 s 3 s 4 s 5 s  
Fig. 10.  A disturbance force of 300 N was applied to the robot for 0.1 
seconds.  The controller absorbed the disturbance during the first 0.1 

seconds and then recovered the natural posture. 
   



The stability of the robot depends on controlling the 
rate-of-change of momentum.   A robust controller for 

GH&  
and L&  is required.  We would also like to formulate a 
unified control strategy for natural posture recovery that 
combines both methods for the advantages of each. Finally, 
we would like to extend our model to include a full 3D 
biped robot that incorporates joint limits and motor 
saturation torques. 
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