
16-299 Lecture 6: State Estimation,
Observers, and Kalman Filters

This lecture focuses on discrete time models and design techniques.

What’s wrong with full state feedback?
As we discussed when talking about full state feedback, there are some issues

we need to address.

1. We don’t measure all the states. State estimation, and in particular the Kalman
Filter, estimate the states that are not measured. Another approach is to only
use the states that are measured for feedback control. This is known as output
feedback.

2. Our models are inaccurate and full state feedback doesn’t work as expected.
Robust control design addresses this problem. However, the basic solution is
“Don’t be greedy.” Don’t ask for a more aggressive controller than you really
need.

3. There is sensor noise. State estimation, and in particular the Kalman Filter,
tries to filter out sensor noise.

1

Modeling partial state feedback
In order to do model-based design, we need to model the situation of only

partial state feedback. We use the same model of the dynamics:

xnext = Ax + Bu (1)

and we add a model of the measurements (“observables”):

y = Cx + Du (2)

C is a matrix indicating how the measurements y depend on the states x, and D is
a matrix indicating how the measurements depend on actuator commands directly.
For most systems D is 0, so we will assume that unless indicated otherwise.

2

An observer estimates the missing states
A controller is used to control a system. An observer is used to observe a

system, producing estimates of the missing states. The estimated state x̂ is known
in AI as a belief state. Feedback is used to track the true state. At each time step we
can measure the error in the measurement space (Cx̂− y), and use that to correct
the belief state. In addition, the belief state should have the same dynamics as the
true state:

x̂next = Ax̂ + Bu−Ko(Cx̂− y) (3)

The above equation is the generic form for observers. Different observers are
generated by designing the observer feedback gains Ko in different ways.

What are the dynamics of the state estimation error e = x̂−x? Subtracting the
dynamics of the true state, xnext = Ax + Bu from the above equation, we get:

x̂next − xnext = Ax̂−Ax−KoC(x̂− x) (4)

so

enext = (A−KoC)e (5)

Designing the observer involves choosing the observer gain Ko so that the dynam-
ics of the error are desirable. This turns out to be an identical problem as choosing
the controller gain so that the dynamics of the state are desirable, and the same
control design techniques as eigenvalue/pole placement and LQR are useful, as
we shall see.

3

Observability
A discrete time system is observable if we can reconstruct the initial state x0

from the measurements (y0,y1, · · · ,yn) for some n, assuming all the commands
ui are zero. We know that y0 = Cx0, y1 = CAx0, y2 = CAAx0, · · · , yn =
CAnx0. Stacking this up as a big set of equations:

y0

y1

y2
...
yn

 =

C
CA
CA2

...
CAn

x0 = Ox0 (6)

These equations can be solved if the matrixO has rank N , the dimensionality of x.
In this case the system is observable. Convince yourself that only a maximum of
N observations yi are needed for this test, since more observations won’t increase
the rank of O if it is not full rank after N observations.

4

Observability and Controllability are duals
The matrix to test for controllability (from a previous lecture) is

C = [AN−1B · · · AB B] (7)

If we reverse the order of O (reversing time), and take the transpose of that, we
end up with a matrix with a similar form:

ReverseTime(O)T = [(AT)N−1CT · · · ATCT CT] (8)

Neither operation affects matrix rank and thus observability. In going from C to
O, A is replaced by AT, and B is replaced by CT. The pair (A,C) is observable
if the pair (AT,CT) is controllable. This enables the dynamics of an observer to
be designed using tools for designing controllers like eigenvalue/pole placement
and LQR by swapping AT for A and CT for B.

5

The Kalman Filter
The Kalman Filter designs observer gains Ko based on a probabilistic model of

sensor noise and process noise (deviations from the dynamics due to perturbations
and/or modeling error). Minimizing the variance of the state estimation error (a
form of optimization) drives the design. Probabilistic approaches to anything are
known as Bayesian approaches.

We will use some facts about random variables. George Kantor’s notes on
Kalman Filtering http://www.cs.cmu.edu/˜cga/controls-intro/
kantor/16_299_Kalman_Filter.pdf have a nice review of Gaussian Ran-
dom variables.

Fact 1: A Gaussian random vector is fully characterized by its mean (first mo-
ment) and variance (2nd moment). A compact notation is x ∼ N(mean, variance).

Fact 2: For any random vector x ∼ N(m,Σ), Ax ∼ N(Am,AΣAT)
Fact 3: If any two independent random vectors (x1 ∼ N(m1,Σ1) and x2 ∼

N(m2,Σ2)), are added, the result is N(m1 + m2,Σ1 + Σ2)
Fact 4: If you are given two predictions or belief states about a random variable

x, and the accuracy of these predications is x̂1 ∼ N(m1,Σ1) (the belief of expert
1) and x̂2 ∼ N(m2,Σ2) (the belief of expert 2), your best linear unbiased estimate
(BLUE) of x is W1m1 +W2m2, with W1 = Σ2(Σ1 + Σ2)

−1 and W2 = Σ1(Σ1 +
Σ2)

−1. The variance of this estimate is:

Σ2(Σ1 + Σ2)
−1Σ1Σ2(Σ1 + Σ2)

−1 + Σ1(Σ1 + Σ2)
−1Σ2(Σ1 + Σ2)

−1Σ1 (9)

What a mess! However, all the above matrices are symmetric, so we can reorder
them and get

Σ1Σ2(Σ1 + Σ2)
−1 (10)

A useful way to express the same thing (since W1 = (1 −W2)) that we will
use in the derivation of the Kalman Filter is:

m = m1 + W2(m2 −m1) (11)

and

Σ = Σ1 − Σ1(Σ1 + Σ2)
−1Σ1 (12)

6

http://www.cs.cmu.edu/~cga/controls-intro/kantor/16_299_Kalman_Filter.pdf
http://www.cs.cmu.edu/~cga/controls-intro/kantor/16_299_Kalman_Filter.pdf

Kalman Filter Derivation: The Prediction Step
The Kalman Filter alternates between predicting the probability distribution of

the belief state on the next step (the prediction step), and incorporating an ob-
servation (the update step). After a prediction step we have a belief state x̂ ∼
N(m−,Σ−) and after a update step we have a belief state x̂ ∼ N(m+,Σ+). The
superscripts - and + keep track of whether we have incorporated the current mea-
surement or not.

For a nonlinear discrete time system F(), the belief state mean is propagated
forward in time just using the nonlinear dynamics:

m−next = F(m+,u) (13)

The variance Σ is propagated by linearizing F() about m:

Σ−next = AΣ+AT + Σp (14)

Σp is the variance of the process noise. The Gaussian process noise is a perturba-
tion, or a way to model modeling error. Note that u plays no role in uncertainty
propagation, since the commands are known perfectly and the local dynamics are
linear.

7

Kalman Filter Derivation: The Update Step
Let’s model sensor noise as additive Gaussian noise with w ∼ N(0,Σo):

y = Cx + w (15)

Ĉx is a prediction of a measurement. One way to predict it is to use Cx̂ =
Cm−, which has variance CΣ−CT.

Another way to predict it is to use the actual measurement y, which has vari-
ance Σo.

Now we use Gaussian Fact 4 to combine these predictions. The optimal esti-
mate is:

Ĉx = WpCm− + Wmy (16)

where the weight on the prediction is

Wp = Σo(Σo + CΣ−CT)−1 (17)

and the weight on the measurement is

Wm = CΣ−CT(Σo + CΣ−CT)−1 (18)

We will use the definition S = Σo + CΣ−CT, and the fact that symmetric
matrices commute in matrix multiplication to simplify what follows

So the optimal estimate for Ĉx is:

mean(Ĉx) = (1−Wm)Cm− + Wmy

= Cm− −Wm(Cm− − y)

= C(m− − Σ−CTS−1(Cm− − y))

(19)

Since C is a constant and the mean() operation is linear,

mean(x̂) = m+ = m− − Σ−CTS−1(Cm− − y)

= m− −K∗(Cm− − y)
(20)

so the optimal Kalman filter gain is K∗ = Σ−CTS−1.
We also need to propagate the variance

Var(Ĉx) = CΣ−CT −CΣ−CTS−1CΣ−CT (21)

8

Peeling off the left C and right CT:

Var(x̂) = Σ− − Σ−CTS−1CΣ− (22)

and substituting in Σ+ and K∗ gives the update equation for Σ:

Σ+ = Σ− −K∗CΣ− (23)

We can see that the reduction in variance of the belief state due to the Kalman
Filter is K∗CΣ−. Interestingly, it is proportional to the variance of the belief state
before the update Σ−. It makes sense that when there is no uncertainty before the
update, the update can’t reduce it further.

9

Controlling and observing at the same time
Separation principle
differential flatness page 8-25
gain scheduling
MPC
internal model principle 8-25
integral windup
policy optimization for output feedback

10

