A mobile robot (base)

An extended Kalman filter for a
mobile robot

Sensors: Encoder, Gyro, Vision Zoomina In On Previous Slide
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We cheated on vision




More Cheating: Structured Light
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A mobile robot (base)
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Kinematics
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Extended Kalman Filter (Kinematic)
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Process Noise and Initial Variance
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Prediction Equations
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Encoder, Gyro update

Measurement Noise
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Measurement Update
K=P,H (HP,H" +RJ"
X, =X, +K(z, —HX,)
P.=(1-KH)P,

Vision Update (velocity)
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Vision Update (landmark at (x,,y,))
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SLAM

« SLAM (Simultaneous Localization and Mapping) puts
landmark locations as part of state to be estimated in
the EKF.

¢ Prediction step is trivial (landmark doesn’t move)
* Measurement example below.

« Many landmarks means you have a very large state
vector.

¢ Current research is addressing how to handle this
well.

x=[xy,0,x,y. [

_|—cos(8) —sin(@) —(x_—x)sin(d)+(y_—y)cos(d) cos(d) sin(9)
- sin(0) —cos(d) —(x_—x)cos(@)—(y,_—y)sin(@) -—sin(@) cos(9) |




Notes
“Extended” KF because of angle in A matrix
and full state in predicting visual observations

A, B, H, Q, and R are sparse or diagonal, so
should use special purpose coding for efficiency

Dimensionality of inversion depends on number
of sensors (HpkaT : R)*l

Different sampling rates can be handled with a
variable length prediction and different Hs

Need to measure gyro bias when stopped
Need to handle slipping, vision glitches

Particle Filtering with EKF Particles

» Each particle is EKF, with weight.

* As particles overlap, merge them and add
weights.

* As particles become infeasible, kill them.

* As particles become too certain, confuse
them.

« Add new particles in empty spaces
according to some prior.

What If You Took Into Account the
Mobile Robot Dynamics?
» Need to change input u to be motor
torques.
» This changes prediction step only.

* How do vy and v, depend on motor
torques?




