
16-299 Lecture 8:
Part 1: Controlling in different coordinate

systems
Part 2: Optimal control

Independent Joint Control
In this approach each joint is controlled independently, typically with some

form of PID control. This approach is common in heavily geared robots. With a
gear ratio of R, mass on the other side of the transmission is effectively reduced
by R2 relative to the motor inertia. Force is amplified by R, and then acceleration
is amplified by R. On current electric humanoids R is 100-200. This means the
rest of the robot, and whatever load it is carrying or force it is applying, does not
matter much relative to the motor inertia on that joint.

Inverse dynamics can be used to generate feedforward commands in advance
of a movement.

ττff(t) = ID(qd(t), q̇d(t), q̈d(t)) (1)

The d subscript indicates this is a desired value. Often the inverse dynamics model
is simplified to only compensate for gravitational forces (gravity compensation).

The rest of this writeup focuses on the control of robots with rotary joints.
Robots with all prismatic joints typically have less dynamic coupling between
joints.

1

Computed Torque Control
In computed torque control an inverse dynamics model

ττ = ID(qd(t), q̇d(t), q̈d(t) + q̈fb) (2)

generates the expected torques necessary to drive the robot along a desired tra-
jectory. Corrective accelerations q̈fb are generated by some controller, typically
independent joint PID controllers that output accelerations rather than torques.

q̈fb = PID(q,qd, q̇, q̇d) (3)

Each of the planned positions qd(t) and velocities q̇d(t) can be replaced by the
actual positions q and velocities q̇ in Equation 2. Reasons not to do this include
avoiding the complexity of taking into account feedback through the inverse dy-
namics model, and noise added to the desired velocities when the actual positions
are numerically differentiated.

2

The Jacobian
The Jacobian of the robot’s forward kinematics plays an important role in con-

trolling the robot in different coordinate systems. The robot’s forward kinematics
predicts end effector location based on joint angles:

x = FK(q) (4)

The derivative of the forward kinematics is the Jacobian matrix for the robot:

ẋ =
∂FK(q)

∂q
q̇ = J(q)q̇ (5)

Multiplying both sides by a small amount of time leads to a relationship between
displacements in end effector and joint coordinates:

∆x = J(q)∆q (6)

Power (the product of force and velocity) is the same no matter what coordinate
system it is calculated in, so:

ẋTf = q̇Tττ

(J(q)q̇)Tf = q̇Tττ

q̇TJT(q)f = q̇Tττ

JT(q)f = ττ

(7)

At singularities J(q) is not full rank. This means that joint motion in some
direction results in no motion in some direction in end effector space. For a two
joint arm, what postures are singular and what directions can the robot not move
in at those postures? Singularities also mean that force in some direction does not
result in joint torques (or motion).

What happens if the robot has more joints than end effector degrees of freedom
(usually this is when a robot has more than six joints)? In this situation the robot
has redundant kinematics, in that more than one set of joint angles attains the same
end effector position.

3

The relationship for accelerations is:

dẋ

dt
=
dJ(q)q̇

dt
ẍ = J(q)q̈ + J̇(q)q̇

ẍ = J(q)q̈ + q̇T∂J(q)

∂q
q̇

(8)

The q̇T(∂J(q)/∂q)q̇ term is the source of Coriolis and centripetal forces, which
are quadratic in velocity.

4

Transforming Stiffness and Damping
What is the relationship between stiffness in joint coordinates (∆ττ = Kq∆q)

and stiffness in end effector coordinates (∆f = Kx∆x)?

∆f = Kx∆x

∆f = KxJ(q)∆q

JT(q)∆f = JT(q)KxJ(q)∆q

∆ττ = JT(q)KxJ(q)∆q

Kq = JT(q)KxJ(q)

(9)

The same transformation applies to damping:

f = Bxẋ

f = BxJ(q)q̇

JT(q)f = JT(q)BxJ(q)q̇

ττ = JT(q)BxJ(q)q̇

Bq = JT(q)BxJ(q)

(10)

Note that one can transform a controller in end effector coordinates to joint
coordinates in a straightforward way. However, specifying a controller in joint
coordinates and asking what end effector controller that corresponds to requires
inverting the Jacobian matrix.

What happens at singularities where J(q) is not full rank?
What happens when the robot is redundant?

5

Operational Space Control
Suppose we wanted to control in end effector coordinates x with Kx and Bx.

We could calculate the corresponding Kq(q) and Bq(q) which would vary as q
changed. This approach is well behaved both when the posture is singular and
when the robot has more than six joints (it is redundant).

Another approach is to do inverse kinematics (actually inverting the Jacobian)
as part of the control loop. The goal is to implement arbitrary dynamics in end
effector (task) space. This means entirely cancelling the robot dynamics. For free
motion, we would specify accelerations as the output of the end effector dynamics,
as there are no contact forces: ẍd = f(x, ẋ). The robot end effector could kine-
matically behave like another system after a perturbation or after starting from
some initial state. The acceleration could be transformed into joint coordinates,
and then a computed torque controller could be applied to exactly achieve it:

q̈d = J−1(q)ẍd − J−1(q)(q̇T∂J(q)

∂q
q̇) (11)

This is a form of “virtual model” control, where the goal is to make the robot
behave as some other physical system. This version makes the most sense if the
robot is not in contact with anything.

If the robot is in contact with something at the end effector, then the goal of
the controller can be to generate end effector forces. This is another form of “vir-
tual model” control Someone grabbing a handle at the end effector and moving
it would be fooled into thinking they were in contact with the desired physical
system and not be able to tell that a robot was attached (this is a goal of haptic
interfaces). In this case fd = f(x, ẋ, ẍ) and the controller would both cancel the
robot dynamics and generate the desired force:

ττ = JT(q)fd + ID(q, q̇, q̈) (12)

Unless one was trying to implement a haptic interface with a very light and weak
robot that a human could easily overpower, I would not try to fully cancel the
mass of the robot using acceleration feedback. Although the “mass matrix” M(q)
is always square and full rank (there is always mass in all directions) and thus
invertable, a clean non-delayed acceleration measurement is very hard to come
by. Twice differentiating position is noisy and filtering that estimate leads to lag

6

which causes instabilities when trying to cancel mass. An accelerometer is just
a local measurement of acceleration and given everything vibrates will be very
sensitive to structural vibration. Gravity compensation is common, since it only
depends on position. Coriolis and centripetal force cancellation is less common.
Power assist, where the user applies a force to the end effector, and that force is
multiplied (ττ = Gain ∗ JT(q)fuser) , is common on exoskeletons. one can add
additional damping for safety. However, most current exoskeletons are exhausting
to use for any length of time, so adding additional drag may not be possible.

SHOW SARCOS VIDEOS
https://www.youtube.com/watch?v=XpiCVjpPb_8
https://www.youtube.com/watch?v=Ac5cowTwOPw

7

https://www.youtube.com/watch?v=XpiCVjpPb_8
https://www.youtube.com/watch?v=Ac5cowTwOPw

Optimal Control
The above approaches to control assumed it was easy to cancel the plant dy-

namics. Usually, there are unmodelled dynamics that take a lot of work to model
and cancel (actuator dynamics, structural vibrations, friction, ...). Also, cancelling
the plant dynamics is usually energetically wasteful. Consider a glider. It glides.
Now add actuation to eliminate the glider dynamics (which adds a lot of weight
for actuators and fuel). Now try to make it fly like a glider (Think space shuttle).

In legged locomotion, the idea of building the behavior that you want into the
mechanics is now very popular, because of a demonstration of passive dynamic
walking, where robots could walk with no sensing, computing, or actuation.

https://www.youtube.com/watch?v=WOPED7I5Lac
https://www.youtube.com/watch?v=FfKQSUhYjlY
https://www.youtube.com/watch?v=IvtFOxd4NvY
https://www.dailymail.co.uk/news/article-6437723/Step-ladder-appears-walk-southern-India.

html
A more general philosophy is “Instead of trying to cancel the plant, take ad-

vantage of its dynamics. Do the least actuation you can do to get what you want.
Gentle nudges, not massive motors or ginormous jets.”

Optimal control provides a design paradigm to simultaneously design mechan-
ics and behaviors to maximize performance while minimizing actuation and con-
trol. In terms of the controllers above, one can specify matching desired dynamics
as a goal while penalizing large actuation:

l(state, action) = |(fcontact − fd)|2 + |ττ |2 (13)

where l() is the one step cost, and

fd = f(x, ẋ, ẍ) (14)

The total cost is the sum of the one step costs over all the time steps.

8

https://www.youtube.com/watch?v=WOPED7I5Lac
https://www.youtube.com/watch?v=FfKQSUhYjlY
https://www.youtube.com/watch?v=IvtFOxd4NvY
https://www.dailymail.co.uk/news/article-6437723/Step-ladder-appears-walk-southern-India.html
https://www.dailymail.co.uk/news/article-6437723/Step-ladder-appears-walk-southern-India.html

Optimization techniques
Optimizing functions. Examples on class web page (kin3).
Optimize policy parameters by executing behavior for a while (basically treat-

ing behavior optimization as function optimization).
http://www.dgp.toronto.edu/˜jmwang/
Trajectory optimization: u(t) or u(x) LQR over time. Differential Dynamic

Programming (DDP). Many other methods. We will talk more about this in the
nonlinear control section of the course.

Model-based - all the stuff we talk about
Model-free - directly optimize on the robot - exoskeleton example
https://www.youtube.com/watch?v=Dkp_xjbRYCo
Simulation-based = model-based

9

http://www.dgp.toronto.edu/~jmwang/
https://www.youtube.com/watch?v=Dkp_xjbRYCo

