Tactile Sensing for Robot Control

Wenzhen Yuan 4/12/2022

Carnegie Mellon University
The Robotics Institute

What is the sense of touch?

Cutaneous
Temperature
Texture
Slip
Vibration
Force

Kinesthesia

Location/configuration

Motion

Force

Compliance

The haptic senses work together with the motor control system to:

- Coordinate movement
- Enable perception

What would life be like without touch?

Pre-anesthetization

Post-anesthetization

Video by HaptX https://www.youtube.com/watch?v=R-sp pju81E

Tactile sensing array from Weiss robotics

Measuring normal force distribution over an area

Spatial resolution: ~5mm

Video by Peter Kiechle https://www.youtube.com/watch?v=HxBOjJg55y4

Tactile servoing

- System:
 - 7-DoF robot arm;
 - 16×16 tactile sensor array as the end-effecter, with 5mm spacing, 1.9kHz sampling rate
- Target: realizing a specific tactile interaction pattern
 - Tracking a touched object
 - Maintaining contact location and contact force
 - Tracking an object's pose
 - Tactile object exploration
 - Etc.

https://www.yout ube.com/watch?v =TcWipks3qJ0

Tactile features

Raw tactile image

Extracted contact region

- Contact position
- Contact force
- Orientation of an object edge

Control scheme: matching the tactile feature

$$\Delta \mathbf{f}(t) = [\Delta x_s, \Delta y_s, \Delta f, \Delta \alpha]$$
 Deviation of the feature vector

https://www.yo utube.com/wat ch?v=UgCv5E SAYfc

3D Contour Following for a Cylindrical End-Effector Using Capacitive Proximity Sensors

Stefan Escaida Navarro, Stefan Koch and Björn Hein

Institute for Anthropomatics and Robotics (IAR)Intelligent Process Control and Automation Lab (IPR)

Cable manipulation using GelSight

- Goal: Sliding along the cable
- Using GelSight to locate the cable location/direction, and estimate shear force

Tactile skin HEX-O-SKIN

By Prof. Gordon Cheng's group at TU Munich

- Independent sensor modules
 - could be connected in arbitrary ways to cover a large area
- Multimodal sensing
 - Capacitive normal force sensor
 - Optical proximity sensor
 - 3-axis accelerometer
 - Temperature sensing
- Adaptive redundant routing algorithm

In this manner, even complex multi-contact interactions involving arbitrary numbers of skin cells, distributed in different links or limbs, can be handled efficiently.

GelSight: a high-resolution tactile sensor to capture the contact geometry and force

Clear elastomer with reflective membrane

- Reflective membrane yields a shaded image
- Controlled light: different colors for light from different directions
- Photometric stereo infers surface normal of shape

Fingertip GelSight sensor

GelSight: motion of the markers indicates the force and torque

- Pattern of marker motion—type of the force / torque
- Magnitude of marker motion—magnitude of the force / torque

GelSight enables robot to obtain rich information through touch

- High-resolution details of the objects' shapes
- Soft sensor enables a larger contact surface, not point contact
- The dynamic change of the tactile image is informative

Is the grasp successful?

daily objects with different weight and shapes

Most commonly seen grasp failure: slip

Traditional ways to detect slip

Detecting slip from vibration detection Howe and Cutkovsky. 1989

Detecting slip based on force and friction cone Melchiorri. 2000

Coulomb Friction

$$F_f = \mu F_N$$

• To be safe, there should be $\ F_f \leqslant \mu F_N$

Avoid slip: measuring the normal force and shear force, and make sure the resultant is within the friction cone.

Traditional ways to detect slip

Detecting slip from vibration detection Howe and Cutkovsky. 1989

Biggest challenge: generalization

What if objects are of unknown shapes and unknown surface properties?

Detecting slip based on force and friction cone Melchiorri. 2000

Grasp based on force closure

- Multi-finger gripper
- Sensors: "intrinsic tactile" sensing
 - 6-axis force/torque sensor at the fingertips
- Based on force closure, intrinsic tactile sensing is able to completely characterize a soft-finger type contact
 - Detect the position of the contact centroid on the fingertip
 - The components of the normal and shear contact force, and the torque generated by friction
 - Based on the assumption of (almost) point contact

Liu, Song, Bimbo, et al. 2012

Grasp based on force closure

- Grasp
 - Described in terms of the number and the position of contacts between fingers and the object and the intensity and direction of forces and torques
 - Geometry & wrench
- Force-closure
 - Capable of equilibrating any external force tending to move the object
- Force should be large enough to prevent slip, and not too large to crash objects
 - Assuming the friction coefficient is known with some approximation

Tactile sensing for grasping

- Goal: secure grasp
 - Not too large force to crash objects
 - Not too small force to make objects slip
- Infrastructure
 - Arm + parallel gripper
 - 5x3 tactile array on the fingertip
 - Accelerometer on the fingertip

Grasping with proper force: using thresholds

```
Low frequency force (SAI)
                  LeftContact = (F_{ql} > \text{FLIMIT}) \parallel (\widetilde{F}_{ql} > \text{DLIMIT}) \rightarrow \text{High frequency force (FAI)}
Detecting
                 RightContact = (F_{qr} > \text{FLIMIT}) \parallel (\widetilde{F}_{qr} > \text{DLIMIT}).
contact:
                  (Hand vibration is not helpful)
                                                                      Hand tuned
Grasping
                    F_c = \max_t(F_g) \cdot \frac{\text{KHARDNESS}}{\text{VCLOSE}}
force:
                     Slip = (|\widetilde{F}_q| > F_q \cdot SLIPTHRESH)
Slip
detection:
                              && (F_a^{BP} < \text{FBPTHRESH})
```

Slip control:

 $F_c = F_c \cdot \text{KSLIP}$.

Increasing gripping force when slip is detected

Parameter Tuning —by experiments

KHARDNESS, KSLIP

Prevent crushing (small KHARDNESS)
Prevent slip (large KSLIP)

Different thresholds for different objects

Slip detection for objects with obvious textures: comparing the motion of the object and the sensor surface

Dong, Yuan, Adelson. IROS, 2017.

Slip detection for objects with flat surface: comparing the distortion of the marker motion field

Lessons from humans: incipient slip starts at the boundary

Blue contours: contact area

Red contour: stuck area

Measuring the relative displacement

 $ec{d_i}$: Displacement vector of a local point $ec{d_o}$: Displacement vector of the indenter

Slip detection for objects with non-flat surface

- Similar distribution patterns
- The normal pressure near the edges are usually smaller

Slip detection for objects with flat surface: comparing the distortion of the marker motion field

Slip detection for objects with flat surface: comparing the distortion of the marker motion field

Slip detection: combining two measurement for different objects

Grasp prediction result on 37 natural objects:

	No slip	Slip
Test number	147	116
Prediction accuracy	79%	84%

Closed-loop grasp control:

When slip is detected, release and re-grasp the object, with larger force

Result:

Out of 99 grasp experiments, the robot succeeded in 89% of the cases

Rotational grasp failure

Measuring the big torque cases

Measuring the rotation angle of markers on GelSight

Ground-truth of object rotation from an external camera

Rotation detection with texture-rich objects

External view

Processed Side View

Gelsight image

Calculated rotation angle vs ground truth

The rotation angles from Gelsight's images are compared with the ground truth from the processed side view.

Closed-loop re-grasping by adjusting grasping locations

External View

Side View

Data-driven approach for grasping

Dataset: 9269 grasping trials from 106 unique objects