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R
igid-body attitude control is motivated by aero-
space applications that involve attitude maneu-
vers or attitude stabilization. In addition to space-
craft and atmospheric fl ight vehicles, applications 
of rigid-body attitude control arise for underwater 

vehicles, ground vehicles, and robotic systems. The set of at-
titudes of a rigid body is the set of 3 3 3 orthogonal matri-
ces whose determinant is one. This set is the confi guration 
space of rigid-body attitude motion; however, this confi gu-
ration space is not Euclidean. Since the set of attitudes is not 
a Euclidean space, attitude control is typically studied using 
various attitude parameterizations [1]–[8]. These parame-
terizations can be Euclidean, as in the case of Euler angles, 
which lie in R3, or non-Euclidean, as in the case of quaterni-
ons, which lie in the non-Euclidean three-sphere S3.

Regardless of the choice of parameterization, all param-
eterizations [1], [2] fail to represent the set of attitudes both 
globally and uniquely. For example, although Euler angles 
can represent every attitude, this representation 
is not unique at certain attitudes. In fact, the 
time derivatives of the Euler angles at these 
attitudes cannot represent every possible 
angular velocity. The term gimbal lock is 
used to describe this mathematical sin-
gularity. Along the same lines, quaterni-
ons can represent all possible attitudes 
and angular velocities, but this repre-
sentation is not unique; see “Representa-
tions of Attitude” for more details. Since 
parameterizations such as Euler angles and 
quaternions are unable to represent the set of at-
titudes both globally and uniquely, results  obtained 
with these parameterizations have to be  reinterpreted on 
the set of attitudes described by  orthogonal matrices. Ne-
glecting this analysis can result in undesirable behavior 
such as unwinding [9], which refers to the unstable be-
havior of a closed-loop attitude control system. In par-
ticular, for certain initial conditions, the trajectories of 
the closed-loop system start close to the desired attitude 
equilibrium in state space and yet travel a large distance 
in the state space before returning to the desired attitude. 
This closed-loop trajectory is analogous to the homo-
clinic orbit observed in a simple pendulum that swings 
360° when perturbed from its inverted position at rest. Un-
winding can result in wasted control effort by causing the 
rigid body to perform a large-angle slew maneuver when 
a small-angle slew maneuver in the opposite rotational di-
rection is sufficient to achieve the objective; see “Pitfalls of 
Using Quaternion Representations for Attitude Control” 
for a description and illustration of unwinding in attitude 
control using quaternions. 

Motivated by the desire to represent attitude both glob-
ally and uniquely in the analysis of rigid-body rotational 
motion, this article uses orthogonal matrices exclusively to 
represent attitude and to develop results on rigid-body atti-
tude control. An advantage of using orthogonal matrices is 
that these control results, which include open-loop attitude 
control maneuvers and stabilization using continuous 
feedback control, do not require reinterpretation on the set 
of attitudes viewed as orthogonal matrices. The main objec-
tive of this article is to demonstrate how to characterize 
properties of attitude control systems for arbitrary attitude 
maneuvers without using attitude parameterizations. 

DESCRIPTIONS OF RIGID-BODY
ATTITUDE CONFIGURATIONS
The attitude of a rigid body can be modeled by a linear 
transformation between a reference frame and a body-
fixed frame that preserves the distance between each pair 

of material points in the body and the handedness 
of coordinate frames [1], [2], [6], [10]–[13]. 

Assuming each frame is defined by three 
orthogonal unit vectors ordered accord-

ing to the right-hand rule, the attitude of 
the rigid body, as a linear transforma-
tion, is represented by a 3 3 3 matrix 
that transforms a vector resolved in the 
body-fixed frame into its representation 

resolved in the reference frame. The three 
column vectors of the matrix represent the 

three orthogonal unit basis vectors of the 
body-fixed frame resolved in the reference 

frame. Likewise, the three rows of the matrix repre-
sent the three orthogonal unit basis vectors of the reference 
frame resolved in the body frame. The resulting matrix, 
referred to as a rotation matrix, represents the physical atti-
tude of the rigid body. The set of all rotation matrices is the 
special orthogonal group of rigid rotations in R3, which is 
denoted by SO 13 2 ; see “Attitude Set Notation” for a defini-
tion of these and additional related sets. 

In rigid-body pointing applications, the rotation about 
the pointing direction is irrelevant since these rotations 
do not change the direction in which the body points. 
Thus, while rotation matrices R [ SO 13 2  can be used to 
model the attitude of a rigid body, not all the information 
available in the rotation matrix is required for pointing 
applications. In this case, a reduced representation of the 
rotation matrix can be used for pointing applications. An 
example of such a reduced representation is the reduced-
attitude vector [14]. To develop the reduced-attitude 
vector representation of a rigid body, suppose b [ S2,
where S2 is the unit sphere in three-dimensional space, is 
a unit vector that denotes a fixed pointing direction speci-
fied in the reference frame. Then, in the body-fixed frame, 
this direction vector can be expressed as G ! R^b [ S2,
where R^ denotes the transpose of the rotation matrix R
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 representing the attitude of the rigid body. We refer to the 
vector G as the reduced-attitude vector of the rigid body. 
Thus, a reduced-attitude vector describes a direction b 
fixed in the reference frame by a unit vector resolved in 
the body frame. In pointing applications, a pointing direc-
tion b [ S2 in the reference frame can be expressed by the 
reduced attitude G corresponding to b, and, hence, the 
reduced attitude can be used to study pointing applica-
tions for a rigid body. 

FULL- AND REDUCED-ATTITUDE CONTROL
Rigid-body attitude control problems can be formulated 
in terms of attitude configurations defined in SO 13 2  or in 
terms of reduced-attitude configurations defined in S2. 
The former case involves control objectives stated directly 
in terms of the full attitude of the rigid body, while the 
latter case involves control objectives stated in terms of 
pointing the rigid body. In particular, the latter case is 
used when the control objectives can be formulated in 
terms of pointing a body-fixed imager, antenna, or other 
instrument in a specified direction in the reference frame, 
where rotations about that specified body-fixed direction 
are irrelevant. 

We subsequently study several full-attitude and 
reduced-attitude control problems. In each case, we begin 
by treating open-loop attitude control problems defined by 
specifying initial conditions, terminal conditions, and a 
maneuver time. Then we treat attitude-stabilization prob-

lems using continuous feedback control. In particular, we 
seek continuous attitude control laws that modify the 
dynamics of the spacecraft such that a specified attitude or 
reduced attitude is rendered asymptotically stable. For full-
attitude control, this continuous feedback function is 
defined in terms of the full rigid-body attitude and angular 
velocity, while, for reduced-attitude control, this feedback 
function is defined in terms of the reduced attitude and 
angular velocity. 

LOCAL AND GLOBAL 
ATTITUDE CONTROL ISSUES
Since attitude control problems are nonlinear control prob-
lems, these problems can be categorized into local attitude 
control issues and global attitude control issues. In brief, 
local control issues address changes in the rigid-body atti-
tude and angular velocity that lie in an open neighborhood 
of the desired attitude and angular velocity. Local attitude 
control problems typically arise when the rigid body has a 
limited range of rotational motion. In this case, linear con-
trol methods or local nonlinear control methods based on a 
convenient attitude representation may suffice, so long as 
no singularities occur within the local range of attitude 
motion of interest. 

In contrast to local attitude control, global attitude 
control issues arise when arbitrary changes in the 
rigid-body attitude and angular velocity are allowed. 
In this case, no a priori restrictions are placed on the 

igid body attitude is often represented using three or four 

parameters. Unit quaternions and the axis-angle represen-

tation use four parameters to represent the attitude. Three-pa-

rameter representations of attitude include the Euler angles as 

well as parameters derived from the unit quaternions as in the 

case of the Rodrigues parameters and the modified Rodrigues 

parameters. These three-parameter sets can be viewed as 

embedded subsets of R3, thus allowing methods of analysis 

that are suited to the Euclidean space R3. Euler angles are 

kinematically singular since the transformation from their time 

rates of change to the angular velocity vector is not globally 

defined. The Rodrigues parameters and modified Rodrigues 

parameters are geometrically singular since they are not de-

fined for 180° of rotation. Therefore, continuous control laws 

using these three-parameter representations cannot be glob-

ally defined, and, as such, these representations are limited to 

local attitude maneuvers. 

Table S1 presents various attitude representations and 

their key properties. While the quaternions, axis-angle vari-

ables, and rotation matrices can represent all attitudes of a 

rigid body, only rotation matrices can represent all attitudes 

uniquely. 

As shown in Table S1, since the unit quaternions are global 

in their representation of attitude, they are often used in practi-

cal applications to represent rigid-body attitude. However, note 

that the map from the space S3 of unit quaternions to the space 

SO 13 2  of rotations is not unique. In particular, this map is a two-

fold covering map, where each physical attitude R [ SO 13 2  is 

represented by a pair of antipodal unit quaternions 6q [ S3. If 

not carefully designed, quaternion-based controllers may yield 

undesirable phenomena such as unwinding [9]; see “Pitfalls 

of Using Quaternion Representations for Attitude Control” for 

more details.

Representations of Attitude

R Table S1 Properties of attitude representations.

Attitude Representation Global? Unique?
Euler angles No No 
Rodrigues parameters No No 
Modified Rodrigues parameters No No 
Quaternions Yes No 
Axis-angle Yes No 
Rotation matrix Yes Yes 
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possible rotational motion, and nonlinear methods are 
required to address these rotational motions. Global 
attitude control issues are motivated by applications 
to highly maneuverable rigid-body systems that may 
undergo extreme attitude changes such as rigid-body 
tumbling. 

COMMENTS ON THE 
ATTITUDE CONTROL LITERATURE
The literature on attitude control can be divided into two 
categories. In the first category, attitude control is studied 
within a geometric framework, as presented in this article, 
by viewing rigid-body attitude as an element of SO 13 2  or S2 
[14]–[27]. In the second category [3]–[8], [28], [29], attitude 
control is studied using representations of attitude in R3 or 
S3 ( R4 [1], [2]. 

Almost-global attitude stabilization of a rigid body, 
in contrast to global attitude stabilization, is motivated 
by the fact that there exists no continuous time-invari-
ant feedback that globally asymptotically stabilizes a 
single  equilibrium attitude [16]–[18]. This property is 
related to the fact that every continuous time-invariant 
closed-loop vector field on SO 13 2  and S2 has more than 
one closed-loop equilibrium, and hence, the desired 
equilibrium cannot be globally attractive [9]; see “The 
Impossibility of Global Attitude Stabilization Using 
Continuous Time-Invariant Feedback” for more details. 
While [24] treats local attitude stabilization and H` atti-
tude performance issues, [19]–[23] present results for 
various almost-global stabilization problems for the 3D 
pendulum; the 3D pendulum has the same rigid-body 
attitude dynamics as in this article, but the moment due 
to uniform gravity is also included [30], [31]. This same 
perspective is used in [25] and [26], where results on 
almost-global tracking of desired attitude trajectories 
are presented. Rigid-body reduced-attitude control is 
studied in [14], [15], [22], [23], [27], and [32]. 

An alternative approach to attitude control based on 
the geometry of SO 13 2  or S2 is to use representations of 
attitude in R3 or S3 ( R4 [1], [2], such as Euler angles, Euler 
parameters, or quaternions, Rodrigues parameters, and 
modified Rodrigues parameters [3]–[8], [15], [28], [29], 
[33]. While these representations can be used for local atti-
tude control, global results obtained by using this approach 
must be interpreted on the configuration space SO 13 2  of 
the physical rigid body. Indeed, the global dynamics of the 
parameterized closed-loop attitude motion on R3 or S3, 
such as global or almost global asymptotic stability, do not 
necessarily imply that these closed-loop properties also 
hold for the dynamics of the physical rigid body evolving 
on the configuration space SO 13 2 . Issues related to contin-
uous attitude control using these alternative representa-
tions of attitude are described in “Representations of 
Attitude” and “Pitfalls of Using Quaternion Representa-
tions for Attitude Control.” 

FRAMEWORK FOR 
DESCRIBING ATTITUDE MOTION
The space of rigid-body rotations SO 13 2  is a Lie group [34], 
[35]; it has an algebraic group structure based on matrix 
multiplication as the group operation and a differential 
geometric structure as a compact smooth manifold that 
enables the use of calculus. Alternatively, the Lie group 
SO 13 2  of rigid-body rotations can be viewed as the set of 
isometries, or length-preserving transformations on R3 
that leave the origin fixed and preserve the orientation, that 
is, handedness, of frames. Unlike SO 13 2 , the space of rigid-
body reduced-attitudes S2 is not a Lie group. However, 
each element in SO 13 2 , as an orthogonal matrix, is a bijec-
tive mapping from S2 to S2. 

Attitude Description Using Rotation Matrices
We now describe the properties of SO 13 2 . Every rotation 
matrix R [ SO 13 2  satisfies

 R^R 5 I 5 RR^,   det 1R 2 5 1,  (1)

where I denotes the 3 3 3 identity matrix, which is also 
the identity element of the group SO 13 2 . This representa-
tion of the attitude is global and unique in the sense that 
each physical rigid-body attitude corresponds to exactly 
one rotation matrix. If Rd [ SO 13 2  represents the desired 
attitude of a rigid body, then attitude control objectives 
can be described as rotating the rigid body so that its atti-
tude R is the same as the desired attitude, that is, R 5 Rd. 

The tangent space at an element in the Lie group 
SO 13 2  consists of vectors tangent to all differentiable 
curves t S R 1t 2 [ SO 13 2  passing through that element. 
Thus, the tangent space at an element in SO 13 2  is the 
vector space of all possible angular velocities that a rigid 
body can attain at that attitude. This vector space is iso-
morphic to the tangent space at the identity element 
R 5 I, which is defined as the Lie algebra so 13 2  of the Lie 
group SO 13 2 . The algebraic structure of so 13 2  is obtained 
from the defining equation R 1t 2^R 1t 2 5 I 5 R 1t 2R 1t 2^. Let 
R 1t 2 [ SO 13 2  be a curve such that R 10 2 5 I and R

# 10 2 5 S, 
where S [ so 13 2 . Differentiating R 1t 2^R 1t 2 5 I and 
 evaluating at t 5 0, we see that S^1 S 5 0, that is, S is 
skew symmetric. Thus, so 13 2  is the matrix Lie algebra of 
3 3 3 skew-symmetric matrices. 

Each element of SO 13 2  can be represented by the matrix 
exponential [34] 

 exp 1S 2 5 I 1 S 1
1
2!

S2 1
1
3!

S3 1c, (2)

where S is in the Lie algebra so 13 2  and exp 1S 2  is in the Lie 
group. The Lie algebra so 13 2  is isomorphic to R3, and this 
vector space isomorphism is given by 

 S 5 £ 0 2 s3 s2

s3 0 2 s1

2 s2 s1 0
§ [ so 13 2 ,  (3)



34 IEEE CONTROL SYSTEMS MAGAZINE » JUNE 2011

Quaternion representations of attitude are often used in at-

titude control and stabilization to represent rigid-body at-

titude. Quaternions do not give rise to singularities, but they 

double cover the set of attitudes SO 13 2  in the sense that each 

attitude corresponds to two different quaternion vectors. Spe-

cifically, a physical attitude R [ SO 13 2  is represented by a pair 

of antipodal quaternions 6q [ S3.

An implication of this nonunique representation is that 

closed-loop properties derived using quaternions might 

not hold for the dynamics of the physical rigid body on 

SO 13 2 3 R3. Thus, almost global asymptotic stability of an 

equilibrium in the quaternion space S3 3 R3 does not guar-

antee almost global-asymptotic stability of the correspond-

ing equilibrium in SO 13 2 3 R3. Indeed, a property such as 

local asymptotic stability of the closed-loop vector field on 

S3 3 R3 holds on SO 13 2 3 R3, only if the property holds for 

the projection of the vector field from S3 3 R3 to the space 

SO 13 2 3 R3; see Figure S1. 

If the projection of the closed-loop vector field from 

S3 3 R3 onto SO 13 2 3 R3 is neglected during control design, 

then undesirable phenomena such as unwinding can occur 

[9]. In unwinding, a closed-loop trajectory in response to cer-

tain initial conditions can undergo a homoclinic-like orbit that 

starts close to the desired attitude equilibrium. Unwinding 

can occur in all continuous closed-loop attitude control sys-

tems that are designed using global parameterizations that 

are nonunique in their representation of SO 13 2 ; see “Repre-

sentations of Attitude” for examples of global parameteriza-

tions that are nonunique in its representation of SO 13 2 .

In the case of quaternions, continuous, time-invariant state-

feedback control using these representations can give rise to 

regions of attraction and repulsion in the neighborhood of 

q [ S3 and 2q [ S3, respectively, where q and 2q represent 

the same desired attitude in SO 13 2 . Starting from q, we can 

choose an initial angular velocity such that orbits connecting 

these regions of repulsion and attraction arise. These orbits 

run from a neighborhood of q to a neighborhood of 2q in S3, 

with a terminal velocity that is close to zero. The correspond-

ing orbit in SO 13 2  obtained by projection as shown in Figure 

S1 starts and ends close to the desired attitude. However, in 

the quaternion space, since 2q has a region of repulsion, the 

trajectory is repelled from 2q, eventually converging to q. In 

SO 13 2 , the corresponding trajectory then follows a homoclin-

ic-like orbit starting close to the desired attitude equilibrium 

with almost zero angular velocity, gaining velocity as the rigid 

body moves along the orbit, and eventually converging to the 

desired equilibrium. Thus, the rigid body unwinds needlessly 

before converging to the desired attitude. The presence of 

these homoclinic-like orbits in SO 13 2  indicates that, although 

the desired closed-loop attitude equilibrium is attractive, it is 

not Lyapunov stable. 

To illustrate unwinding, suppose the quaternion q [ S3 rep-

resents the attitude of a rigid body, and let v [ R3 represent its 

angular velocity vector resolved in the body-fixed frame. We ex-

press q 5 1q0, qv 2 , where 1q0, qv 2 [ R 3 R3. Then, the attitude 

dynamics of the rigid body in the quaternion space are given by 

Jv
#

5 Jv 3 v 1 u, 

q
#
5 2

1
2

 qv
T v,

q
#
v 5

1
2
1qI 1 qv

3 2v,

where J  is the moment of inertia matrix, I is the 3 3 3 iden-

tity matrix, and u [ R3 is the applied control input. Next, 

consider the PD-type control law u 1q, v 2 ! 2kpqv 2 kd 
v, 

where kp, kd . 0. It can be shown that qe 5 11, 0, 0, 0 2  and 

ve 5 10, 0, 0 2  is an equilibrium of the resulting closed-loop 

vector field. In the physical rotation space, this equilibrium cor-

responds to the attitude Re 5 I and ve 5 0. Furthermore, the 

closed-loop vector field yields almost global asymptotic sta-

bility for the equilibrium 1qe, ve 2 [ S3 3 R3. However, almost 

global asymptotic stability of 1qe, ve 2 [ S3 3 R3 does not im-

ply almost global asymptotic stability for the corresponding 

equilibrium 1Re, ve 2 [ SO 13 2 3 R3. 

To illustrate this failure, we choose J 5 diag 11, 1, 1 2  kg-m2 

and 1kp, kd 2 5 10.1, 0.237 2 . Furthermore, choose the initial atti-

tude q 10 2 5 qe and initial angular velocity v 10 2 5 3360/p 0 0 4  °/s. 

The quaternion element q0 1 t 2  is shown in Figure S2(a), and 

the angular velocity is shown in Figure S2(b). Furthermore, 

Figure S2(c) shows the error in the attitude in SO 13 2  using the 

eigenangle 

Pitfalls of Using Quaternion Representations for Attitude Control

Tangent
Plane

A

Projection from
Quaternion to Physical

Rotation Space

SO(3)
(Rotation Space)

Tangent Plane

B′
A′

B

3 (Quaternion Space)

FIGURE S1 Projection of the vector field from S3 3 R3 to 
SO 13 2 3 R3. Since orthogonal matrices represent the set of 
attitudes globally and uniquely, results obtained using alterna-
tive parameterizations of SO 13 2  have to be reinterpreted on the 
set of attitudes described by orthogonal matrices. Neglecting 
this analysis can result in undesirable behavior such as unwind-
ing [9]. To interpret the results on SO 13 2 , the closed-loop trajec-
tory is projected from the parametric space onto SO 13 2 , where 
the properties of the resulting closed-loop on SO 13 2  are ana-
lyzed. This figure illustrates the projection of a trajectory from 
the space of quaternions S3 onto SO 13 2 .
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U 1 t 2 5 cos211
2
1 trace 1R 1 t 2 2 2 1 2 [ 30, 180 4,

which is a scalar measure of the error between R  and I. Note 

that since Re 5 I, it follows that U 5 0° for R 5 Re. For the cho-

sen initial conditions, the eigenangle satisfies U 10 2 5 0°. 
As shown in Figure S2(a) and (b), the trajectory in S3 

approaches 2qe at t 5 17 s with a small angular velocity 

of magnitude 0.03 °/s and is then repelled away, eventu-

ally converging to the desired attitude qe. This closed-loop 

behavior is similar to the response of a simple pendulum 

with angular velocity damping that is swung up to the un-

stable inverted equilibrium starting from the stable hanging 

equilibrium, where the pendulum eventually converges to 

the stable hanging equilibrium. Since 1qe, 0 2 [ S3 3 R3 is 

a stable equilibrium and 12qe, 0 2 [ S3 3 R3 is an unstable 

equilibrium of the closed-loop dynamics, the closed-loop 

trajectory in S3 3 R3 shows a closed-loop response similar 

to the simple pendulum swinging up with angular velocity 

damping. 

However, when the closed-loop trajectory in S3 3 R3 is pro-

jected onto SO 13 2 3 R3, parts (b) and (c) of Figure S2 show 

that the corresponding trajectory in SO 13 2 3 R3 unwinds. Thus, 

the closed-loop trajectory approaches the desired attitude Re 1U 1 t 2 < 2.75°) with a small angular velocity 1 7v 1 t 2 7 < 0.03 °/s) 

at t 5 17 s, and yet instead of converging to the equilibrium 

attitude Re, the trajectory is repelled away from 1Re, 0 2  with 

an increasing angular velocity. Indeed, U 1 t 2  in Figure S2(c) 

increases to 180° at t < 50 s, eventually converging to zero. 

Thus, starting at t 5 17 s, we observe a homoclinic-like orbit 

in SO 13 2 3 R3 at 1Re, 0 2 , which violates the stability of the 

equilibrium. The presence of this homoclinic-like trajectory indi-

cates that, while the desired equilibrium is globally attractive in 

SO 13 2 3 R3, it is not Lyapunov stable and, hence, not asymp-

totically stable in SO 13 2 3 R3.
In the above example, the controller u 1q, v 2 ! 2kp qv 2 kd 

v 

fails to achieve asymptotic stability on the physical space 

SO 13 2 3 R3 since it does not satisfy u 1q, v 2 5 u 12q, v 2 . Thus, 

while q and 2q in the quaternion space represent the same 

physical attitude in SO(3) the control input u 1q, v 2 2 u 12q, v 2 . 
Therefore, for each 1R, v 2 [ SO 13 2 3 R3, where R 2 Re, the 

controller yields two distinct control inputs. Hence, the projec-

tion of the closed-loop vector field from S3 3 R3 to SO 13 2 3 R3 

yields a multivalued map. Thus, while the quaternion-based 

controller results in a closed-loop system that is a continuous 

vector field on S3 3 R3, the projected closed-loop system on 

the physical space SO 13 2 3 R3 is not a vector field. Since the 

projected closed loop on SO 13 2 3 R3 is not a vector field, we 

cannot conclude that closed-loop properties on S3 3 R3, such 

as asymptotic stability and almost global-asymptotic stability, 

imply the same on SO 13 2 3 R3.

In practical applications, unwinding is often resolved by 

changing the sign of the quaternion vector as the closed-loop 

FIGURE S2 Closed-loop response of the rigid body as observed 
in S3 and SO 13 2 . As shown in (b) and (c), the rigid body 
approaches the desired attitude 1U 5 2.75°) with an angular 
velocity whose magnitude is approximately 0.03 °/s. Thus, 
from asymptotic stability, we expect the trajectory to converge 
to the desired equilibrium 1Re, 0 2 . On the contrary, the trajec-
tory is repelled from 1Re, 0 2 , with an increasing angular veloc-
ity. This homoclinic-like orbit occurs since q in (a) approaches 
the unstable attitude 2qe and is subsequently repelled away, 
converging eventually to qe. However, in the configuration 
space SO 13 2 , both qe and 2qe correspond to the same attitude 
and hence the homoclinic-like orbit. This phenomenon is 
termed unwinding.
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where s 5 3s1  s2  s3 4^[ R3. This isomorphism is expressed 
as S 5 s3. The reason for the superscript is related to the 
fact for every a, b [ R3, 3a3 4b 5 a 3 b. If we identify 
S [ so 13 2  as s 5 aa, where a [ S2 and a [ R, then this iso-
morphism gives Euler’s theorem, where a [ S2 is the axis 
of rotation and a [ R is the angle, corresponding to the 
rotation matrix exp 1S 2 [ SO 13 2 . Using this isomorphism, 
we can express the matrix exponential of S [ so 13 2  by 
Rodrigues’s formula 

 exp 1S 2 5 I 1 a3sin 1a 2 1 1a3 2 2 11 2 cos 1a 22 . (4)

Reduced-Attitude Description 
Using Unit Vectors in R3 
Let G ! R^b denote the unit vector b that is fixed in the 
reference frame, resolved in the body-fixed frame. Then 
G [ S2 describes the reduced attitude of a rigid body. Let 
Gd 5 Rd

^b [ S2 represent  the desired pointing direction of 
an imager, antenna, or other instrument. Pointing in 
terms of reduced-attitude control objectives can then be 
described as rotating the rigid body so that its reduced-
attitude vector G is aligned with the desired reduced-atti-
tude vector Gd, that is G 5 Gd, where both reduced-attitude 
vectors are resolved in the body-fixed frame. Rotation 
about the unit vector b does not change the reduced-atti-
tude defined by the direction of b. Therefore, all full-body 
attitudes that are related by such a rotation result in the 
same reduced  attitude. 

Attitude Kinematics
We denote the attitude of a rigid body by R [ SO 13 2  rela-
tive to a reference frame. Let v [ R3 be the angular veloc-
ity of the body relative to the reference frame, resolved in 
the body-fixed frame. Then the full-attitude kinematics 
equation that gives the time rate of change of the rigid-
body attitude is 

 R
#

5 Rv 3,  (5)

where v 3 is a skew-symmetric matrix as given in (3). 

For the fixed reference frame direction b [ S2, dif-
ferentiating the reduced attitude G 5 R^b with respect 
to time and substituting the kinematics equation (5) for 
the full attitude R [ SO 13 2  yields the kinematics for the 
reduced attitude. Since v 3  is skew symmetric, it fol-
lows that 

 G
#

5 R
# ^b 5 1v 3 2^R^b 5 1v 3 2^G 5 2 v 3G 5 G 3 v. (6)

This kinematics equation is consistent with the fact that the 
reduced-attitude vector G evolves on S2. Indeed, differenti-
ating 7G 7 2 ! G^G with respect to time and substituting (6) 
yields 

 
d
dt
1G^G 2 5 2G^ G

#
5 2G^ 1G 3 v 2 5 2v^ 1G 3 G 2 5 0.

Therefore, since G 10 2 [ S2, hence G 1t 2 [ S2 for every t $ 0. 
Note that the component of the angular velocity vector v 
along the vector G does not affect the kinematics (6). 

Attitude Dynamics
We now define the attitude dynamics of a rigid body 
with respect to an inertial reference frame. The rate of 
change of the rotation matrix R [ SO 13 2  depends on the 
angular velocity through the kinematics given by (5). 
The rate of change of the angular velocity expressed in 
the body frame is Euler’s equation for a rigid body, which 
is given by 

 Jv
#

5 Jv 3 v 1 u,  (7)

where u is the sum of external moments applied to the body 
resolved in the body frame. We assume that the rigid body 
is fully actuated, that is, the set of all control inputs that 
can be applied to the rigid body is a three-dimensional 
 Euclidean space. 

GLOBAL ATTITUDE CONTROL MANEUVERS
We now consider attitude control maneuvers that rotate 
the rigid body from a specified initial attitude and initial 

trajectory passes from one hemisphere to the other. Indeed, the 

only way to define a closed-loop vector field on SO 13 2 3 R3 

for a continuous time-invariant, state-feedback control-

ler using quaternions is to choose a controller that satisfies 

u 1q, v 2 5 u 12q, v 2 . However, changing the sign of the qua-

ternion vector as the closed-loop trajectory passes from one 

hemisphere to the other results in a discontinuous closed-loop 

vector field on S3 3 R3. Note that almost global asymptotic 

stability of the desired attitude for the continuous controller in 

S3 3 R3 does not imply almost global asymptotic stability of 

the desired attitude for the discontinuous implementation of 

the quaternion-based controller in S3 3 R3. Stability analysis 

for discontinuous closed-loop systems requires set-valued dif-

ferential equations [41]. 

In contrast to analysis using quaternions, none of the above 

issues occur for closed-loop vector fields that are defined di-

rectly on SO 13 2 3 R3 by means of rotation matrices. This prop-

erty is due to the fact that, unlike quaternions, rotation matri-

ces represent rigid-body attitudes both uniquely and globally. 

This uniqueness property is one of the primary motivations for 

studying attitude-control issues on SO 13 2 3 R3 in terms of ro-

tation matrices. 
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angular velocity to a specified terminal attitude and termi-
nal angular velocity, in a specified time period. The atti-
tude control maneuvers are defined by describing the 
control moment input, the resulting attitude, and the 
angular velocity as functions of time over the specified 
time period. We consider fully actuated open-loop control 
problems with a control function u: 30, T 4 S R3. If the ini-
tial angular velocity is zero and the terminal angular 
velocity is zero, then the attitude control maneuver is a 
rest-to-rest attitude maneuver. 

Full-Attitude Maneuvers
The attitude maneuver considered here is to transfer the 
initial attitude R0 [ SO 13 2  and zero initial angular velocity  
to the terminal attitude Rf [ SO 13 2  and zero terminal 
angular velocity in the fixed maneuver time T . 0. 

According to Euler’s theorem [1], there exists an axis 
a [ S2 and an angle a [ 30, 2p 2  that satisfy 

 eaa3

5 Rf R0
21. (8)

A rest-to-rest attitude maneuver that meets the specified 
boundary conditions is given by 

 R 1t 2 5 eu1t2a3

R0, 

 5 3I 1 a3sinu 1t 2 1 1a3 2 2 11 2 cosu 1t 2 2 4R0,  (9)

 v 1t 2 5 u
# 1t 2a,  (10)

 u 1t 2 5 u
$ 1t 2Ja 1 u

# 1t 2 2 1a 3 Ja 2 ,  (11)

where the rotation angle u: 30, T 4 S S1 satisfies 

 u 10 2 5 0,  u
# 10 2 5 0,  (12)

 u 1T 2 5  ea, 0 # a , p, 
2 2p 1 a, p # a , 2p, 

  u
# 1T 2 5 0. (13)

The rotation angle u 1t 2  can be chosen as a linear combina-
tion of sinusoids or polynomials with coefficients selected 
to satisfy the initial and terminal boundary conditions (12) 
and (13). 

Reduced-Attitude Maneuvers
We now consider a reduced-attitude maneuver that trans-
fers an initial reduced attitude G0 [ S2 and zero initial 
angular velocity to a terminal reduced attitude Gf [ S2 and 
zero terminal angular velocity in the fixed maneuver time 
T . 0. We follow the strategy of a rotation about an iner-
tially fixed axis. This axis, normalized to lie in S2, is given 
by a 5 G0 3 Gf / 7G0 3 Gf 7 [ S2 assuming G0 and Gf  are not 
colinear. The angle a [ 30, 2p 2  satisfies 

 cos 1a 2 5 G0
^Gf. (14)

If G0 and Gf  are colinear, then these vectors are either 
equal or differ by a sign; if they are equal, then no atti-

tude maneuver is required, whereas if they differ by a 
sign, then a is chosen to be an arbitrary direction perpen-
dicular to G0 with a 5 p. A rest-to-rest attitude maneuver 
that meets the specified boundary conditions is 

 G 1t 2 5 ea3u1t2G0

 5 3I 1 a3sinu 1t 2 1 1a3 2 2 11 2 cosu 1t 2 2 4G0,  (15)

 v 1t 2 5 u
# 1t 2a,  (16)

 u 1t 2 5 u
$ 1t 2Ja 1 u

# 1t 2 2 1a 3 Ja 2 ,  (17)

where the rotation angle u: 30, T 4 S S1 satisfies (12) and 
(13). 

To achieve a full-attitude maneuver or a reduced-attitude 
maneuver that is not rest to rest, one possible approach is to 
select a sequence of three successive rotations. The first phase 
is based on selecting a fixed-axis rotation (with the rotation 
axis fixed in both the inertial and body frames) that brings the 
initial angular velocity of the rigid body to rest. The third 
phase is based on selecting a similar fixed-axis rotation that, 
in reverse time, brings the terminal angular velocity of the 
rigid body to rest. The second phase uses the framework pre-
sented in (8)–(13) and (14)–(17) to construct the rest-to-rest 
maneuver that transfers the attitude at the end of phase one to 
the required attitude at the beginning of phase three. 

The framework presented in (8)–(13) and (14)–(17) can 
form the basis for planning attitude maneuvers. For example, 
u 1t 2  in (9)–(13) and (15)–(17) can be viewed as depending on 
parameter values that can be adjusted to achieve some atti-
tude maneuver objective such as minimum time or mini-
mum integrated norm of the control input using optimization 
algorithms. The key is the parameterization of attitude 
maneuvers in a form that satisfies the boundary conditions. 

Observations on Controllability
The constructions given above demonstrate that the fully 
actuated rigid body is controllable even over arbitrarily 

he following set-theoretic notation is used throughout 

this article. 

• 7x 7  is the Euclidean norm of x.

• S1 5 5 1x1, x2 2 [ R2: i 1x1, x2 2 i 5 16 is the unit circle. 

• S2 5 5 1x1, x2, x3 2 [ R3: i 1x1, x2, x3 2 i 5 16 is the two-

sphere. 

• S3 5 5 1x1, x2, x3, x4 2 [ R4: i 1x1, x2, x3, x4 2 i 5 16 is the 

three-sphere. 

• SO 13 2 5 5R [ R333: RRT 5 RTR 5 I,  det 1R 2 5 16 is the 

special orthogonal group. 

• so 13 2 5 5U [ R333: UT 5 2U6 is the space of 3 3 3 

skew-symmetric matrices, also the Lie algebra of 

SO 13 2 .

Attitude Set Notation

T
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short maneuver times. This observation is true for both 
full-attitude maneuvers and reduced-attitude maneuvers, 
thereby providing explicit constructions that demonstrate 
controllability. 

We now show that the constructed maneuvers (8)–
(13) and (14)–(17) are not continuous functions of the 
boundary conditions. For example, consider a reduced-
attitude maneuver where G0 and Gf  lie along the north 
and south pole of S2, respectively. In this case, it follows 
from (12) and (13) that a slight perturbation in the ini-
tial condition can result in a control maneuver where 
the reduced attitude evolves through either the west or 
the east hemisphere of S2 depending on the perturba-
tion. An analogous phenomenon occurs for attitude 
maneuvers on SO 13 2 . Thus, minor changes in the values 
of the initial attitude, initial angular velocity, terminal 
attitude, and terminal angular velocity may result in 
major changes in the attitude maneuver. This disconti-
nuity is not due to the particular approach used for 
designing open-loop controllers. Rather, this disconti-
nuity is a consequence of the non-Euclidean geometry 
of the special orthogonal group SO 13 2  and the two-
sphere S2. 

GLOBAL ATTITUDE STABILIZATION
We now study fully actuated attitude stabilization and 
present results for both full- and reduced-attitude stabiliza-

tion. The objective in full-attitude stabilization is to select a 
feedback control function 

 u : SO 13 2 3 R3 S R3 (18)

that asymptotically stabilizes a desired rigid body attitude 
equilibrium, while the objective in reduced-attitude stabili-
zation is to select a feedback control function 

 u : S2 3 R3 S R3 (19)

that asymptotically stabilizes a desired rigid body reduced-
attitude equilibrium. The desired attitude equilibrium or 
the reduced-attitude equilibrium is assumed to be speci-
fied, and the desired angular velocity vector is zero. 

Since we assume full actuation, linear control theory 
can be applied to the linearization of the rigid-body equa-
tions of motion around a desired equilibrium to achieve 
local asymptotic stabilization. However, no continuous 
time-invariant feedback controller can globally asymp-
totically stabilize an equilibrium attitude of a rigid body 
[9], [16]; see “The Impossibility of Global Attitude Stabili-
zation Using Continuous Time-Invariant Feedback.” In 
fact, if we construct a continuous time-invariant feedback 
controller that locally asymptotically stabilizes a desired 
attitude equilibrium on SO 13 2 3 R3 or S2 3 R3, then the 
resulting closed-loop vector field must have more than 
one equilibrium. 

he impossibility of global attitude stabilization using con-

tinuous time-invariant feedback is illustrated for planar 

rotations. The insight obtained for the case of attitude con-

figurations on the unit circle S1 is helpful for understanding 

the analogous results when the attitude configurations are in 

SO 13 2  or S2. Consider the attitude stabilization of the arm of 

the clock needle shown in Figure S3. We desire to stabilize 

the needle to the configuration in S1 indicated by point A by 

applying a force at the tip of the needle, which is tangent to 

the circle. Typical initial configurations are indicated by points 

B, C, or D. Each configuration can be moved to configuration 

A by either a clockwise force or a counterclockwise force, with 

the tip of the needle defining trajectories in S1 as shown in 

Figure S3. This explicit construction of forces indicates con-

trollability. However, if we attempt to construct a continuous 

force vector field that rotates the needle to configuration A from 

each configuration or point on the circle, then an additional 

equilibrium (B) is born. This equilibrium (B) is created because 

on the upper half and lower half of the circle, the force vector 

fields are nonvanishing and point in opposing directions (either 

clockwise or counterclockwise) toward A. Since the force vec-

tor field is continuous, it must vanish at some point B, thereby 

creating a second equilibrium in addition to A. 

The Impossibility of Global Attitude Stabilization Using Continuous Time-Invariant Feedback

T

A

C

B

D

FIGURE S3 Illustration of the impossibility of global stabili-
zation for planar rotations. In this case, the configuration 
manifold is the circle S1. To stabilize configuration A, a con-
tinuous force vector field that rotates the needle to configu-
ration A from each configuration or point on the circle is 
constructed as shown by the vectors tangential to the 
circle. However, since this vector field points in the oppo-
site direction in the upper half and lower half of the circle, 
the force vector field must vanish at some point B. The van-
ishing of the vector field at B creates a second equilibrium 
in addition to A. In a similar fashion, continuous time-invari-
ant closed-loop vector fields yield multiple closed-loop 
equilibria on SO 13 2  and S2.
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Since no continuous time-invariant feedback controller 
can globally asymptotically stabilize a desired attitude 
equilibrium, we are faced with the following questions: 

1) Since global asymptotic attitude stabilization using a 
continuous time-invariant feedback controller is 
impossible, can we obtain closed-loop stabilization 
properties that are nearly global? 

2) What are the global properties of the resulting closed-
loop system for a continuous time-invariant feedback 
controller? 

3) Are there closed-loop performance implications for a 
continuous time-invariant feedback controller? 

FULL-ATTITUDE STABILIZATION
We now present a proportional and derivative feedback 
control structure and characterize the resulting closed-loop 
vector field. We use this example to answer the above ques-
tions. We consider rigid-body attitude stabilization using 
the fully actuated rigid-body equations of motion 

 Jv
#

5 Jv 3 v 1 u,  (20)

 R
#

5 Rv3, (21)

where R [ SO 13 2  and v [ R3. 
The full-attitude stabilization objective is to select a con-

tinuous feedback controller u : SO 13 2 3 R3 S R3 that 
asymptotically stabilizes the desired attitude equilibrium 
given by the desired attitude Rd [ SO 13 2  and the angular 
velocity v 5 0. The feedback controller is given by 

 u 5 2Kvv 2 KpVa 1R 2 , (22)

where Kv, Kp [ R333 are positive definite matrices, 
a 5 3a1  a2  a3 4^, where a1, a2, and a3 are distinct positive inte-
gers, and the map 

 Va 1R 2 ! a
3

i51
ai ei 3 1Rd

^Rei 2 ,  (23)

with 3e1  e2  e3 4 the identity matrix. The feedback controller 
(22) requires the full attitude R [ SO 13 2  and angular veloc-
ity v [ R3, and it is continuous on SO 13 2 3 R3. The feed-
back controller (22) can be interpreted as introducing a 
potential though the attitude-dependent term and dissipa-
tion through the angular-velocity-dependent term. Knowl-
edge of the rigid-body inertia is not required by the feedback 
controller. While the dissipation term and the attitude-
dependent term in the feedback controller appear linearly, 
the feedback controller is nonlinear since the rotation matri-
ces are not elements of a vector space. 

The closed-loop full-attitude dynamics using the con-
troller (22) are 

 Jv
#

5 Jv 3 v 2 Kvv 2 KpVa 1R 2 , (24)

 R
#

5 Rv3. (25)

Closed-Loop Equilibria
Let 1Re, ve 2  be an equilibrium of the closed-loop system 
(24)–(25). Equating the right-hand side of (25) to zero yields 
Reve

3 5 0. Since Re is invertible, we obtain ve 5 0. Substitut-
ing ve 5 0 in (24) and equating it to zero yields Va 1Re 2 5 0. 
It can be shown [23] that there are four closed-loop equilib-
ria that satisfy Va 1Re 2 5 0 and ve 5 0. 

Proposition 11Re, 0 2  is an equilibrium of the closed-loop attitude equa-
tions of motion (24)–(25) if and only if 

   Rd
^Re [ S ! 5 3e1  e2  e34,  3e1 2 e2 2 e3 4, 32e1 2 e2   e3 4,

 32e1  e2 2 e3 4 6. (26)

That is, 1Re, 0 2 [ ~, where 

 ~ ! 51Rd, 0 2 , 1Ra, 0 2 , 1Rb, 0 2 , 1Rg, 0 2 6, (27)

where 

 Ra ! Rd 3e1      2e2    2e3 4,  (28)

 Rb ! Rd 32e1  2e2      e3 4,  (29)

 Rg ! Rd 32e1    e2     2e3 4. (30)

Proof
Equating Va 1Re 2 5 0 yields 

 a1e1 3 Rd
^Ree1 1 a2e2 3 Rd

^Ree2 1 a3e3 3 Rd
^Ree3 5 0. 

 (31)

Writing Rd
^Re 5 3ri,j 4i,j[51,2,36 [ SO 13 2  and expanding the 

cross products, (31) is equivalent to a2r32 5 a3r23,  a1r31 5

a3r13,  a1r21 5 a2r12. Since a1, a2, and a3 are positive, the rota-
tion matrix Rd

^Re can be written as 

 Rd
^Re 5 E r11 r12 r13

a2
a1

r12 r22 r23

a3
a1

r13
a3
a2

r23 r33

U. (32)

Since Rd
^Re is orthogonal it follows that 

 a1 2
a2

2

a1
2br12

2 1 a1 2
a3

2

a1
2br13

2 5 0,  (33)

 a1 2
a3

2

a1
2br13

2 1 a1 2
a3

2

a2
2br23

2 5 0,  (34)

 a1 2
a2

2

a1
2br12

2 2 a1 2
a3

2

a2
2br23

2 5 0. (35)
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Since a1, a2, and a3 are distinct, the solution to (33)–(35) 
satisfies either a) r12 5 r13 5 r23 5 0 or b) none of the rij, i 2 j 
are zero. To see this result, first note that a) is a trivial 
solution of (33)–(35). Suppose r12 2 0. Then since a1, a2, 
and a3 are distinct, it follows that 11 2 1a2

2/a1
2 22 2 0, 11 2 1a3

2/a1
2 22 2 0, and 11 2 1a3

2/a2
2 22 2 0. Then, since r12 2 0, 

(33) yields that r13 2 0, and from (34), it follows that 
r23 2 0. Similar arguments hold for the case r13 2 0 and 
r23 2 0. Thus, every solution to (33)–(35) satisfies either a) 
or b). 

Next, consider case b). Suppose a1 . a2. Then, 11 2 1a2
2/a1

2 2 2r12
2 . 0 since r12 2 0, and hence (33) yields 11 2 1a3

2/a1
2 2 2r13

2 , 0. Since r13
2  is positive, it follows that 

a3 . a1. Thus, a3 . a1 . a2. This inequality implies 

 a1 2
a3

2

a1
2br13

2 , 0,  a1 2
a3

2

a2
2br23

2 , 0.

Therefore, the left-hand side of (34) is negative, yielding a 
contradiction. Similar arguments show that for a1 , a2, 
(33)–(35) yields a contradiction for case b). Hence since a1, 
a2, and a3 are distinct, case b) yields a contradiction, and 
the only solution to (33)– (35) is case a), that is, 
r12 5 r13 5 r23 5 0. 

Then, substituting r12 5 r13 5 r23 5 0 into (32), it follows 
that r11, r22, r33 each have value 1 1 or 2 1. Thus, Rd

^Re [ S 
as given in (26), and hence 1Re, 0 2 [ ~ in (27).  u

Proposition 1 shows that the continuous feedback con-
troller results in a closed-loop system with four distinct 
equilibria. One of these equilibria is the desired equilib-
rium specified by the attitude Rd, while the remaining 
equilibria are designated by Ra, Rb, and Rg. These attitudes 
differ from the desired attitude Rd by 180° of rotation about 
each of the three body-fixed axes. 

Local Structure of the Closed-Loop System
We next analyze the stability of the desired equilibrium 
and each of the three additional equilibria, and we deduce 
the local structure of the closed-loop vector field near 
each of these equilibria using the Lie group properties of 
SO 13 2 . Since dim 3SO 13 2 3 R3 45 6, each linearization 
evolves on R6. To obtain the local structure of the closed-
loop attitude dynamics, we linearize the closed-loop 
equations about each equilibrium. While it is possible to 
study the linearized dynamics in local coordinates, the 
closed-loop vector field (24)–(25) can also be linearized 
using the Lie-group properties of the non-Euclidean 
manifold SO 13 2 . Let 1Re, 0 2 [ ~ be an equilibrium solu-
tion of the closed-loop system (24)–(25). Consider a per-
turbation of the equilibrium 1Re, 0 2 [ ~ in terms of a 
perturbation parameter e [ R. We can express the per-
turbation as a rotation matrix in SO 13 2  using exponential 
coordinates [34]–[37]. This representation guarantees 
that the perturbation is a rotation matrix for all values of 
the perturbation parameter. 

Let the perturbation in the initial attitude be given as 
R 10, e 2 5 Ree

eU0
3

, where Rd
^Re [ S is given in (26) and 

U0 [ R3; see “Linearization of Nonlinear Models on Euclid-
ean Spaces and Non-Euclidean Spaces” for details. The per-
turbation in the initial angular velocity is given as 
v 10, e 2 5 ev0, where v0 [ R3. Note that if e 5 0 then 1R 10, 0 2 , v 10, 0 22 5 1Re, 0 2 , and hence 

 1R 1t, 0 2 , v 1t, 0 22 ; 1Re, 0 2  (36)

for all time t [ 30, ` 2 , thereby obtaining the equilibrium 
solution. 

Next, consider the solution to the perturbed equations of 
motion for the closed-loop system (24)–(25). These equa-
tions are given by 

Jv
# 1t, e2 5 Jv 1t, e2 3 v 1t, e2 2 Kvv 1t, e2 2 KpVa 1R 1t, e 22 , (37)

 R
# 1t, e 2 5 R 1t, e 2v 1t, e 23. (38)

To linearize (24)–(25), we differentiate both sides of 
(37) and (38) with respect to e and substitute e 5 0, 
yielding 

 Jv
#

e 1t, 0 2 5 2Kvve 1t, 0 2 2 KpVa 1Re 1t, 0 22 ,  (39)

 R
#

e 1t, 0 2 5 Reve 1t, 0 23, (40)

where ve 1t, 0 2 ! 1'v 1t, e 2 / 1'e 22 e50 and Re 1t, 02 ! 1'R 1t, e 2 /1'e 22 e50. Now we define the linearized states Dv, DU [ R3 
as Dv 1t 2 ! ve 1t, 0 2  and DU 1t 23 ! Re

^Re 1t, 0 2 . Then from 
(40) we obtain 

 DU
# 1t 23 5 Re

^R
#

e 1t, 0 2 5 ve 1t, 0 23 5 Dv 1t 23.

Suppressing the time dependence, we obtain 

 DU
#

5 Dv. (41)

From (39), we obtain 

 JDv
#

5 2KvDv 2 KpVa 1ReDU3 2 . (42)

Now, 

Va 1ReDU3 2 5 a1e1 3 1Rd
^ReDU3e1 2 1 a2e2 3 1Rd

^ReDU3e2 2
 1 a3e3 3 1Rd

^ReDU3e3 2 ,
 5 2 1a1e1

3Rd
^Ree1

3 1 a2e2
3Rd

^Ree2
3

 1 a3e3
3Rd

^Ree3
3 2DU, (43)

where Rd
^Re belongs to S as given in (26) in Proposition 1. 

Combining (41)–(43), we obtain the linearization of the 
closed-loop system (24)–(25) about each equilibrium in (27) 
as 

 JDU
$

1 KvDU
#

1 KDU 5 0, (44)
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where the constant matrix K, depending on the equilib-
rium attitude, is defined as 

 K 5 µKp diag 1a2 1 a3, a1 1 a3, a1 1 a2 2 , if Re 5 Rd,
2 Kpdiag 1a2 1 a3, a1 2 a3, a1 2 a2 2 , if Re 5 Ra, 
2 Kpdiag 1a3 2 a2, a3 2 a1, a1 1 a2 2 , if Re 5 Rb,
2 Kpdiag 1a2 2 a3, a1 1 a3, a2 2 a1 2 , if Re 5 Rg.

 

 (45)
Thus, the local attitude dynamics near each of the four equi-
librium solutions are given by a linear second-order 
mechanical system with positive damping. The stiffness 
depends on the equilibrium; near the desired equilibrium, 
the stiffness is positive definite, and hence, the local attitude 
dynamics near the desired equilibrium are locally exponen-
tially stable. Around the additional three equilibria corre-
sponding to the attitudes Ra, Rb, and Rg, the stiffness matrix 
has at least one negative eigenvalue resulting in a saddle 
point. Therefore, the closed-loop dynamics near each equi-
librium solution are unstable. Furthermore, these equilibria 
have no zero eigenvalues, yielding the following result. 

Proposition 2
The equilibrium 1Rd, 0 2  of the closed-loop equations (24)–
(25) is asymptotically stable with locally exponential conver-
gence. The additional closed-loop equilibria 1Ra, 0 2 , 1Rb, 0 2 , 
and 1Rg, 0 2  are hyperbolic and unstable. 

Global Analysis of the 
Full-Attitude Closed-Loop System
The feedback controller (22) renders the desired equi-
librium 1Rd, 0 2  locally asymptotically stable with local 

 exponential convergence. Since the feedback controller is 
continuous, the closed-loop vector field has the additional 
equilibria 1Ra, 0 2 , 1Rb, 0 2 , and 1Rg, 0 2 . 

We next want to understand the global structure of the 
solutions of the closed-loop system. Consider again the 
closed-loop linearizations (44). For each linearization about 
the unstable equilibria 1Ra, 0 2 , 1Rb, 0 2 , and 1Rg, 0 2 , the linear-
ization has at least one eigenvalue with a negative real part 
and at least one eigenvalue with a positive real part. Further-
more, the four equilibria are hyperbolic, that is, the lineariza-
tion has no imaginary eigenvalues. Thus, local properties of 
the closed-loop vector field near each of these equilibria are 
as follows. There exist stable and unstable manifolds for each 
of the equilibria 1Ra, 0 2 , 1Rb, 0 2 , and 1Rg, 0 2 , denoted by 1Wa

s, Wa
u 2 , 1Wb

s, Wb
u 2 , and 1Wg

s, Wg
u 2  such that all solutions 

that start on the stable manifold converge to the correspond-
ing unstable equilibrium, and all solutions that start on the 
unstable manifold locally diverge from the corresponding 
equilibrium [38]. Furthermore, the dimensions of the stable 
and unstable manifolds of each unstable equilibrium are the 
same as the number of eigenvalues with negative and posi-
tive real parts, respectively [38]. 

Since the union of the stable manifolds has dimension 
less than six, it can be shown [23] that the set has measure 
zero and is nowhere dense. Furthermore, using Lyapunov 
analysis [23], it can be shown that all solutions converge to 
one of the four equilibria. Since all solutions that converge 
to the three unstable equilibria lie in a nowhere dense set, 
almost all closed-loop solutions converge to the desired 
equilibrium 1Rd, 0 2 . This result is precisely stated in the fol-
lowing theorem. 

inearization of a nonlinear model is defined from the re-

sponses to an infinitesimal perturbation of initial conditions 

from a given equilibrium. For rigid-body rotational dynamics, 

we require that the perturbations in initial conditions lie on the 

manifold SO 13 2 3 R3 so that the solution evolves on the mani-

fold SO 13 2 3 R3.

Let F: SO 13 2 3 R3 3 R S SO 13 2 3 R3 be the mapping 

such that F 1Re, ve, e 2  represents the perturbation from the 

equilibrium 1Re, ve 2 , where e denotes the perturbation param-

eter. Thus e 5 0 implies no perturbation from the equilibrium 

solution. If 1R 1 t, e 2 , v 1 t, e 2 2  represents the unique solution 

corresponding to the perturbation e, then the linearization is 

obtained by differentiating this perturbed solution with respect 

to e, where the perturbation function is defined as 

F 1Re, ve, e 2 ! 1Ree
eU0

3

, ve 1 ev0 2  (S1) 

and 1U0, v0 2 [ R3 3 R3. This computation yields the lineariza-

tion of the rigid-body rotational dynamics at the equilibrium. A 

similar analysis can be used to linearize the reduced rotational 

dynamics of a rigid body. 

In contrast to the nonlinear perturbation function (S1) for 

rigid-body rotational dynamics, we can choose F as a linear 

additive vector perturbation for models whose states evolve 

on Euclidean spaces. For attitude dynamics, while a linear 

additive perturbation is used for the angular velocity, the ex-

ponential function is used for the attitude perturbation in (S1). 

The reason behind this choice is that, while linear additive 

perturbations guarantee that, for all values of the perturba-

tion parameter e, the resulting angular velocity perturbations 

lie in the Euclidean space of angular velocities, adding rota-

tion matrices does not guarantee that the resulting matrix is 

also a rotation matrix. Since the exponential map (2) of SO 13 2  
guarantees that the resulting matrix is a rotation matrix [34], 

[14], [36], [37], an exponential function is used to construct 

the attitude perturbation as shown in (S1). Thus, the attitude 

perturbation in (S1) lies in SO 13 2  for all values of the perturba-

tion parameter e.

Linearization of Nonlinear Models on Euclidean Spaces and Non-Euclidean Spaces

L
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Theorem 1
Consider the closed-loop rigid-body attitude equations 
of motion given by (24) and (25) for the controller (22), 
where Kp and Kv are positive definite, and a1, a2, and a3 
are distinct positive integers. Then the closed-loop equi-
librium 1Rd, 0 2  is asymptotically stable with locally 
exponential convergence. Furthermore, there exists a 
nowhere dense set M such that all solutions starting in 
M converge to one of the unstable equilibria 1Ra, 0 2 , 1Rb, 0 2 , and 1Rg, 0 2 , and all remaining solutions 
converge to the desired equilibrium 1Rd, 0 2 . Thus, the 
domain of attraction of the desired equilibrium 1Rd, 0 2  is 
almost global. 

Since the domain of attraction of 1Rd, 0 2  is the comple-
ment of the union of the stable manifolds for each of the 
three unstable equilibria, the eigenspace corresponding 
to the stable eigenvalues of an unstable equilibrium pro-
vides explicit local information on the complement of the 
domain of attraction of 1Rd, 0 2  near that unstable equilib-
rium. Note that the structure and characteristic of the 
unstable equilibria depends on the particular choice of 
feedback control. However, as shown in [9], the comple-
ment of the domain of attraction of 1Rd, 0 2  is necessarily 
nonempty for every continuous time-invariant feedback 
controller on SO 13 2 3 R3. Thus, the existence of a nowhere 
dense set, which is the complement of the domain of 
attraction of 1Rd, 0 2 , is not a consequence of the specific 
controller (22). Since global stabilization using continu-
ous time-invariant feedback is impossible, almost global 
stabilization is the best possible result for this stabiliza-
tion problem. 

REDUCED-ATTITUDE STABILIZATION
Rigid-body reduced-attitude stabilization is analyzed 
using the fully actuated rigid-body equations of motion 

 Jv
#

5 Jv 3 v 1 u,  (46)

 G
#

5 G 3 v, (47)

where G [ S2 and v [ R3. 
The objective of reduced-attitude stabilization is to select a 

continuous feedback controller u : S2 3 R3 S R3 that 
asymptotically stabilizes the desired reduced-attitude 
equilibrium defined by the reduced-attitude vector Gd [ S2 
and angular velocity vector v 5 0. The feedback controller 
is given by 

 u 5 kp 1Gd 3 G 2 2 Kvv, (48)

where kp is a positive real number and Kv is a positive 
definite matrix. This feedback controller is based on 
feedback of the reduced attitude G 5 R^b [ S2 and the 
angular velocity v [ R3, and it is continuous on S2 3 R3. 
The feedback controller (48) can be interpreted as intro-
ducing a potential through the reduced-attitude-depen-

dent term and dissipation through the angular 
velocity-dependent term. Knowledge of the rigid-body 
inertia is not required by the feedback controller. Note 
that while the dissipation term and the reduced-attitude-
dependent term in the feedback controller appear lin-
early, the feedback controller is nonlinear since the 
reduced-attitude vectors lie in S2 and, hence, are not ele-
ments of a vector space. 

The closed-loop reduced-attitude equations of motion 
are 

 Jv
#

5 Jv 3 v 1 kp 1Gd 3 G 2 2 Kvv, (49)

 G
#

5 G 3 v. (50)

Closed-Loop Equilibria
Consider the equilibrium structure of the closed-loop 
equations (49) and (50). Equating the right-hand side of 
(49) and (50) to zero yields that an equilibrium at 1Ge, ve 2  
satisfies ve 5 mGe, where m is a constant, and 

 m2JGe 3 Ge 1 kp 1Gd 3 Ge 2 2 mKvGe 5 0.

Premultiplying both sides by Ge
^ yields mGe

^KvGe 5 0. Since 
Kv is positive definite and 7Ge 7 5 1, it follows that m 5 0. 
Thus, ve 5 0. Then, we see that Ge 3 Gd 5 0, and hence 
Ge 5 6Gd. We thus have the following proposition. 

Proposition 3 
The reduced closed-loop attitude equations of motion (49) 
and (50) have two equilibrium solutions given by 1Gd, 0 2  
and 12Gd, 0 2 . 

Proposition 3 shows that the continuous time-invari-
ant feedback control results in a closed-loop system with 
two distinct equilibria given by the desired equilibrium 1Gd, 0 2  and an additional closed-loop equilibrium 12Gd, 0 2 . The existence of the two reduced-attitude equi-
libria implies that there is a manifold of full-attitude 
equilibria, all of which satisfy R^b 5 Gd, and another dis-
joint manifold of full-attitude equilibria, all of which sat-
isfy R^b 5 2Gd; see “Relation Between Full Attitude and 
Reduced Attitude.” 

Local Structure of the Closed-Loop System
We study linearizations of the closed-loop equations (49) 
and (50) about the equilibrium 1Gd, 0 2  and about the equi-
librium 12Gd, 0 2 . Since dim 3S2 3 R3 45 5, each lineariza-
tion evolves on R5. Similar to the analysis presented in [23], 
it can be shown that each equilibrium solution has the fol-
lowing local properties. 

Proposition 4
The equilibrium 1Gd, 0 2  of the closed-loop reduced-attitude 
equations (49) and (50) is asymptotically stable and the con-
vergence is locally exponential. Furthermore, the equilib-
rium 12Gd, 0 2  is hyperbolic and unstable. 
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Global Analysis of the Reduced-Attitude 
Closed-Loop System
In this section, we study the global behavior of the closed-
loop system defined by (49) and (50). The results are paral-
lel to those stated above for the full-attitude closed-loop 
system. In particular, we characterize the domain of attrac-
tion of the desired equilibrium 1Gd, 0 2  and describe the 
global structure of the solutions that converge to the unsta-
ble equilibrium 12Gd, 0 2 . 

It can be shown using Lyapunov analysis that all 
closed-loop solutions converge to one of the two closed-
loop equilibria (see “Lyapunov Analysis on SO 13 2 3 R3 
and S2 3 R3”). Since 12Gd, 0 2  is unstable and the linear-
ization about 12Gd, 0 2  has no imaginary or zero eigenval-
ues, it follows that there exists a stable invariant manifold 
Mr [38] of the closed-loop equations (49) and (50) such 
that all solutions that start in Mr converge to 12Gd, 0 2 . 
The tangent space to this manifold at 12Gd, 0 2  is the 
stable eigenspace corresponding to the negative eigen-
values. Since the linearization of the closed-loop dynam-
ics at 12Gd, 0 2  has no eigenvalues on the imaginary axis, 
the closed-loop dynamics has no center manifold, and 
every closed-loop solution that converges to 12Gd, 0 2  lies 
in the stable manifold Mr. 

It can be shown that Mr is a lower dimensional subset in 
the five-dimensional manifold S2 3 R3 and is nowhere 
dense [23]. Hence, the closed-loop dynamics partition 
S2 3 R3 into two sets. The first set Mr is defined by solu-
tions that converge to the unstable equilibrium 12Gd, 0 2 , 
and its complement is defined by the dense set of all solu-
tions that converge to the desired equilibrium 1Gd, 0 2 . Thus, 1Gd, 0 2  is an asymptotically stable equilibrium of the closed-
loop system (49) and (50) with an almost global domain of 
attraction. 

Theorem 2
Consider the reduced rigid-body attitude dynamics 
given by the closed-loop equations (49) and (50). Assume 
that kp is positive, and Kv is symmetric and positive defi-
nite. Then the closed-loop equilibrium 1Gd, 0 2  is asymp-
totically stable with local exponential convergence. 
Furthermore, there exists a lower dimensional manifold 
Mr that is nowhere dense such that closed-loop solu-
tions starting in Mr converge to the unstable equilib-
rium 12Gd, 0 2  and all remaining closed-loop solutions 
converge to the desired equilibrium 1Gd, 0 2 . Thus, the 
domain of attraction of the desired equilibrium is 
almost global. 

Since the domain of attraction of 1Gd, 0 2  is the comple-
ment of the stable manifold of the unstable equilibrium 12Gd, 0 2 , the eigenspace corresponding to the stable 
eigenvalues of 12Gd, 0 2  provides explicit local informa-
tion on the complement of the domain of attraction of 1Gd, 0 2  near 12Gd, 0 2 . The presence of the nowhere dense 
set, which is the complement of the domain of attraction 

of 1Gd, 0 2 , is not a consequence of the specific controller 
that is studied in this article. Rather, the complement of 
the domain of attraction of 1Gd, 0 2  is necessarily non-
empty for every continuous time-invariant feedback con-
troller on S2 3 R3 [9]. Thus, since global stabilization 
using continuous time-invariant feedback is impossible, 
almost global stabilization is the best possible result for 
this stabilization problem. 

CLOSED-LOOP PERFORMANCE LIMITATIONS
The difference between global asymptotic stability and 
almost global asymptotic stability of the desired equilib-
rium of a closed-loop attitude control system leads to cer-
tain closed-loop attitude performance limitations. Thus, we 
now address the third question posed in the section “Global 
Attitude Stabilization” related to performance implications 
of almost global stabilization. 

While all solutions that lie in the domain of attraction 
asymptotically approach the desired equilibrium, solutions 
that encounter a sufficiently small neighborhood of the 
stable manifold of one of the unstable hyperbolic equilibria 
can remain near that stable manifold for an arbitrarily long 

For a rigid body, one reduced attitude corresponds to a 

manifold of full attitudes. To see this connection, note that 

the definition of the reduced attitude G [ S2 implies that there 

exists a full attitude R0 [ SO 13 2  such that R0
Tb 5 G. Then 

Rodrigues’s formula shows that every full attitude given by 

R 5 R0 exp 1aG3 2  with a [ R also satisfies RTb 5 G. In physi-

cal terms, all full attitudes that differ by a rotation about G are 

equivalent in the sense that they have the same reduced at-

titude, namely, G. 

Relation Between Full Attitude 
and Reduced Attitude

Closed-loop full-attitude dynamics evolve on the non-

Euclidean manifold SO 13 2 3 R3, while closed-loop re-

duced-attitude dynamics evolve on the non-Euclidean mani-

fold S2 3 R3. Since these manifolds are locally Euclidean, 

local stability properties of a closed-loop equilibrium solution 

can be assessed using standard Lyapunov methods. In ad-

dition, the LaSalle invariance result and related Lyapunov 

results apply to closed-loop vector fields defined on these 

manifolds. However, since the manifolds SO 13 2  and S2 are 

compact, the radial unboundedness assumption cannot be 

satisfied; consequently, global asymptotic stability cannot fol-

low from a Lyapunov analysis on Euclidean spaces [40], and 

therefore must be analyzed in alternative ways [19]–[23]. 

Lyapunov Analysis on SO 13 2 3 R3 and 
S2 3 R3 
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period of time [38]. Such solutions in the domain of attrac-
tion approach the desired equilibrium arbitrarily slowly. 
This property of the closed-loop system is an attitude per-
formance limitation that arises due to the inherent closed-

loop properties of a continuous time-invariant vector field 
on SO 13 2 3 R3 or S2 3 R3. 

In contrast to continuous feedback controllers, 
switched or discontinuous feedback controllers can also 
be considered for attitude control. Controllers based on 
nonsmooth feedback may not suffer from the perfor-
mance limitations observed in smooth controllers [27]. 
However, discontinuous controllers suffer from chatter-
ing at the surface of the discontinuity of the closed-loop 
vector field. Chattering in discontinuous controllers can 
be resolved by using hysteresis [39]. However, this dis-
continuity can render standard Lyapunov theory inappli-
cable due to the non-Lipschitz nature of the closed-loop 
vector field [40], [41]. 

EXAMPLES OF RIGID-BODY ATTITUDE 
MANEUVERS AND ATTITUDE STABILIZATION
We now illustrate the attitude control results by construct-
ing a rest-to-rest full-attitude maneuver, a rest-to-rest 
reduced-attitude maneuver, a full-attitude stabilizing feed-
back controller, and a reduced-attitude stabilizing feedback 
controller. The rigid body is assumed to be an asymmetric 
body. The body-fixed frame is defined by the principal axes 
of the body, and the body inertia matrix is assumed to be 
J 5 diag 13, 4, 5 2  kg-m2.

A Rest-to-Rest Full-Attitude Maneuver
We construct a rest-to-rest full-attitude maneuver that 
aligns the three principal axes of the rigid body with the 
three inertial axes. Specifically, the full-attitude maneuver 
transfers the initial attitude R0 to a terminal attitude Rf, 
where 

R0 5 £ 2 0.3995 0.8201 0.4097
0.1130 2 0.3995 0.9097
0.9097 0.4097 0.0670

§ ,   Rf 5 £ 1 0 0
0 1 0
0 0 1

§ ,

in a maneuver time of T 5 5 s. Equation (8) can be solved to 
obtain a 5 10.5, 0.5, 0.707 2 , and the angle a 5 5p/6 rad. 
Expressions for the attitude, angular velocity, and control 
input that satisfy the specified boundary conditions are 
given by (9)–(11). In this instance, the rotation angle is 
u 1t 2 5 1a/2 2 11 2 cos 11p/T 2t 22  rad. 

For the rest-to-rest full-attitude maneuver, Figure 1 shows 
the time responses for the principal angle u, the norm of the 
angular velocity 7v 7 , and the norm of the control torque 7u 7  
versus normalized time t/T. Numerical solutions for these 
open-loop maneuvers are obtained using Lie group varia-
tional integrators, as described in “Numerical Integration of 
Attitude Control Systems.” With this control scheme and 
fixed initial and final attitudes, the normalized time plots for 
the principal angle, the angular velocity norm, and control 
norm for every final time T qualitatively look similar to 
those shown in Figure 1, except that larger T requires less 
control effort. 
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FIGURE 1 (a) Principal angle, (b) norm of angular velocity, and 
(c) norm of the control torque plotted versus normalized time 
for the rest-to-rest, full-attitude, open-loop maneuver for a 
rigid body with principal moment of inertia matrix J 5 diag(3, 
4, 5) kg-m2 within the maneuver time T 5 5 s. The principal 
angle u(t) is obtained as a sinusoidal interpolation between 
the given initial attitude R (0) and the desired final attitude 
R (T ) for this rest-to-rest maneuver. The angular velocity and 
control torque are obtained from the principal angle and 
resulting attitude profile.
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A Rest-to-Rest Reduced-Attitude Maneuver
We construct a rest-to-rest reduced-attitude maneuver that 
aligns the third principal axis of the body frame with the 
third axis of the inertial frame. This reduced-attitude 
maneuver transfers the initial reduced attitude G0 5

R 10 2^e3 5 10.9097, 0.4097, 0.0670 2  to the terminal reduced 
attitude Gf 5 10, 0, 1 2  in a maneuver time of T 5 5 s. The 
axis and angle variables are given as a 5 10.9118,
2 0.4107, 0 2  and a 5 1.5038 rad, respectively. Expressions 
for the reduced attitude, the angular velocity, and the con-
trol input that satisfy the specified boundary conditions 
are given by (15)–(17). In this instance, the rotation angle is 
u 1t 2 5 1a/2 2 11 2 cos 11p/T 2t 22  rad. 

The full-attitude maneuver studied above also satis-
fies the boundary conditions imposed for the reduced-
attitude maneuver for the specified initial full rigid-body 
attitude. Since the reduced-attitude maneuver is less con-
strained than the full-attitude maneuver, it typically 
requires less control effort. For this rest-to-rest reduced-
attitude maneuver, Figure 2 gives the (a) time responses 
of the principal angle, (b) norm of the angular velocity, 
and (c) norm of the control torque, all plotted versus nor-
malized time. Figure 2(d) shows the reduced-attitude 
vector components versus normalized time for this 
maneuver. Figure 3 gives three snapshots of the reduced-
attitude configuration, and the path traced out on the 
two-sphere at different instants in this maneuver, includ-
ing the initial and final time instants. In Figure 3, the axes 
shown in the snapshots of the reduced-attitude maneu-
vers are the body axes. 

Full-Attitude Stabilization
We construct a feedback controller that asymptotically 
aligns the three principal axes of the rigid body with the 
three inertial axes. Thus the desired attitude Rd is the iden-

tity matrix. The feedback controller is given by (22), where 
we select the vector a 5 11, 2, 3 2 , and the nominal gains 
Kp 5 diag 11, 2, 3 2  and Kv 5 diag 15, 10, 15 2 . 

The closed-loop eigenvalues of the linearized closed-
loop system at the equilibrium 1Rd, 0 2  are given 
by 5214.3739,29.1231, 23.618, 21.382, 20.8769, 20.62616, 
thereby de  scribing the local convergence rate near the 
desired equilibrium. The system has three additional 
equilibria corresponding to the attitudes 5diag 11, 21, 21 2 ,
diag 121,21, 1 2 , diag 121, 1, 21 26 as described by (28)–(30) 
in Proposition 1. 

We refer to the gains given above as defining a nominal 
controller. Two alternative sets of gains define a stiff con-
troller and a damped controller. The stiff gains are obtained 
by increasing Kp and decreasing Kv by 25% each. In a simi-
lar manner, the damped gains are obtained by decreasing 
Kp and increasing Kv by 25% each. In each case, the desired 
full-attitude equilibrium 1Rd, 0 2  is almost globally asymp-
totically stable on SO 13 2 3 R3. 

The three sets of gains yield nominal, stiff, and damped 
closed-loop responses locally near the desired equilibrium. 
These closed-loop responses are shown in Figure 4 for the 
initial conditions 

 v 10 2 5 £ 0
0
0
§ ,  R 10 2 5 £ 0.2887 0.4082 2 0.8660

2 0.8165 0.5774 0
0.5000 0.7071 0.5000

§ . (51)

The error in the attitude is represented by the eigenangle 

 U 1t 2 5 cos21 1
2
1 trace 1R 1t 22 2 12 ,  (52)

which is a scalar measure of the error between R and I. 
Thus, U 10 2 5 80°. From Figure 4(a), we see that, com-
pared to the nominal controller, the stiff controller acts 

quations (24) and (25) describe the full-attitude control sys-

tem, whereas (49) and (50) describe the reduced-attitude 

control system, which evolve on SO 13 2 3 R3 and on S2 3 R3, 

respectively. Traditional numerical integration schemes, de-

veloped for differential equations that evolve on Rn, do not 

guarantee that the computed solution lies in the appropriate 

manifold [S1]. In contrast to traditional numerical integration 

schemes, geometrical numerical integration schemes guaran-

tee that the computed solution lies in the appropriate manifold 

[S1]. Geometric integration schemes can be applied to mani-

folds such as S3 without requiring renormalization or projec-

tion. If the manifold under consideration is a Lie group such 

as SO 13 2 , then such integration schemes are called Lie group 

methods. Integration methods that are obtained by using the 

discrete version of the variational principle of mechanics are 

called variational integrators. In [S2]–[S4], Lie group variation-

al integrators are developed and used to numerically simulate 

attitude dynamics and control systems. Lie group variational 

integrators incorporate the desirable features of both geometric 

integration schemes and variational integration schemes. 
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faster in reducing the error to zero, while the damped 
controller is slower in its response. However, as shown 
in Figure 4(b) and (c), the stiff controller requires a 
higher control torque and also leads to larger transient 
angular velocities compared to the nominal controller, 
while the damped controller requires less control torque 
and has lower transient angular velocities. The param-
eters a1, a2, and a3 distribute the control effort among the 
three body axes, and these gains can be modified 
accordingly based on the moment of inertia and the 
desired response. 

To illustrate the closed-loop performance limitations, 
we consider the linearization of the closed-loop system, as 
given in (44) for the nominal gains, at the unstable equilib-
rium corresponding to the attitude Rg 5 diag 121, 1, 21 2 . 
The local closed-loop dynamics near this unstable 
 equ  i  l ibrium are described by the positive eigen-
va lues  10.1882, 0.6375 2 ,  and negative eigenvalues 120.2324, 21.4343,23.1882, 23.1375 2 . These eigenvalues 
confirm that the equilibrium 1Rg, 0 2  is unstable, and the 
stable manifold has dimension four, while the unstable 
manifold is two dimensional. The eigenspaces correspond-
ing to the negative and positive eigenvalues are tangent 

to the stable and unstable manifolds at the equilib-
rium 1Rg, 0 2 . 

To demonstrate performance limitations, we choose a 
family of initial conditions that lie close to the stable mani-
fold of the unstable equilibrium 1Rg, 0 2 . We choose 
va 5 3DUa  Dva 4 and vb 5 3DUb  Dvb 4 as a linear combination 
of eigenvectors from the stable and unstable eigenspaces, 
respectively, of the equilibrium 1Rg, 0 2 , where 

DUa 5 £ 0.4021
0.3037
0.2993

§ ,  Dva 5 £ 0.5939
2 0.9528
2 0.9542

§ , 

 DUb 5 £ 0
0.8432
0.9827

§ ,  Dvb 5 £ 0
0.5375
0.1849

§ .

Consider the initial conditions 

 R 10 2 5 diag 121, 1, 212exp 1dDUa
3 1 eDUb

3 2 ,  (53)

 v 10 2 5 dDva 1 eDvb,  (54)

which depends on the parameter e. If we choose 0 , d V 1, 
then, for e 5 0, Figure 5 shows that the initial conditions 
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FIGURE 2 (a) Principal angle, (b) norm of angular velocity, (c) norm of the control torque, and (d) components of the reduced-attitude 
vector versus normalized time for the rest-to-rest reduced-attitude open-loop maneuver for a rigid body with inertia matrix J 5 diag(3, 
4, 5) kg-m2, within the maneuver time T 5 5 s. The reduced-attitude vector is the direction of the third principal axis of the rigid body, 
and the maneuver aligns the reduced-attitude vector with the third coordinate axis of the inertial coordinate frame. The principal axis of 
rotation is the cross product of the given initial reduced attitude G(0) and the desired final reduced attitude G(T), while the principal angle 
u(t) is obtained by a sinusoidal interpolation between the boundary conditions. The angular-velocity and control-torque profiles are 
obtained from the principal angle and the resulting reduced-attitude profile. Although the norms of the angular-velocity and control-
torque profiles look similar in shape to the corresponding profiles for the full-attitude maneuver, their values are considerably lower. 
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FIGURE 3 Snapshots of the rest-to-rest, open-loop, reduced-atti-
tude maneuver for a rigid body with inertia matrix J 5 diag(3, 4, 5) 
kg-m2. The reduced-attitude vector is denoted by a bold green line 
from the origin to a point on the surface of the two-sphere. The 
path traced by the tip of the reduced-attitude vector on the two-
sphere at several instants during the maneuver time T 5 5 s is 
given by a bold red line. The principal axis of rotation, which is 
inertially fixed, is given by the blue line. The indicated axes are the 
body axes and not the inertial axes. (a) shows the initial reduced 
attitude, (b) is the reduced attitude at time t 5 2.5 s, and (c) is the 
final reduced attitude at time t 5 5 s. 
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FIGURE 4 (a) Eigenangle, (b) angular velocity components along 
each body-fixed axis, and (c) the two-norm of the control torque 
are plotted for three controllers, namely, a nominal controller, a stiff 
controller, and a damped controller. As shown in (a), the error con-
verges to zero faster in the case of the stiff controller since the gain 
Kp that acts on the error is 25% larger than the nominal controller. 
On the other hand, the error converges more slowly for the damped 
controller where the gain Kp is 25% lower than the nominal case. 
While the stiff controller yields faster convergence, the angular 
velocity as shown in (b) has larger transients in the case of the stiff 
controller compared to the nominal or damped controller. Further-
more, as shown in (c), the magnitude of the torque for the stiff 
controller is higher than the nominal controller, while the magni-
tude of the control torque is lower for the damped controller.
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(53), (54) lie close to the stable manifold of the unstable 
equilibrium. As e increases, the distance to the stable 
manifold of the unstable equilibrium 1Rg, 0 2  increases. 
Therefore, as e decreases, we expect the time of conver-
gence to the desired attitude Rd 5 I to increase. Note that 

if va is not zero, then, whether or not e 5 0, the initial con-
ditions (53), (54) lie close to the stable manifold but never 
exactly at the equilibrium 1Rg, 0 2 . In the simulations, we 
choose d 5 1024. 

In Figure 6, we plot the scalar attitude error given by the 
eigenangle (52) for four initial conditions corresponding to 
four different values of e in (53) and (54) given by 
e [ 51025, 1024, 1023, 10226. As shown in Figure 6, the time 
of convergence increases with decreasing values of e. Fur-
thermore, the increase in the transient period occurs when 
the attitude error is near 180°, indicating that the solutions 
remain close to the unstable equilibrium 1Rg, 0 2  for an 
extended period. This behavior demonstrates that the 
closer the solution starts to the complement of the domain 
of attraction of the desired equilibrium 1Rd, 0 2 , the longer it 
takes for the solution to converge to 1Rd, 0 2 . 
Reduced-Attitude Stabilization
We construct a feedback controller that asymptotically 
aligns the third principal axis of the body frame with the 
third axis of the inertial frame. Thus, b 5 10, 0, 1 2 , and the 
goal is to asymptotically stabilize Gd 5 10, 0, 1 2 , that is, to 
asymptotically align G 5 R^b with Gd. The feedback con-
troller, given by (48), is chosen to have the gains 
Kv 5 diag 15, 10, 15 2  and kp 5 4. 

The closed-loop eigenvalues of the linearized closed-
loop system at 1Gd, 0 2  are given by 520.8333 6 0.7993i,
20.5, 22, 236, thereby describing the local conver-
gence rate near the desired equilibrium. There also 
exists one additional equilibrium given by 12Gd, 0 2  
that is unstable. 

We refer to the gains given above as defining a nominal 
controller. Two alternative sets of gains define a stiff con-
troller and a damped controller. The stiff gains are obtained 
by increasing kp and decreasing Kv by 25% each. In a similar 
manner, the damped gains are obtained by decreasing kp 
and increasing Kv by 25% each. In each case, the desired 
reduced-attitude equilibrium 1Gd, 0 2  is almost globally 
asymptotically stable on S2 3 R3. 

The three sets of gains yield nominal, stiff, and damped 
closed-loop responses locally near the desired equilib-
rium. Closed-loop responses are plotted in Figure 7 for the 
same initial conditions as above for the full-attitude case. 
Thus the initial condition for the reduced attitude is 
G 10 2 5 R 10 2^e3 5 10.5, 0.7071, 0.5 2 . The error in the reduced 
attitude is 

 U 1t2 5 cos21 1Gd
^G 1t 22 , (55)

which is a scalar measure of the error between G and Gd rep-
resenting the angle between the two unit vectors. Thus, 
U 10 2 5 60°. From Figure 7(a), we see that, compared to the 
nominal controller, the stiff controller is faster in reducing 
the error to zero, while the damped controller is slower in its 
response. However, as shown in Figure 7(b) and (c), the stiff 

FIGURE 5 Initial conditions to illustrate closed-loop performance 
limitations. The unstable equilibrium (Rg, 0) has a four-dimen-
sional stable manifold and a two-dimensional unstable manifold. 
The vectors va and vb are tangent to the stable and the unstable 
manifolds, respectively, at (Rg, 0). The initial conditions are pertur-
bations from (Rg, 0) such that, for e 5 0, the initial condition lies 
close to the stable manifold, and, as e increases, the initial condi-
tion lies farther away from the stable manifold. A fixed nonzero d 
guarantees that the initial condition is near but not exactly at the 
equilibrium (Rg, 0) for every sufficiently small e.
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FIGURE 6 The error U(t) for the nominal controller for four initial 
conditions corresponding to four different values of e in (53) and 
(54). The time for the error to converge to zero increases as e is 
decreased. Most of the increase in the transient time occurs in the 
early part of the trajectory, where the scalar error is close to 180°. 
This behavior indicates that, as e decreases, the trajectory dwells 
close to the unstable equilibrium (Rg, 0) and hence close to the 
error of 180°, since the solution starts closer to the four-dimen-
sional stable manifold as illustrated in Figure 5. However, since 
the initial condition does not lie on the stable manifold, it soon 
diverges along the two-dimensional unstable manifold, finally con-
verging to the desired equilibrium (Rd, 0). The divergence along 
the unstable manifold results in a sharp drop in the attitude error 
to zero as shown above. The smaller the parameter e, the longer 
the trajectories dwell close to the unstable equilibrium (Rg, 0).
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controller requires a higher control torque and also leads to 
larger transient angular velocities compared to the nominal 
controller, while the damped controller requires less control 
torque and has lower transient angular velocities. 

To illustrate performance limitations in reduced-atti-
tude feedback, we consider the linearization of the closed-
loop system for the nominal controller about the unstable 
equilibrium 12Gd, 0 2 . It can be shown that the linearized 
closed-loop dynamics are described by the positive eigen-
values 10.3508, 0.5907 2  and the negative eigenvalues 122.2573, 22.8508, 23 2 . These eigenvalues indicate that 
the equilibrium at 12Gd, 0 2  is unstable, and the stable man-
ifold has dimension three, while the unstable manifold is 
two dimensional. The eigenspaces corresponding to the 
negative and positive eigenvalues are tangent to the stable 
and unstable manifolds at the equilibrium 12Gd, 0 2 . 

To demonstrate performance limitations, we choose a 
family of initial conditions that lie close to the stable mani-
fold of the unstable equilibrium 12Gd, 0 2 . We choose 
va 5 3DUa  Dva 4 and vb 5 3DUb  Dvb 4 as a linear combination 
of eigenvectors from the stable and unstable eigenspaces, 
respectively, of the equilibrium 12Gd, 0 2 , where 

 DUa 5 £ 0
0

2 0.3162
§ ,  Dva 5 £ 0

0
0.9487

§ ,  

  DUb 5 £ 0.8610
0
0

§ ,  Dvb 5 £ 0.5086
0
0

§ .

Consider the family of initial conditions 

 G 10 2 5 exp 12dDUa
3 2 eDUb

3 2 12Gd 2 , (56)

 v 10 2 5 dDva 1 eDvb,  (57)

which depend on the parameter e. 
If we choose 0 , d V 1, then, for e 5 0, the initial condi-

tions (56), (57) lie close to the stable manifold of the unsta-
ble equilibrium 12Gd, 0 2 . As e increases, the distance to the 
stable manifold of the unstable equilibrium 12Gd, 0 2  
increases. Therefore, as e decreases, we expect the time of 
convergence to the desired attitude Gd to increase. Note 
that, if va is not zero, then, whether or not e 5 0, the initial 
conditions (56), (57) lie close to the stable manifold but 
never exactly at the equilibrium 12Gd, 0 2 . In the simula-
tions, we choose d 5 1024. 

In Figure 8, we plot the scalar reduced-attitude error 
defined in (55) for four initial conditions corresponding to 
values of e in (56) and (57) given by e [ 51025, 1024,
 1023, 10226. As shown in Figure 8, the time of convergence 
increases as e decreases. Furthermore, the increase in the 
transient period occurs when the reduced-attitude error is 
near 180°, indicating that the solutions remain close to the 
unstable equilibrium 12Gd, 0 2  for an extended period. This 
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FIGURE 7 (a) The angle between the desired and actual reduced-
attitude vectors, (b) angular velocity components along each 
body-fixed axis, and (c) the two-norm of the control torque plotted 
for three controllers, namely, a nominal controller, a stiff controller, 
and a damped controller. As shown in (a), the error converges to 
zero faster in the case of a stiff controller since the gain kp that acts 
on the error is 25% larger than the nominal controller. On the other 
hand, the error converges more slowly for the damped controller, 
where the gain kp is 25% lower than the nominal case. While the 
stiff controller yields faster convergence, the angular velocity as 
shown in (b) has larger transients in the case of the stiff controller 
compared to the nominal and damped controllers and hence can 
excite unmodeled dynamics. Furthermore, as shown in (c), the 
magnitude of the torque for the stiff controller is higher than the 
nominal controller, while the magnitude of the control torque is 
lower for the damped controller.
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example illustrates that the closer the solution starts to the 
complement of the domain of attraction, the longer it takes 
to converge to 1Gd, 0 2 . 
CONCLUSIONS
This article summarizes global results on attitude control 
and stabilization for a rigid body using continuous time-
invariant feedback. The analysis uses methods of geomet-
ric mechanics based on the geometry of the special 
orthogonal group SO 13 2  and the two-sphere S2. 

We construct control laws for full- and reduced-atti-
tude maneuvers for arbitrary given boundary condi-
tions and an arbitrary maneuver time. These results 
demonstrate controllability properties for both the full- 
and for reduced-attitude models, assuming full actua-
tion. The open-loop controllers have a discontinuous 
dependence on the boundary conditions, thus suggest-
ing the impossibility of global stabilization using con-
tinuous feedback. 

Both full- and reduced-attitude feedback stabilization 
results are provided, assuming full actuation. Since no con-
tinuous time-invariant feedback controller can achieve 
global asymptotic stabilization of an equilibrium, global 
properties of the closed-loop attitude dynamics using the 
continuous feedback controllers (22) and (48) are character-
ized. The particular feedback  controllers given here are 
globally defined and continuous, and they achieve almost-
global full-attitude stabilization or almost-global reduced-
attitude stabilization in the sense that the complement of 

the domain of attraction lies in a lower dimensional set of 
the state space that is nowhere dense. Some features of the 
geometry of the complement of the domain of attraction of 
the desired equilibrium are described, identifying it as the 
union of the undesired closed-loop equilibria and their 
associated stable manifolds. A key aspect of the analysis 
given in this article is that we perform both local and global 
analysis of the feedback controllers without resorting to 
coordinates for SO 13 2  or S2. 
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