
Proceedings of 2004 IEEEiRSJ International Conference on
Intelligent Robots and Systems
September 28 - October 2, 2004, Sendai, Japan

Stochastic Policy Gradient Reinforcement
Leaming on a Simple 3D Biped

Russ Tedrake Teresa Weirui Zhang H. Sebastian Seung
Computer Science & Depx"nt of Howard Hughes Medical Institute

Artificial Intelligence Lab, Mechanical Engineering Brain & Cognitive Sciences
Center for Bits & Atoms Brain & Cognitive Sciences Center for Bits & Atoms

Massachusetts Institute of Technology Massachusetts Institute of Technology Massachusetts Institute of Technology
Cambridge, MA 02139 Cambridge, MA 02139 Cambridge, MA 02139
Email: russt@ai.mit.edu Email: resa@mit.edu Email: seung@mit.edu

Absboet-We present a learning system which Is able to
quickly and reliably acquire a robust feedback control policy
Tor 3D dynamic walking from a blank-slate using only trials
implemented on our physical rohol. The robot begins walking
within a minute and learning converges in approximately 20

may have an effect on the performance many steps into the
future,

Although there is a great deal of literature on learning

adapt to the terrain as it walks. ([Z], [3]). In this paper we generalize these results to

I. INTRODUCTION

Recent advances in bipedal walking technology have
produced robots capable of leaving the laboratory en-
vironment to interact with the unknown and uncertain
environments of the real world. Despite our best efforts,
it is unlikely that we will he able to preprogram these
robots for every possible situation without sacrificing per-
formance. Endowing our robots with the ability to learn
from experience and adapt to their environment seems
critical for the success of any real world robot.

Dynamic bipedal walking is difficult to learn for a
number of reasons. First, walking robots typically have
many degrees of freedom, which can cause a combinatorial
explosion for learning systems that attempt to optimize
performance in every possible configuration of the robot.
Second, details of the robot dynamics such as uncertainties
in the ground contact and nonlinear friction in the joints
are difficult to model well in simulation, making it unlikely
that a controller optimized in a simulation will perform
optimally on the real robot. Since it is only practical to
run a small number of learning vials on the real robot,
the learning algorithms must perform well after obtaining
a very limited amount of data. Finally, learning algorithms
for dynamic walking must deal with dynamic discontinu-
ities caused by collisions with the ground and with the
problem of delayed reward - torques applied at one time

obtaining a controller from scratch instead of tuning an
existing controller. Leaming control has also been suc-
cessfully implemented on Sony's quadrupedal robot AIBO
(i.e., [4]). The learned controllers for AIBO are open-loop
trajectories, but trajectory feedback is essential for robust,
dynamic, bipedal walking.

In order to study learning feedback control for walking,
we performed our initial experiments on a simplified robot
which captures the essence of dynamic walking but which
minimizes many of the complications. Our robot has only
6 internal degrees of freedom and 4 actuators'. The me-
chanical design of our robot is based on a passive dynamic
walker ([51, 161). This allows us to solve a portion of the
control problem in the mechanical design, and makes the
robot mechanically veiy stable; most policies in our search
space result in either stable walking or failed walking
where the robot ends up simply standing still.

The learning on our robot is performed by a policy
gradient reinforcement learning algorithm ([71, [81, [SI).
The goal of this paper is to describe our formulation of the
learning problem and the algoiithm that we use to solve
it. We include our experimental resulvj on this simplified
biped, and discuss the possibility of applying the same
algorithm to a more complicated walking system.

2849
0-7805-84634/041$20.00 @ZOO4 IEEE

mailto:russt@ai.mit.edu
mailto:resa@mit.edu
mailto:seung@mit.edu

Fig. 1.
mbot on the right is our actuated version of the same robot.

The mbot on the le* is a simple passive dynamic walker. The

11. THEROBOT
The passive dynamic walker shown on the left in Figure

1 represents the simplest machine that we could build
which captures the essence of stable dynamic walking in
three dimensions. It has only a single passive pin joint
at the hip. When placed at the top of a small ramp and
given a push sideways, the walker will begin falling down
the ramp and eventually converge to a stable limit cycle
trajectory that has been compared to the waddling gait of
a penguin [IO]. The energetics of this passive walker are
common to all passive walkers: energy lost due to friction
and collisions when the swing leg returns to the ground
is balanced by the gradual conversion of potential energy
into kinetic energy as the walker moves down the slope.
The mechanical design of this robot and some experimental
stability results arc presented in [I I].

We designed our leaning robot by adding a small
number of actuators to this passive design. The robot shown
on the right in figure 1, which is also described in [I l l ,
has passive joints at the hip and 2 degrees of actuation (roll
and pitch) at each ankle. The ankle actualom are position
controlled S ~ N O motors which, when commanded to hold
their zero position, allow the actuated robot to walk stably
down a small ramp, "simulating" the passive walker. The
shape of the large, curved feet is designed to make the robot
walk passively at 0.8Hz, and to take steps of approximately
6.5 cm when walking down a ramp of 0.03 radians. The
robot stands 44 cm tall and weighs approximatcly 2.9
kg, which includes the CPU and batteries that are canied
on-board. The most recent additions to this robot are
the passive arms, which are mechanically coupled to the
opposite leg to provide mechanical yaw compensation.

When placed on flat terrain, the passive walker waddles
hack and forth, slowly losing energy, until it comes to rest
standing still. In order to achieve stable walking on flat
terrain, the actuators on OUT learning robot must restore
energy into the system that would have been restored by
gravity when walking down a slope.

'The standard for 3D bipeds is to have at least 12 inremal degrees of
freedom and 12 BC!UIOIS in ,he legs

111. THE LEARNING PROBLEM
The goal of learning is to acquire a feedback control

policy which makes the robot's gait invariant to small
slopes. In total, the system has 9 degrees of freedom2, and
the equations of motion can he written in the form

H(q)q+C(q;i l) i l+G(q)=r+D(t) , (1)

where

q =[@yaw, OIPitch; ObPitch: Orpitch, O ~ o l l >

&aRoll, &Roll: &Pitch, @ h P i t c h l T ;
T T =[o,o,o, O , T ~ a R o l l ; ~ o R o l l : T ~ r a P i t c h , %Pitch] .

H is the state dependent inertial matrix, C contains inter-
action torques between the links, G represents the effect
of gravity, r are the motor torques, and D are random
disturbances to the system. Our shorthand lPitch, bPitch,
and rPitch refer to left leg pitch, body pitch, and right leg
pitch, respectively. raRoll, laRoll, rapitch, and lapitch
are short for right and left ankle roll and pitch. The actual
output of the controller is a motor command vector

T
U = [%aRoIl, UloRoll; UraPi tch , UloPi ich] i

which generates torques

7 = h(q:il,u).

The function h describes the linear feedback controller im-
plemented by the sew0 boards and the nonlinear kinematic
transformation into joint torques.

The robot uses a deterministic feedback control policy
which is represented using a linear function approximator
parameterized by vector w and using nonlinear features 9:

U = TW(.2) = Cw&(n) , with x =
i

The notation 2 represents a noisy estimate or the state x.
Before leaning, w is initialized to all zeros, making the
policy outputs zero everywhere, so that the robot simulates
the passive walker.

To quantify the stability of our nonlinear, stochastic,
periodic trajectory, we consider the dynamics on the return
map, taken around the point where &,lI = 0 and OT0u > 0.
The return map dynamics arc a Markov random sequcnce
with the probability at the (n + 1)th crossing of the return
map given by

f",(x',x) = PIX(,+ 1) = x'lX(n) = x:W(n) = w}.
(3)

f",(x', x) represents the probability density function over
the state space which contains the dynamics in equations
1 and 2 integrated over one cycle. We do not make any
assumptions about its fonn, except that it is Markov. Note
that the element of fw representing Oroii is the delta
function, independent of x. The return map dynamics are

26 inremal DOFs and 3 DOFs for the mbOt'I orientation. We assume
that the mbot is always in contact with the ground at a single point.
and infer the robot's absolute (z, y) poritian in space directly from the
remaining variables.

2850

represented as a Markov chain that depends on the param-
eter vector w instead of the equivalent Markov decision
process for simplification because the feedback controller
is evaluated many times during a single step (our controller
runs at 100 Hz and our robot steps at around 0.8 Hz). The
stochasticity in fw comes from the random disturbances
D(t) and the state estimation error, x - x.

The cost function for learning uses a constant desired
value, xd, on the return map:

(4)
1
2

g(x) = --/x - xy.

This desired value can be considered a reference trajectoly
on the return map, and is taken from the gait of the walker
down a slope of 0.03 radians; no reference trajectory is
required for the limit cycle between steps. For a given
trajectory? = [%(0),2(1): ..., x (N)] , we define the average
COS1

(5)
l N

G (i) = - Cs(W).

Our goal is to find the parameter vector w which mininuzes
"4

lim E {G(?)}
N--u

By minimizing this error, we are effectively minimizing the
eigenvalues of return map, and maximizing the stability of
the desired limit cycle.

1v. THE LEARNING ALGORITHM

The leaming algorithm is a statistical algorithm which
makes small changes to the control parameters w on each
step and uses correlations between changes in w and
changes in the return map error to climb the performance
gradient. This can be accomplished with a very simple
online leaming rule which changes w with each step that
the robot takes. The particular algorithm that we present
here was originally proposed by [71. We present a thorough
derivation of this algorithm in the next section.

The algorithm makes use of an intermediate represen-
tation which we call the salue function, J(x). The value
of state x is the expected average cost to be incurred by
following policy ?iw starting from state x:

jv(x) is an estimate of the value function parameterized
by vector v. This value estimate is represented in another
function approximator:

During learning, we add stochasticity to our deter-
ministic control policy by varying w. Let Z(n) be
a Gaussian random vector with E{Zj (n) } = 0 and
E{Zi(n)Zj(n')} = ~ ~ 6 ~ ~ 6 , ~ ~ . During the nth step that the
robot takes. we exzaluate the controller using the parameter
vector w'(n) = w(n)+z(n). The algorithm uses a storage
variable, e(n), which we call the eligibility trace. We begin

with w(0) = e(0) = 0. At the end of the nth step, we make
the updates:

~ (4 =9 (X(n)) + dv (qn + I)) - jv (a (n)) (8)
ei(n) =yei(n - 1) + 4(n) z i (n) (9)

Awi(n.) = - qw6(n)ei(n) (10)
Aui(n) =~F(nM(k(n)) . (11)

qw 2 0 and ?lo 2 0 are the leaming rates and y is
the discount lactor 01 the eligibility trace, which will be
discussed in more detail in the algorithm derivation. bi(n)
is a boolean one step eligibility, which is 1 if the parameter
wi is activated (#i(x) > 0) at any point during step n and
0 otherwise. 6(n) is called the one step remporal difference
error.

The algorithm can he understood intuitively. On each
step the robot receives some cost g(k (n)) . This cost is
compared to cost that we expect to receive, as estimated
by JY(x). If the cost is lower than expected, then -$(n)
is positive, so we add a scaled version of the noise
terms, zi, into m i . Similarly, if the cost is higher than
expected, then we move in the opposite direction. This
simple online algorithm performs approximate stochastic
gradient descent on the expected value of the average
infinite-horizon cost.

V. ALGORITHM DERIVATION

The expected value of the average cost, G, is given by:

E{G(2)} = LG(P)P,,.,{X = i } d i

The probability of trajectory ? is

N - l

P+(X = i } = P{X(O) = X(O)} n fw,(i(n+l)>n(n))
"=O

Taking the gradient of E{G(?)) with respect to w we find

Recall that fw,(x',x) is a complicated function which
includes the integrated dynamics of the controller and the
robot. Nevertheless, 6 log fw. is simply:

-log a fw.(x'(m+l),x(m)) =
ami

a
- aw, log pyx = X'lX = X> W' = W'}Pw{W' =

2851

Substituting, we have of the performance gradient:

Iim --E 1 x A w i (n) % -q lim -E{G(?)}. a
N-wN {"r0 } N - m a W i

This final reduction is based on the observation that
E{g(B(n))C&,&(m)} = 0 (noise added to the con-
troller on or after step n is not correlated to the cost at step
n). Similarly, random changes to a weight that is not used
during the nth step (bt(m) = 0) have zero expectation, and
can he excluded from the sum.

Observe that the variance of this gradient estimate grows
without hound as iV -t cc [81. To hound the variance, we
use a biased estimate of this gradient which artificially
discounts the eligibility trace:

N

a
-E{G(?)} % aw,

with 0 5 y 5 1. The discount factor y parameterizes the
bias-variance trade-ow.

Next, observe that we can 'subtract any mean zero
baseline from this quantity without effecting the expected
value of our estimate [12]. Including this baseline can
dramatically improve the performance of our algorithm
because it can reduce the variance of our gradient estimate.
In panicular, we subtract a mean-zero term containing an
estimate of the value function as recommended by L71:

a
lim --E{G(i)} 'J

N-maw,
I h l h/

resented using linear function approximators of the form
described in Equations 2 and 7, which are iast and very
convenient to initialize. We use a non-overlamine tile-

'.
- c Q r (x (n)) z + (n)

"=O
I /Lr

VI. LEARNING IMPLEMENTATION
In our initial implementation of the algorithm, we de-

cided to further simplify the problem by decomposing
the control in the frontal and sagittal planes. In this
decomposition, the ankle roll actuators are responsible for
stabilizing the oscillations of the robot in the frontal plane.
The ankle pitch actuators cause the robot to lean forward or
backward, which moves the position of the center of mass
relative to the ground contact point on the foot. Because
the hip joint on our robot is passive, if the center of mass is
in front of the ground contact when the swing foot leaves
the ground, then the robot will begin to walk fonvard. The
distance of between the center of mass and the ground
contact is monotonically related to the step size and to the
walking speed.

Due to the simplicity of the saginal plane control, we
only need to learn a control policy for the two ankle roll
actuators which stabilize the roll oscillation in the frontal
plane. This strategy will change as the robot walks at
different speeds, but we hope the learning algorithm will
adapt quickly enough to compensate for those differences.

With these simplifications in mind, we constrain the
feedback policy to he a function of only two variables:

and @,,rl . The choice of these two variables is not
arbitraq; they are the only variables that we use when wi t -
ing a non-learning feedback controller that stabilizes the
oscillation. We also constrain the policy to he symmetric
- the controller for the left ankle is simply a mirror image
of the controller for the right ankle. Therefore, the learned
control policy only has a single output. The value function
i! approximated as a function of only a single variable:
OT0li. This very low dimensionality allows the algorithm to
train very quickly.

The control policy and value functions are both rep-

.. -
coding for our approximato! basis functions: 35 tiles for
the policy (5 in t ' F o ~ ~ x 7 in O r 0 l ~) and 11 tiles for the value
function.

learning, we hand-designed a simple controller to place the
robot in random initial conditions on the retum map. The
random distribution is biased according to the distribution
of points that the robot has already experienced on the

N N-1

zz (n) ym-" (r p " (x (m + 1)) - p.(x(m))) In order to make the robot explore the state space during
n=o WL=n

N - W

retum map - the most likely initial condition is the state
that the robot experienced least often. We use this controller

'\'

J to randomly reinitialire the robot every time that it comes
to a halt standing still, or every 10 seconds, whichever
comes first. This heuristic makes the distribution on the
re" map more uniform, and increases the likelihood of
the algorithm converging on the same policy each time that
it learns from a blank slate.

"=O

N-W

By this derivation, we can see that the average of the
weight update given in equations 8-1 1 is in the direction

2852

VII. EXPERIMENTAL RESULTS
When the learning begins, the policy parameters, w, are

set to 0 and the baseline parameters, v, are initialized so
that jv(x) s e. We typically train the robot on flat
terrain using short trials with random initial conditions.
During the first few trials, the policy does not restore
sufficient energy into the system, and the robot comes to
a halt standing still. Within a minute of training, the robot
achieves f w t clearance on nearly every step; this is the
minimal definition of walking on this system. The learning
easily converges to a robust gait with the desired fixed point
on the return map within 20 minutes (approximately 960
steps at 0.8 Hz). Error obtained during leaming depends on
the random initial conditions of each trial. and is therefore

Conlroller
Passive walking

(63 trials)
Hand-designed

a very noisy stochastic variable. For this reason, in Figure
2 we plot a typical learning curve in terms of the average
error per step. Figure 3 plols a typical trajectory of the
learned controller walking on flat terrain. Figure 4 displays
the final policy.

Eigenvalues
0.88+0.01i, 0.75,0.66+0.03i,

0.54, 0.36, 0.32 i 0.132
0.80.0.60, 0.49f0.04i.0.36.

return map for our 9 DOF robot is 17 dimensional (9 States
+ 9 derivatives - I) , and the projection of these dynamics
onto a single dimension is difficult to intelpret. The plots in
Figure 5 where made with the robot walking in place on flat
terrain. In this particular situation, most of the return map
variables are close to zero throughout the dynamics, and a
two dimensional return map captures the desired dynamics.
As expected, before learning the return map illustrates a
single fixed point at OTo!, = 0, which means the robot is
standing still. After le-ing, we obtain a single fixed point
at the desired value (Q,,,! = 1.0 radians I second), and the
hasin of atlraclion of this fixed point extends over the enlire
domain that we tested. On the rare occasion that the robot
falls over, the system does not return to the map and stops
producing p in t s on this graph.

feed-fonvwd (89 trials)

.^_

0.25, 0.20 i 0.01%, 0.01

0.01

0.03
0.02

0.01

4.0,

4.02

4.m
4 .w

4 . 5 0.5

(42 trials)
Fig. 4. Lamed feedback control policy ur.Roil = rw(?)

In Figure 5 we plot the return maps of the system before
learning (w = 0) and after 1000 steps. In general, the

0.30 i 0.02~. 0.15, 0.07

Fig. 5. Expehmenrd rerum maps. before (lefl) and afler (tight) learning.
Filed poinrs exisr ai the inlersections of rhe m u m map (blue) and rhe
m or siope OX (w .

To quantify thc stability of thc learned controller, wc
measure the eigenvalues of the return map. Linearizing
around the fixed point in Figure 5 suggests that the system
has a single eigenvalue of 0.5. To obtain the eigenvalues of
the return map when the robot is walking, we run the robot
from a large number of initial conditions and record the
return map trajectories x'(n), 9x 1 vectors which represent
the slate of the system (with fixed ankles) on the nth
crossing of the ith trial. For each trial we estimate xi(m),
the equilibrium of Lhe return map. Finally, we perform a
least squares fit of the matrix A to satisfy the relation

[xi(n+l)-2'(cn)] =A[Xi((n)-xi((m)]

The eigenvalues of A for the leamed controller and for
our hand-designed controllers (described in [I I]) are:

feedback (58 I d s) I 0.20 f0.01i. 0.01
Learned feedback IO.74iO.O5i , 0.53-t0.09i,0.43,

2853

largely governed by the largest eigenvalues. This analysis
suggests that our learned controller converges to the steady
state trajectory more quickly that the passive walker on
a ramp and more quickly than any of our hand-designed
controllers.

Our stochastic policy gradient algorithm solves the tem-
poral credit assignment problem in by accumulating the
eligibility within a step and discounting eligibility between
steps. Interestly, our algorithm performs best with heavy
discounting between steps (0 5 y 5 0.2). This suggests
that our one dimensional value estimate does a good job
of isolating the credit assignment to a single step.

While it took a few minutes to learn a controller from
a blank slate, adjusting the learned controller to adapt to
small changes in the terrain appears to happen very quickly.
The non-learning controllers require constant attention and
small manual changes to the parameters as the robot
walks down the hall, on tiles, and on carpet. The learning
controller easily adapts to these situations.

VIII. DISCUSSION

Designing our robot like a passive dynamic walker
changes the learning problem in a number of ways. It
allows us to learn a policy with only a single output which
controlled a 9 DOF system, and allows us to formulate the
problem on the retum map dynamics. It also dramatically
increases the number of policies in the search space which
could generate stable walking. The leaming algorithm
works extremely well on this simple robot, but will the
technique scale to more complicated robots?

One factor in our success was the formulation of the
learning problem on the discrete dynamics of the retum
map instead of the continuous dynamics along the entire
trajectory. This foimulation relies on the fact that our pas-
sive walker produces periodic trajectories even before the
leaming begins. It is possible for passive walkers to have
knees and arms [13], or on a more traditional humanoid
robot this algorithm could be used to augment and improve
and existing walking controller which produces nominal
walking trajectories.

As the number of degrccs of frecdom incrcascs, the
stochastic policy gradient algorithm may have problems
with scaling. The algorithm correlates changes in the policy
parameters with changes in the performance on the retum
map. As we add degrees of freedom, the assignment of
credit to a particular actuator will become more difficult,
requiring more leaming trials to obtain a good estimate
of the correlation. This scaling problem is an open and
interesting research question and a primary focus of our
cument research.

IX. CONCLUSIONS

We have presented a learning formulation and learning
algorithm which works very well on our simplified 3D
dynamic biped. The robot begins to walk after only one
minute of learning from a blank slate, and the learning
converges to the desired trajectory in less than 20 minutes.
This learned controller is quantifiably more stable, using

the eigenvalues of the retum map, than any controller we
were able to derive for tbe same robot by hand. Once the
controller is learned, lo robot is able to quickly adapt to
small changes in the terrain.

Building a robot to simplify the learning allowed us
to gain some practical insights into the learning problem
for dynamic bipedal locomotion. Implementing these al-
gorithms on the real robot proved to be a very different
problem than working in simulation. We would like to take
two basic directions to continue this research. First, we
are removing many of the simplifying assumptions used
in this paper (such as the decomposed control policy) to
better approximate optimal walking on this simple platform
and to test our leaming controller's ability to compensate
for rough terrain. Second, we are scaling these results up
to more sophisticated bipeds, including a passive dynamic
walker with knees and humanoids that already have a hasic
control system in place.

ACKNOWLEDGMENTS
This work was supported by the David and Lucille

Packard Foundation (contract 99-1471). thc National Sci-
ence Foundation (grant CCR-0122419). Special thanks
to Ming-fai Fong and Derrick Tan for their help with
designing and building the experimental platform.

REF ER EN C E S

[I1 1. Morimara and C. Atkeson. "Minimax differential dynamic pro-
gramming: An application (0 robust biped umkng." N e u d
LRfonnation Pmessing Systems. 2002.

[2] W. T. Miller, m, 'Real-time "cud network cohtml of a biped
u'akng mbot:' IEEE Conrml Systems Muga;ine. vol. 14, no. I.
pp. 41-48. Feb 1994.

[3] 11. Benbrahim and I. A. Franklin, "Biped dynamic w&g
using reinforcement learning," Rohorirr and Aulonomovr Sysfem,
vol. 22. pp. 283-302. 1997.

[41 N. Kohl and P. Stone. "Policy gradienl reinforcemenr le-ng for
fast quadrupedal locomotion." IEEE htemrional Conference on
Roborics and Auromation. 2004.

[SI T. McGeer, "Passive dynmic w W g : ' Inremoiionol Joumol ,#
Rohorics Reseorck. vol. 9. no. 2. OD. 62-82. Aoril 1990.

[6] M. I. Colcman and A. Ruina, "&uncontroll& toy mat can walk
but cannot stand still," Phwicol Revim Lefler~. vol. 80, no. 16.
pp. 3658 ~ 3661, April 1998

[7l H. Kl" and S. Kobayashi. 'An analysis Of actorlcntic algonrhms
using eligibility wccs: Reinforcement l aming with impe!fect value
functions." lntemational Conference on Machine LeaMng OCML
'981, 1998, pp. 278-286.

[8] 1. Baxrer and P. Banlert, "lnhite-horizon policy-gradient
estimation," Joumol oJAn$&l lnlelligancr Research, vol. 15, pp.
319-350, I 1 2001.

191 R. S. Sutran, D. McAUcrIer, S. Singh, and Y. Mansour,
"Policy gradient methods Cor reinforcemeni le-g with function
approximation:' Advances in Neural Information Processing
Sysrems, 1999.

1101 1. E. W h n . " W W e mv:' United Sraier Parent Office. Tech. . .
Rep.. October 15 1936.- .

[I I] R. Tedrake, T. W. Zhang, M. Fong, and H. S. Seung, "Actuating a
simple 3d passive dynamic wualker." IEEE Intemational Conference
on Robotics and Automation, 2004.

I121 R. Willians. "Simple staristical gradient-following algonihmr for
connectionist reinforcement le-g:' Macliinr Learning. vol. 8,
pp. 229-256, 1992.

1131 S. H. Collins. M. Wisse. and A. Ruin4 "A three-dimensional
parrive-dynamic waking mbot with two legs and knees,"
lnlemorional Jmml of Rohotio Rereank, vol. 20, no. 7. pp.
607415, July 2001.

2854

