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Absboet-We present a learning system which Is able to 
quickly and reliably acquire a robust feedback control policy 
Tor 3D dynamic walking from a blank-slate using only trials 
implemented on our physical rohol. The robot begins walking 
within a minute and learning converges in approximately 20 

may have an effect on the performance many steps into the 
future, 

Although there is a great deal of literature on learning 

adapt to the terrain as it walks. ([Z], [3]). In this paper we generalize these results to 

I. INTRODUCTION 

Recent advances in bipedal walking technology have 
produced robots capable of leaving the laboratory en- 
vironment to interact with the unknown and uncertain 
environments of the real world. Despite our best efforts, 
it is unlikely that we will he able to preprogram these 
robots for every possible situation without sacrificing per- 
formance. Endowing our robots with the ability to learn 
from experience and adapt to their environment seems 
critical for the success of any real world robot. 

Dynamic bipedal walking is difficult to learn for a 
number of reasons. First, walking robots typically have 
many degrees of freedom, which can cause a combinatorial 
explosion for learning systems that attempt to optimize 
performance in every possible configuration of the robot. 
Second, details of the robot dynamics such as uncertainties 
in the ground contact and nonlinear friction in the joints 
are difficult to model well in simulation, making it unlikely 
that a controller optimized in a simulation will perform 
optimally on the real robot. Since it is only practical to 
run a small number of learning vials on the real robot, 
the learning algorithms must perform well after obtaining 
a very limited amount of data. Finally, learning algorithms 
for dynamic walking must deal with dynamic discontinu- 
ities caused by collisions with the ground and with the 
problem of delayed reward - torques applied at one time 

obtaining a controller from scratch instead of tuning an 
existing controller. Leaming control has also been suc- 
cessfully implemented on Sony's quadrupedal robot AIBO 
(i.e., [4]). The learned controllers for AIBO are open-loop 
trajectories, but trajectory feedback is essential for robust, 
dynamic, bipedal walking. 

In order to study learning feedback control for walking, 
we performed our initial experiments on a simplified robot 
which captures the essence of dynamic walking but which 
minimizes many of the complications. Our robot has only 
6 internal degrees of freedom and 4 actuators'. The me- 
chanical design of our robot is based on a passive dynamic 
walker ([51, 161). This allows us to solve a portion of the 
control problem in the mechanical design, and makes the 
robot mechanically veiy stable; most policies in our search 
space result in either stable walking or failed walking 
where the robot ends up simply standing still. 

The learning on our robot is performed by a policy 
gradient reinforcement learning algorithm ([71, [81, [SI). 
The goal of this paper is to describe our formulation of the 
learning problem and the algoiithm that we use to solve 
it. We include our experimental resulvj on this simplified 
biped, and discuss the possibility of applying the same 
algorithm to a more complicated walking system. 
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Fig. 1. 
mbot on the right is our actuated version of the same robot. 

The mbot on the le* is a simple passive dynamic walker. The 

11. THEROBOT 
The passive dynamic walker shown on the left in Figure 

1 represents the simplest machine that we could build 
which captures the essence of stable dynamic walking in 
three dimensions. It has only a single passive pin joint 
at the hip. When placed at the top of a small ramp and 
given a push sideways, the walker will begin falling down 
the ramp and eventually converge to a stable limit cycle 
trajectory that has been compared to the waddling gait of 
a penguin [IO]. The energetics of this passive walker are 
common to all passive walkers: energy lost due to friction 
and collisions when the swing leg returns to the ground 
is balanced by the gradual conversion of potential energy 
into kinetic energy as the walker moves down the slope. 
The mechanical design of this robot and some experimental 
stability results arc presented in [ I  I]. 

We designed our leaning robot by adding a small 
number of actuators to this passive design. The robot shown 
on the right in figure 1, which is also described in [ I l l ,  
has passive joints at the hip and 2 degrees of actuation (roll 
and pitch) at each ankle. The ankle actualom are position 
controlled S ~ N O  motors which, when commanded to hold 
their zero position, allow the actuated robot to walk stably 
down a small ramp, "simulating" the passive walker. The 
shape of the large, curved feet is  designed to make the robot 
walk passively at 0.8Hz, and to take steps of approximately 
6.5 cm when walking down a ramp of 0.03 radians. The 
robot stands 44 cm tall and weighs approximatcly 2.9 
kg, which includes the CPU and batteries that are canied 
on-board. The most recent additions to this robot are 
the passive arms, which are mechanically coupled to the 
opposite leg to provide mechanical yaw compensation. 

When placed on flat terrain, the passive walker waddles 
hack and forth, slowly losing energy, until it comes to rest 
standing still. In order to achieve stable walking on flat 
terrain, the actuators on OUT learning robot must restore 
energy into the system that would have been restored by 
gravity when walking down a slope. 

'The standard for 3D bipeds is to have at least 12 inremal degrees of 
freedom and 12 BC!UIOIS in  ,he legs 

111. THE LEARNING PROBLEM 
The goal of learning is to acquire a feedback control 

policy which makes the robot's gait invariant to small 
slopes. In total, the system has 9 degrees of freedom2, and 
the equations of motion can he written in the form 

H(q)q+C(q;i l ) i l+G(q)=r+D(t) ,  (1 )  

where 

q =[@yaw, OIPitch; ObPitch: Orpitch, O ~ o l l >  

&aRoll, &Roll: &Pitch, @ h P i t c h l T ;  
T T =[o,o,o, O , T ~ a R o l l ; ~ o R o l l : T ~ r a P i t c h ,  %Pitch] . 

H is the state dependent inertial matrix, C contains inter- 
action torques between the links, G represents the effect 
of gravity, r are the motor torques, and D are random 
disturbances to the system. Our shorthand lPitch, bPitch, 
and rPitch refer to left leg pitch, body pitch, and right leg 
pitch, respectively. raRoll, laRoll, rapitch, and lapitch 
are short for right and left ankle roll and pitch. The actual 
output of the controller is a motor command vector 

T 
U = [%aRoIl, UloRoll; UraPi tch ,  UloPi ich]  i 

which generates torques 

7 = h(q:il,u). 

The function h describes the linear feedback controller im- 
plemented by the sew0 boards and the nonlinear kinematic 
transformation into joint torques. 

The robot uses a deterministic feedback control policy 
which is represented using a linear function approximator 
parameterized by vector w and using nonlinear features 9: 

U = TW(.2) = Cw&(n) ,  with x = 
i 

The notation 2 represents a noisy estimate or the state x. 
Before leaning, w is initialized to all zeros, making the 
policy outputs zero everywhere, so that the robot simulates 
the passive walker. 

To quantify the stability of our nonlinear, stochastic, 
periodic trajectory, we consider the dynamics on the return 
map, taken around the point where &,lI = 0 and OT0u > 0. 
The return map dynamics arc a Markov random sequcnce 
with the probability at the (n + 1)th crossing of the return 
map given by 

f",(x',x) = PIX( ,+ 1) = x'lX(n) = x:W(n) = w}. 
(3) 

f",(x', x) represents the probability density function over 
the state space which contains the dynamics in equations 
1 and 2 integrated over one cycle. We do not make any 
assumptions about its fonn, except that it is Markov. Note 
that the element of fw representing Oroii is the delta 
function, independent of x. The return map dynamics are 

26 inremal DOFs and 3 DOFs for the mbOt'I orientation. We assume 
that the mbot is always in contact with the ground at a single point. 
and infer the robot's absolute (z, y) poritian in space directly from the 
remaining variables. 
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represented as a Markov chain that depends on the param- 
eter vector w instead of the equivalent Markov decision 
process for simplification because the feedback controller 
is evaluated many times during a single step (our controller 
runs at 100 Hz and our robot steps at around 0.8 Hz). The 
stochasticity in fw comes from the random disturbances 
D(t) and the state estimation error, x - x. 

The cost function for learning uses a constant desired 
value, xd, on the return map: 

(4) 
1 
2 

g(x) = --/x - xy. 

This desired value can be considered a reference trajectoly 
on the return map, and is taken from the gait of the walker 
down a slope of 0.03 radians; no reference trajectory is 
required for the limit cycle between steps. For a given 
trajectory? = [%(0),2(1): ..., x ( N ) ] ,  we define the average 
COS1 

(5 )  
l N  

G ( i )  = - Cs(W). 

Our goal is to find the parameter vector w which mininuzes 
"4 

lim E {G(?)} 
N--u 

By minimizing this error, we are effectively minimizing the 
eigenvalues of return map, and maximizing the stability of 
the desired limit cycle. 

1v. THE LEARNING ALGORITHM 

The leaming algorithm is a statistical algorithm which 
makes small changes to the control parameters w on each 
step and uses correlations between changes in w and 
changes in the return map error to climb the performance 
gradient. This can be accomplished with a very simple 
online leaming rule which changes w with each step that 
the robot takes. The particular algorithm that we present 
here was originally proposed by [71. We present a thorough 
derivation of this algorithm in the next section. 

The algorithm makes use of an intermediate represen- 
tation which we call the salue function, J(x). The value 
of state x is the expected average cost to be incurred by 
following policy ?iw starting from state x: 

jv(x) is an estimate of the value function parameterized 
by vector v. This value estimate is represented in another 
function approximator: 

During learning, we add stochasticity to our deter- 
ministic control policy by varying w. Let Z(n)  be 
a Gaussian random vector with E{Zj (n ) }  = 0 and 
E{Zi(n)Zj(n')} = ~ ~ 6 ~ ~ 6 , ~ ~ .  During the nth step that the 
robot takes. we exzaluate the controller using the parameter 
vector w'(n) = w(n)+z(n). The algorithm uses a storage 
variable, e(n), which we call the eligibility trace. We begin 

with w(0) = e(0) = 0. At the end of the nth step, we make 
the updates: 

~ ( 4  =9 (X(n)) + dv (qn + I)) - jv ( a ( n ) )  (8) 
ei(n) =yei(n - 1) + 4(n) z i (n )  (9) 

Awi(n.) = - qw6(n)ei(n) (10) 
Aui(n) =~F(nM(k(n) ) .  (11) 

qw 2 0 and ?lo 2 0 are the leaming rates and y is 
the discount lactor 01 the eligibility trace, which will be 
discussed in more detail in the algorithm derivation. bi(n) 
is a boolean one step eligibility, which is 1 if the parameter 
wi is activated (#i(x) > 0) at any point during step n and 
0 otherwise. 6(n) is called the one step remporal difference 
error. 

The algorithm can he understood intuitively. On each 
step the robot receives some cost g(k (n) ) .  This cost is 
compared to cost that we expect to receive, as estimated 
by JY(x). If the cost is lower than expected, then -$(n) 
is positive, so we add a scaled version of the noise 
terms, zi, into m i .  Similarly, if the cost is higher than 
expected, then we move in the opposite direction. This 
simple online algorithm performs approximate stochastic 
gradient descent on the expected value of the average 
infinite-horizon cost. 

V. ALGORITHM DERIVATION 

The expected value of the average cost, G, is given by: 

E{G(2)} = LG(P)P,,.,{X = i } d i  

The probability of trajectory ? is 

N - l  

P+(X = i }  = P{X(O) = X(O)} n fw,(i(n+l)>n(n)) 
"=O 

Taking the gradient of E{G(?)) with respect to w we find 

Recall that fw,(x',x) is a complicated function which 
includes the integrated dynamics of the controller and the 
robot. Nevertheless, 6 log fw. is simply: 

-log a fw.(x'(m+l),x(m)) = 
ami  

a 
- aw, log pyx = X'lX = X> W' = W'}Pw{W' = 
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Substituting, we have of the performance gradient: 

Iim --E 1 x A w i ( n )  % -q lim -E{G(?)}. a 
N-wN {"r0 } N - m a W i  

This final reduction is based on the observation that 
E{g(B(n))C&,&(m)} = 0 (noise added to the con- 
troller on or after step n is not correlated to the cost at step 
n). Similarly, random changes to a weight that is not used 
during the nth step (bt(m) = 0) have zero expectation, and 
can he excluded from the sum. 

Observe that the variance of this gradient estimate grows 
without hound as iV -t cc [81. To hound the variance, we 
use a biased estimate of this gradient which artificially 
discounts the eligibility trace: 

N 

a 
-E{G(?)}  % aw, 

with 0 5 y 5 1. The discount factor y parameterizes the 
bias-variance trade-ow. 

Next, observe that we can 'subtract any mean zero 
baseline from this quantity without effecting the expected 
value of our estimate [12]. Including this baseline can 
dramatically improve the performance of our algorithm 
because it can reduce the variance of our gradient estimate. 
In panicular, we subtract a mean-zero term containing an 
estimate of the value function as recommended by L71: 

a 
lim --E{G(i)} 'J 

N-maw, 
I h l  h/ 

resented using linear function approximators of the form 
described in Equations 2 and 7, which are iast and very 
convenient to initialize. We use a non-overlamine tile- 

'. 
- c Q r ( x ( n ) ) z + ( n )  

"=O 
I /Lr 

VI. LEARNING IMPLEMENTATION 
In our initial implementation of the algorithm, we de- 

cided to further simplify the problem by decomposing 
the control in the frontal and sagittal planes. In this 
decomposition, the ankle roll actuators are responsible for 
stabilizing the oscillations of the robot in the frontal plane. 
The ankle pitch actuators cause the robot to lean forward or 
backward, which moves the position of the center of mass 
relative to the ground contact point on the foot. Because 
the hip joint on our robot is passive, if the center of mass is 
in front of the ground contact when the swing foot leaves 
the ground, then the robot will begin to walk fonvard. The 
distance of between the center of mass and the ground 
contact is monotonically related to the step size and to the 
walking speed. 

Due to the simplicity of the saginal plane control, we 
only need to learn a control policy for the two ankle roll 
actuators which stabilize the roll oscillation in the frontal 
plane. This strategy will change as the robot walks at 
different speeds, but we hope the learning algorithm will 
adapt quickly enough to compensate for those differences. 

With these simplifications in mind, we constrain the 
feedback policy to he a function of only two variables: 

and @,,rl .  The choice of these two variables is not 
arbitraq; they are the only variables that we use when wi t -  
ing a non-learning feedback controller that stabilizes the 
oscillation. We also constrain the policy to he  symmetric 
- the controller for the left ankle is simply a mirror image 
of the controller for the right ankle. Therefore, the learned 
control policy only has a single output. The value function 
i! approximated as a function of only a single variable: 
OT0li.  This very low dimensionality allows the algorithm to 
train very quickly. 

The control policy and value functions are both rep- 

.. - 
coding for our approximato! basis functions: 35 tiles for 
the policy (5 in t ' F o ~ ~  x 7 in O r 0 l ~ )  and 11 tiles for the value 
function. 

learning, we hand-designed a simple controller to place the 
robot in  random initial conditions on the retum map. The 
random distribution is biased according to the distribution 
of points that the robot has already experienced on the 

N N-1 

zz (n)  ym-" ( r p " ( x ( m  + 1)) - p.(x(m))) In order to make the robot explore the state space during 
n=o WL=n 

N - W  

retum map - the most likely initial condition is the state 
that the robot experienced least often. We use this controller 

'\' 

J to randomly reinitialire the robot every time that it comes 
to a halt standing still, or every 10 seconds, whichever 
comes first. This heuristic makes the distribution on the 
re" map more uniform, and increases the likelihood of 
the algorithm converging on the same policy each time that 
it learns from a blank slate. 

"=O 

N-W 

By this derivation, we can see that the average of the 
weight update given in equations 8-1 1 is in the direction 

2852 



VII. EXPERIMENTAL RESULTS 
When the learning begins, the policy parameters, w, are 

set to 0 and the baseline parameters, v, are initialized so 
that jv(x) s e. We typically train the robot on flat 
terrain using short trials with random initial conditions. 
During the first few trials, the policy does not restore 
sufficient energy into the system, and the robot comes to 
a halt standing still. Within a minute of training, the robot 
achieves f w t  clearance on nearly every step; this is the 
minimal definition of walking on this system. The learning 
easily converges to a robust gait with the desired fixed point 
on the return map within 20 minutes (approximately 960 
steps at 0.8 Hz). Error obtained during leaming depends on 
the random initial conditions of each trial. and is therefore 

Conlroller 
Passive walking 

(63 trials) 
Hand-designed 

a very noisy stochastic variable. For this reason, in Figure 
2 we plot a typical learning curve in terms of the average 
error per step. Figure 3 plols a typical trajectory of the 
learned controller walking on flat terrain. Figure 4 displays 
the final policy. 

Eigenvalues 
0.88+0.01i, 0.75,0.66+0.03i, 

0.54, 0.36, 0.32 i 0.132 
0.80.0.60, 0.49f0.04i.0.36. 

return map for our 9 DOF robot is 17 dimensional (9 States 
+ 9 derivatives - I ) ,  and the projection of these dynamics 
onto a single dimension is difficult to intelpret. The plots in 
Figure 5 where made with the robot walking in place on flat 
terrain. In this particular situation, most of the return map 
variables are close to zero throughout the dynamics, and a 
two dimensional return map captures the desired dynamics. 
As expected, before learning the return map illustrates a 
single fixed point at OTo!, = 0, which means the robot is 
standing still. After le-ing, we obtain a single fixed point 
at the desired value (Q,,,! = 1.0 radians I second), and the 
hasin of atlraclion of this fixed point extends over the enlire 
domain that we tested. On the rare occasion that the robot 
falls over, the system does not return to the map and stops 
producing p in t s  on this graph. 

feed-fonvwd (89 trials) 

.^_ 

0.25, 0.20 i 0.01%, 0.01 

0.01 

0.03 
0.02 

0.01 

4.0, 

4.02 

4.m 
4 .w  

4 . 5  0.5 

(42 trials) 
Fig. 4. Lamed feedback control policy ur.Roil = rw(?) 

In Figure 5 we plot the return maps of the system before 
learning (w = 0) and after 1000 steps. In general, the 

0.30 i 0.02~. 0.15, 0.07 

Fig. 5. Expehmenrd rerum maps. before (lefl) and afler (tight) learning. 
Filed poinrs exisr ai the inlersections of rhe m u m  map (blue) and rhe 
m or siope OX ( w .  

To quantify thc stability of thc learned controller, wc 
measure the eigenvalues of the return map. Linearizing 
around the fixed point in Figure 5 suggests that the system 
has a single eigenvalue of 0.5. To obtain the eigenvalues of 
the return map when the robot is walking, we run the robot 
from a large number of initial conditions and record the 
return map trajectories x'(n), 9x  1 vectors which represent 
the slate of the system (with fixed ankles) on the nth 
crossing of the ith trial. For each trial we estimate xi(m), 
the equilibrium of Lhe return map. Finally, we perform a 
least squares fit of the matrix A to satisfy the relation 

[xi(n+l)-2'(cn)] =A[Xi((n)-xi((m)] 

The eigenvalues of A for the leamed controller and for 
our hand-designed controllers (described in [ I  I]) are: 

feedback (58 I d s )  I 0.20 f0.01i. 0.01 
Learned feedback IO.74iO.O5i ,  0.53-t0.09i,0.43, 
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largely governed by the largest eigenvalues. This analysis 
suggests that our learned controller converges to the steady 
state trajectory more quickly that the passive walker on 
a ramp and more quickly than any of our hand-designed 
controllers. 

Our stochastic policy gradient algorithm solves the tem- 
poral credit assignment problem in by accumulating the 
eligibility within a step and discounting eligibility between 
steps. Interestly, our algorithm performs best with heavy 
discounting between steps (0 5 y 5 0.2). This suggests 
that our one dimensional value estimate does a good job 
of isolating the credit assignment to a single step. 

While it took a few minutes to learn a controller from 
a blank slate, adjusting the learned controller to adapt to 
small changes in the terrain appears to happen very quickly. 
The non-learning controllers require constant attention and 
small manual changes to the parameters as the robot 
walks down the hall, on tiles, and on carpet. The learning 
controller easily adapts to these situations. 

VIII. DISCUSSION 

Designing our robot like a passive dynamic walker 
changes the learning problem in a number of ways. It 
allows us to learn a policy with only a single output which 
controlled a 9 DOF system, and allows us to formulate the 
problem on the retum map dynamics. It also dramatically 
increases the number of policies in the search space which 
could generate stable walking. The leaming algorithm 
works extremely well on this simple robot, but will the 
technique scale to more complicated robots? 

One factor in our success was the formulation of the 
learning problem on the discrete dynamics of the retum 
map instead of the continuous dynamics along the entire 
trajectory. This foimulation relies on the fact that our pas- 
sive walker produces periodic trajectories even before the 
leaming begins. It is possible for passive walkers to have 
knees and arms [13], or on a more traditional humanoid 
robot this algorithm could be used to augment and improve 
and existing walking controller which produces nominal 
walking trajectories. 

As the number of degrccs of frecdom incrcascs, the 
stochastic policy gradient algorithm may have problems 
with scaling. The algorithm correlates changes in the policy 
parameters with changes in the performance on the retum 
map. As we add degrees of freedom, the assignment of 
credit to a particular actuator will become more difficult, 
requiring more leaming trials to obtain a good estimate 
of the correlation. This scaling problem is an open and 
interesting research question and a primary focus of our 
cument research. 

IX. CONCLUSIONS 

We have presented a learning formulation and learning 
algorithm which works very well on our simplified 3D 
dynamic biped. The robot begins to walk after only one 
minute of learning from a blank slate, and the learning 
converges to the desired trajectory in less than 20 minutes. 
This learned controller is quantifiably more stable, using 

the eigenvalues of the retum map, than any controller we 
were able to derive for tbe same robot by hand. Once the 
controller is learned, lo robot is able to quickly adapt to 
small changes in the terrain. 

Building a robot to simplify the learning allowed us 
to gain some practical insights into the learning problem 
for dynamic bipedal locomotion. Implementing these al- 
gorithms on the real robot proved to be a very different 
problem than working in simulation. We would like to take 
two basic directions to continue this research. First, we 
are removing many of the simplifying assumptions used 
in this paper (such as the decomposed control policy) to 
better approximate optimal walking on this simple platform 
and to test our leaming controller's ability to compensate 
for rough terrain. Second, we are scaling these results up 
to more sophisticated bipeds, including a passive dynamic 
walker with knees and humanoids that already have a hasic 
control system in place. 
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