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Abstract— We present a control approach that uses a library
of trajectories to establish a global control law or policy. This
is an alternative to methods for finding global policies based
on value functions using dynamic programming and also to
using plans based on a single desired trajectory. Our method
has the advantage of providing reasonable policies much faster
than dynamic programming can provide an initial policy. It also
has the advantage of providing more robust and global policies
than following a single desired trajectory. Trajectory libraries
can be created for robots with many more degrees of freedom
than what dynamic programming can be applied to as well as
for robots with dynamic model discontinuities. Results are shown
for the “Labyrinth” marble maze, both in simulation as well as
a real world version. The marble maze is a difficult task which
requires both fast control as well as planning ahead.

I. INTRODUCTION

Finding a policy, a control law mapping states to actions,
is essential in solving many problems with inaccurate or
stochastic models. By knowing how to act for all or many
states, an agent can cope with unexpected state transitions.
Unfortunately, methods for finding policies based on dynamic
programming require the computation of a value function over
the state space. This is computationally very expensive and
requires large amounts of fast memory. Furthermore, finding
a suitable representation for the value function in continuous or
very large discrete domains is difficult. Discontinuities in the
value function or its derivative are hard to represent and can
result in unsatisfactory performance of dynamic programming
methods. Finally, storing and computing this value function is
impractical for problems with more than a few dimensions.

When applied to robotics problems, dynamic programming
methods also become inconvenient as they cannot provide a
“rough” initial policy quickly. In goal directed problems, a
usable policy can only be obtained when the value function
has almost converged. The reward for reaching the goal has to
propagate back to the starting state before the policy exhibits
goal directed behavior from this state. This may require many
sweeps. If only an approximate model of the environment
is known, it would be desirable to compute a rough initial
policy and then spend more computation after the model has
been updated based on experience gathered while following
the initial policy.

In some sense, using dynamic programming is both too
optimistic and too pessimistic at the same time: it is too
optimistic because it assumes the model is accurate and spends
a lot of computation on it. At the same time, it is too

pessimistic, as it assumes that one needs to know the correct
behavior from any possible state, even if it is highly unlikely
that the agent enters certain parts of the state space.

Fig. 1. A library of trajectories (thick arrows) is used to create global policy
(thin arrows) by nearest-neighbor look up

To avoid the computational cost of global and provably sta-
ble control law design methods such as dynamic programming,
often a single desired trajectory is used, with either a fixed
or time varying linear control law. The desired trajectory can
be generated manually, generated by a path planner [1], or
generated by trajectory optimization [2]. For systems with
nonlinear dynamics, this approach may fail if the actual
state diverges sufficiently from the planned trajectory. Another
approach to making trajectory planners more robust is to use
them in real time at fixed time intervals to compute a new
plan from the current state. For complex problems, these plans
may have to be truncated (N step lookahead) to obey real time
constraints. It may be difficult to take into account longer term
outcomes in this case. In general, single trajectory planning
methods produce plans that are at best locally optimal.

To summarize, we would like an approach to finding a
control law that, on the one hand, is more anytime [3] than



dynamic programming - we would like to find rough policies
quickly and expend more computation time only as needed.
On the other hand, the approach should be more robust than
single trajectory plans.

In order to address these issues, we propose a representation
for policies and a method for creating them. This representa-
tion is based on libraries of trajectories. Figure 1 shows a
simple grid world example with eight possible actions (N,
E, S, W, NE, SE, SW, NW). The cross marks the goal and
the dark 3x3 region is an obstacle. The thick arrows show
the two trajectories which make up the library. These paths
can be created very quickly using forward planners such as
A* or Rapidly exploring Random Trees (RRT) [1]. These
trajectories may be non-optimal or locally optimal depending
on the planner used, in contrast to the global optimality of
dynamic programming.

Once we have a number of trajectories and we want to
use the agent in the environment, we turn the trajectories into
a state-space based policy by performing a nearest-neighbor
search in the state-space for the closest trajectory fragment
and executing the associated action. In the discrete example
environment of Figure 1 we have designated the resulting
policy for all states using thin arrows. For large parts of the
environment, marked by the thick borders, the resulting policy
leads to the goal.

II. RELATED WORK

Using libraries of trajectories for generating new action
sequences has been discussed in different contexts before.
Especially in the context of generating animations, motion
capture libraries are used to synthesize new animations that
do not exist in that form in the library [4], [5]. However,
since these systems are mainly concerned with generating
animations, they are not concerned with the control of a real
world robot and only string together different sequences of
configurations, ignoring disturbances or inaccuracies.

Another related technique in path planning is the creation
of Probabilistic Roadmaps (PRMs) [6]. The method presented
here and PRMs have some subtle but important differences.
Most importantly, PRMs are a path planning algorithm. Our
algorithm, on the other hand, is concerned with turning a li-
brary of paths into a control law. Internally, PRMs precompute
bidirectional plans that can go from and to a large number of
randomly selected points. However, the plans in our library
must all go to the same goal. As such, the nature of the PRM’s
“roadmap” is very different than the kind of library we require.
Of course, PRMs can be used as a path planning algorithm
to supply the paths in our library. Due to the optimization for
multiple queries, PRMs might be well suited for this and are
complementary to our algorithm.

Prior versions of a trajectory library approach, using a
modified version of Differential Dynamic Programming (DDP)
[7] to produce globally optimal trajectories can be found in [8],
[9]. This approach reduced the cost of dynamic programming,
but was still quite expensive and had relatively dense coverage.
The approach of this paper uses more robust and cheaper

trajectory planners and strives for sparser coverage. Good (but
not globally optimal) policies can be produced quickly.

III. CASE STUDY: MARBLE MAZE

Fig. 2. Original (left) and simulation (right)

The domain used for gauging the effectiveness of the new
policy representation and generation is the “Labyrinth” marble
maze domain (Figure 2). It consists of a plane with walls
and holes. A ball (marble) is placed on a specified starting
position and has to be guided to a specified goal zone by
tilting the plane. Falling into holes has to be avoided and
the walls both restrict the marble and can help it in avoiding
the holes. The simulation used in this project uses a four-
dimensional state representation (x, y, dx, dy) where x and y
specify the 2D position on the plane and dx, dy specify the 2D
velocity. Actions are also two dimensional (fx, fy) and are
force vectors to be applied to the marble. This is not identical
but similar to tilting the board. The physics are simulated as
a sliding block (simplifies friction and inertia). Collisions are
simulated by detecting intersection of the simulated path with
the wall and computing the velocity at the time of collision.
The velocity component perpendicular to the wall is negated
and multiplied with a coefficient of restitution of 0.7. The
frictional forces are recomputed and the remainder of the time
slice is simulated to completion. In order to provide for a more
realistic simulator and to gauge the robustness of the new type
of policy, Gaussian noise, scaled by the speed of the marble,
was added to the applied force in the simulator. A higher-
dimensional marble maze simulator was used by Bentivegna
[10]. In Bentivegna’s simulator the current tilt of the board is
also part of the state representation.

Fig. 3. The real world maze

The experiments that were performed on the real world
maze used hobby servos for actuation of the plane tilt. An
overhead Firewire 30fps, VGA resolution camera was used



for sensing. The ball was painted bright red and the corners
of the labyrinth were marked with blue markers. After camera
calibration, the positions of the blue markers in the image
are used to find a 2D perspective transform for every frame
that turns the distorted image of the labyrinth into a rectangle.
The position of the red colored ball within this rectangle is
used as the position of the ball. Velocity is computed from
the difference between the current and the last ball position.
Noise in the velocity is quite small compared to the observed
velocities so we do not perform filtering to avoid adding
latency to the velocity signal. As in the simulator, actions are
represented internally as forces. These forces are converted
into board tilt angles, using the known weight of the ball.
Finally, the angles are sent to the servos as angular position.

IV. LIBRARY DETAILS

The key idea for creating a global control policy is to use a
library of trajectories, which can be created quickly and that
together can be used as a robust policy. The trajectories that
make up the library are created by established planners such
as A* or RRT. Since our algorithm only requires the finished
trajectories, the planner used for creating the trajectories is
interchangeable. For the experiment presented here, we used
an inflated-heuristic [11] A* planner. By overestimating the
heuristic cost to reach the goal, we empirically found planning
to proceed much faster because it favors expanding nodes that
are closer to the goal, even if they were reached sub-optimally.
This might not be the case generally [11]. We used a constant
cost per time step in order to find the quickest path to goal. In
order to avoid risky behavior and compensate for inaccuracies
and stochasticity, we added a cost inversely proportional to
the squared distance to the closest hole on each step. As basis
for a heuristic function, we used distance to the goal. This
distance is computed by a configuration space (position only)
A* planner working on a discretized grid with 2mm resolution.
The final heuristic is computed by dividing the distance to
the goal by an estimate of the distance that the marble can
travel towards the goal in one time step. As a result, we get
a heuristic estimate of the number of time steps required to
reach the goal.

Fig. 4. An example of pruning

The basic A* algorithm is adjusted to continuous domains
as described in [12]. The key idea is to prune search paths
by discretizing the state space and truncating paths that fall
in the same discrete “bin” as one of the states of a previously

expanded path (see figure 4 for an illustration in a simple car
domain). This limits the density of search nodes but does not
cause a discretization of the actual trajectories. Actions were
limited to physically obtainable forces of up to ±0.007N in
both dimension and discretized to a resolution of 0.0035N.
This resulted in 25 discrete action choices. For the purpose of
pruning the search nodes, the state space was discretized to
3mm spatial resolution and 12.5mm/s in velocity resolution.

The A* algorithm was slightly altered to speed it up. During
search, each node in the queue has an associated action
multiplier. When expanding the node, each action is executed
as many times as dictated by the action multiplier. The new
search nodes have an action multiplier that is incremented
by one. As a result, the search covers more space at each
expansion at the cost of not finding more optimal plans that
require more frequent action changes. In order to prevent
missed solutions, this multiplier is halved every time none of
the successor nodes found a path to the goal, and the node is
re-expanded using the new multiplier. This resulted in a speed
up in finding trajectories (over 10x faster). The quality of the
policies did not change significantly when this modification
was applied.

As the policy is synthesized from a set of trajectories,
the algorithms for planning the trajectories have a profound
impact on the policy quality. If the planned trajectories are
poor, the performance of the policy will be poor as well.
While in theory A* can give optimal trajectories, using it with
an admissible heuristic is often too slow. Furthermore, some
performance degradation derives from the discretization of the
action choices. RRT often gives “good” trajectories, but it is
unknown what kind of quality guarantees can be made for the
trajectories created by it. However, the trajectories created by
either planning method can be locally optimized by trajectory
optimizers such as DDP [7] or DIRCOL [2].

In order to use the trajectory library as a policy, we store
a mapping from each state on any trajectory to the planned
action of that state. During execution, we perform a nearest-
neighbor look up into this mapping using the current state to
determine the action to perform. In order to speed up nearest-
neighbor look ups, the mapping is stored using a kd-tree [13].

Part of the robustness of the policies derives from the
coverage of trajectories in the library. In the experiments on
the marble maze, we first created an initial trajectory from
the starting position of the marble. We use three methods for
adding additional trajectories to the library. First, a number of
trajectories are added from random states in the vicinity of the
first path. This way, the robot starts out with a more robust
policy. Furthermore, during execution it is possible that the
marble ceases making progress through the maze, for example
if it is pushed into a corner. In this case, an additional path is
added from that position. Finally, to improve robustness with
experience, at the end of every failed trial a new trajectory is
added from the last state before failure. If no plan can be found
from that state (for example because failure was inevitable), we
backtrack and start plans from increasingly earlier states until
a plan can be found. Computation is thus focused on the parts
of the state space that were visited but had poor coverage or



poor performance. In later experiments, the model is updated
during execution of the policy. In this case, the new trajectories
use the updated model. The optimal strategy of when to add
trajectories, how many to add, and from which starting points
is a topic of future research.

Finally, we developed a method for improving an existing
library based on the execution of the policy. For this purpose,
we added an additional discount parameter to each trajectory
segment. If at the end of a trial the agent has failed to achieve
its objective, the segments that were selected in the policy
leading up to the failure are discounted. This increases the
distance of these segments in the nearest-neighbor look up
for the policy and as a result these segments have a smaller
influence on the policy. This is similar to the mechanism
used in learning from practice in Bentivegna’s marble maze
work [10]. We also used this mechanism to discount trajectory
segments that led up to a situation where the marble is not
making progress through the maze.

V. EXPERIMENTS

Fig. 5. The two mazes, maze A and maze B, used for testing

We performed experiments on two different marble maze
layouts (Figure 5). The first layout (maze A) is a simple layout,
originally designed for beginners. The second layout (maze B)
is a harder maze for more skilled players. These layouts were
digitized by hand and used with the simulator.

The first set of experiments was run in simulation. For maze
A, we ran 100 consecutive runs to find the performance and
judge the learning rate of the algorithm. During these runs,
new trajectories were added as described above. After 100
runs, we restarted with an empty library. The results of three
sequences of 100 runs each are plotted at the top of Figure
6. Almost immediately, the policy successfully controls the
marble through the maze about 9-10 times out of 10. The
evolution of the trajectory library for one of the sequences
of 100 runs is shown in Figure 7. Initially, many trajectories
are added. Once the marble is guided through the maze
successfully most of the times, only few more trajectories are
added. Similarly, we performed three sequences of 150 runs
each on maze B. The results are plotted at the bottom of Figure
6. Since maze B is more difficult, performance is initially weak
and it takes a few failed runs to learn a good policy. After a
sufficient number of trajectories was added, the policy controls
the marble through the maze about 8 out of 10 times.

We also used our approach to drive a real world marble
maze robot. This problem is much harder than the simulation,
as there might be quite large modeling errors and significant
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Fig. 6. Learning curves for simulated trials on maze A (top) and maze B
(bottom). The x axis is the number of starts and the y axis is the number of
successes in 10 starts (optimal performance is a flat curve at 10). We restarted
with a new (empty) library three times.

Fig. 7. Evolution of library of trajectories: original single trajectory (before
first run), after 10, 30 and 100 runs respectively. (The trajectories (thick lines)
are shown together with their actions (thin arrows))

latencies. We used the simulator as model for the A* planner.
In the first experiment, we did not attempt to correct for mod-
eling errors and only the simulator was used for creating the
trajectories. The performance of the policy steadily increased
until it successfully navigated the marble to the goal in half
the runs (Figure 8).

In Figure 9 we show the trajectories traveled in simulation
and on the real world maze. The position of the marble is
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Fig. 8. Real world results for maze A, without (top) and with (bottom) model
updates. The x axis is the number of starts and the y axis is the number of
successes in 10 starts.

plotted with a small round circle at every frame. The arrows,
connected to the circle via a black line, indicate the action
that was taken at that state and are located in the position for
which they were originally planned for. Neither the velocity of
the marble nor the velocity for which the action was originally
planned for is plotted. Due to artificial noise in the simulator,
the marble does not track the original trajectories perfectly,
however the distance between the marble and the closest action
is usually quite small. The trajectory library that was used to
control the marble contained 5 trajectories. On the real world
maze, the marble deviates quite a bit more from the intended
path and a trajectory library with 31 trajectories was necessary
to complete the maze.

Close inspection of the actual trajectories of the marble on
the board revealed large discrepancies between the real world
and the simulator. As a result, the planned trajectories are
inaccurate and the resulting policies do not perform very well
(only half of the runs finish successfully). In order to improve
the planned trajectories, we tried a simple model update
technique to improve our model. The model was updated
by storing observed state-action-state change triplets. During
planning, a nearest-neighbor look up in state-action space is
performed and if a nearby tuplet is found, the stored state
change is applied instead of computing the state evolution
based on the simulator. While initial results using this method
are much better, overall the performance does not improve
much over not using the model (Figure 8). Clearly, a better

Fig. 9. Actual trajectories traveled in simulation (top) and on the real world
maze (bottom). The circles trace the position of the marble. The arrows,
connected to the marble positions by a small line, are the actions of the
closest trajectory segment that was used as the action in the connected state

model update mechanism needs to be developed. Another
factor that impacted the performance of the robot was the
continued slipping of the tilting mechanism such that over
time, the same position of the control knob corresponded to
different tilts of the board. While the robot was calibrated
at the beginning of every trial, sometimes significant slippage
occurred during a trial, resulting in inaccurate control and even
improperly learned models.

VI. DISCUSSION

We can create an initial policy with as little as one trajectory.
Hence, creating this type of policy can be efficient in its
use of computation resources. By scheduling the creation of
new trajectories based on the performance of the robot or
in response to updates of the model, these policies are easy
to update. In particular, since the library can be continually
improved by adding more trajectories, the libraries can be used
in an anytime algorithm [3]: while there is spare time, one
adds new trajectories by invoking a trajectory planner from



new start states. Any time a policy is needed, the library of
already completely planned trajectories can be used.

Furthermore, trajectory planners use a time index and
do not require value functions. They can easily deal with
discontinuities in the model or cost metric. Additionally, no
discretization is imposed on the trajectories - the state space
is only discretized to prune search nodes and for this purpose
a high resolution can be used.

Currently, the action selection for the policy is based on
a nearest-neighbor look up in the library of trajectories. A
poor choice of distance metric in this look up can result
in a suboptimal selection of actions. In our experiments we
used a weighted Euclidean distance which tries to normalize
the influence of distance (measured in meters) and velocity
(measured in meters per second). As typical velocities are
around 0.1m/s and a reasonable neighborhood for positions
is about 0.01m, we multiply position by 100 and velocities by
10, resulting in distances around 1 for reasonably close data
points. The model learning technique that we used also relies
on a nearest-neighbor look up. The same weights were used
for position and velocity. Since the model strongly depends
on the action, which are quite small (on the order of 0.007N),
the weight in the distance metric for the actions is 1x106.
The cutoff for switching over to the simulated model was a
distance of 1.

Currently, no smoothness constraints are imposed on the
actions of the generated policies. It is perfectly possible to
command a full tilt of the board in one direction and then
a full tilt in the opposite direction in the next time step
(1/30th second later). Imposing constraints on the trajectories
would not solve the problem as the policy uses a nearest-
neighbor look up to determine the closest trajectory and might
switch between different trajectories. However, by including
the current tilt angles as part of the state description and have
the actions be changes in tilt angle, smoother trajectories could
be enforced at the expense of adding more dimensions to the
state space.

VII. FUTURE WORK

There are several topics for future research. One interesting
area would be to use trajectories that were recorded from
observing a human teacher. Adding these trajectories is an
easy and potentially effective way to initialize the policy.

Furthermore, we would like to also use an RRT planner.
This should make this algorithm even faster. Since RRT has
been successfully applied to high-dimensional problems [14],
we hope that this will enable us to use library-based policies on
high-dimensional problems such as biped or quadruped walk-
ing. We could then use Differential Dynamic Programming
(DDP) [7] or DIRCOL [2] to locally optimize the trajectories.

Also, different ways to use the segments in the library can be
explored, such as the average of k-NN segments. Alternatively,
we would like to combine this approach with the approach
of having a local control law associated with each trajectory.
This might result in more robust policies that require fewer
trajectories. This approach is used in [8].

Finally, instead of or in addition to changing weights on the
segments as a method for improving an existing library, one

could imagine using DDP or DIRCOL after model updates to
improve existing trajectories.

VIII. CONCLUSION

We have investigated a technique for creating policies based
on fast trajectory planners. Experiments performed in a simula-
tor with added noise show that this technique can successfully
solve complex control problems such as the marble maze.
However, taking into account the stochasticity is difficult using
A* planners which result in some performance limitations on
large mazes. We also applied this technique on a real world
version of the marble maze successfully. In this case, the
performance was limited by the accuracy of the model. A
simple model updating technique was used to improve the
model with limited success.
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