
16-264 Humanoids HW2

Due Feb 23, 2022

Introduction

This assignment investigates learning the kinematics for a simple two-link robot arm. You will
first derive the robot kinematics by hand, and then try learning them through a nearest neighbors
method and a neural network method. This assignment leverages NumPy and PyTorch. Quick
tutorials for these are available at https://numpy.org/doc/stable/user/quickstart.html and https:
//pytorch.org/tutorials/beginner/blitz/neural networks tutorial.html. As always, if you have any
questions, feel free to come to my office hours or shoot me an email at mverghes@andrew.cmu.edu.

To get started, unzip the assignment (which I assume you have already done). Then open a
terminal in this folder and enter ”pip install -r requirements.txt” and hit enter.

Part 1: Kinematics

Here we will be deriving the forward kinematics of the two-link robot arm. The forward kinematics
map from robot joint angles to the point in space of the end of the arm. As a reminder, here is what
the two-link arm looks like:

Figure 1: Diagram of a two-link robot arm

Fill out the method ”Forward Kinematics()” in the file ”LearnKinematics.py”. l1 and l2 are
provided at the top of the file, and the functions ”np.sin()” and ”np.cos()” might be helpful. We

1

https://numpy.org/doc/stable/user/quickstart.html
https://pytorch.org/tutorials/beginner/blitz/neural_networks_tutorial.html
https://pytorch.org/tutorials/beginner/blitz/neural_networks_tutorial.html


provide the code for calculating inverse kinematics from forward kinematics. Visualize your forward
kinematics with the provided code, is the arm able to reach the red target?

Part 2: Nearest Neighbors

Now that we have working forward kinematics, we can use it to generate data for our learning
functions. In the real world, this might be done by moving the robot to various joint angles, and
observing the position of its end. Fill out the function ”generate data()”. This function should take
N , the number of data points to generate, and create two arrays each (N, 2) of corresponding joint
angles and points.

Once we have a dataset we can now use it to try and learn the inverse kinematics of the robot.
Fill out the function ”K Nearest Neighbors()”. It should take corresponding joint angle data and
point data, and a query point, and return the estimated joint angles for that query point. The
nearest neighbor method finds the closest point in the dataset to the query point, and gives its
corresponding point as an answer. An example is shown below Use the provided code to visualize
the results from this learned model, how well does it perform? Does more data help? What about
using information from multiple nearest points (this is known as K Nearest Neighbors)?

Figure 2: An example of nearest neighbors method. The dataset is in blue, the query point is in
red, and the closest point in the dataset is in green.

Part 3: Neural Networks

Lastly, we will try training a Neural Net to learn kinematics. We have provided an example network
with only two layers: a hidden layer with eight nodes, and an output layer with 2 nodes. This
network can be found in the class ”ArmNet”. Experiment with more layers and other activation

2



functions. Refer to the the PyTorch examples for adding more layers to the network. Note that you
have to update both the init function, and the forward function. You can use the code to visualize
the performance of your network. In addition to modifying the network itself, try changing the
learning rate, batch size, and epochs. The learning rate controls how aggressively the network tries
to optimize it’s parameters. Higher rates will optimize faster, but may get stuck at a less optimal
solution. The batch size controls how much of the data is used per update. For very large datasets,
it is advisable to train on batches of the data rather than the entire dataset. Lastly the epochs
control how long the network trains. After training the network will save its model. To pickup
training where you left off, set ”load=True”. You can also experiment with how much data you give
the network.

Part 4: Comparison

How did each of the models perform? Did they successfully learn the kinematics of the robot? Put
together some slides on what you found. Include the parameters you experimented with and how
they affected the results. What are the benefits and drawbacks of each of these models?

In practice, we sometimes try and use learning to improve on our existing models, rather than
learn models from scratch. If our model is imperfect (which is likely with more complicated systems),
we can use the mismatch between the expected results from the model and the real world results
to learn a correction to our model. This correction is often referred to as a residual. If you want
to, try messing up the kinematics slightly, and seeing if you can use either of our models to learn a
residual. Is this easier than learning the model from scratch? If you do this, make sure you give the
visualizer the correct arm lengths so it can plot the arm accurately.

3


