
16-299 Lecture 5: Linear Systems
In these notes we are only considering time invariant systems, meaning the dynamics functions

in continuous time f() and discrete time F() do not change over time.

What is a linear system?
A continuous time linear system f() has the property that for any ẋ1 = f(x1,u1)

and any ẋ2 = f(x2,u2):

c1ẋ1 + c2ẋ2 = f(c1x1 + c2x2, c1u1 + c2u2) (1)

and can be written as

ẋ = Acx + Bcu (2)

with Ac and Bc being constant matrices.
A discrete time linear system F() has the property that for any xnext1 = F(x1,u1)

and any xnext2 = F(x2,u2):

c1xnext1 + c2xnext2 = F(c1x1 + c2x2, c1u1 + c2u2) (3)

and can be written as

xnext = Adx + Bdu (4)

with Ad and Bd being constant matrices.
What are some examples of nonlinear systems?

1



Linearizing non-linear systems
Continuous time: Given a general continuous time non-linear system ẋ =

f(x,u), and an equilibrium point 0 = f(xe,ue), we can ask what happens for
small deviations from the equilibrium point ∆x and ∆u? Taking derivatives:

∆ẋ =
∂f

∂x
∆x +

∂f

∂u
∆u (5)

Note that for an already linear system, ∂f
∂x = Ac and ∂f

∂u = Bc. The system

∆ẋ = Ac∆x + Bc∆u (6)

locally approximates the behavior of the original nonlinear system about the equi-
librium point.

Discrete time: Given a general discrete time non-linear system xnext = F(x,u),
and an equilibrium point xe = F(xe,ue), we can ask what happens for small de-
viations from the equilibrium point ∆x and ∆u? Taking derivatives:

∆xnext
=
∂F

∂x
∆x +

∂F

∂u
∆u (7)

Note that for an already linear system, ∂F∂x = Ad and ∂F
∂u = Bd. The system

∆xnext
= Ad∆x + Bd∆u (8)

locally approximates the behavior of the original nonlinear system about the equi-
librium point.

When does this fail?

2



Eigenvalues and characteristic equations
Eigenvalues are an important way to characterize a system described by a ma-

trix A:

Ax = λx (9)

where λ is an eigenvalue. This means

(A− λ1)x = 0 (10)

and

det(A− λ1) = 0; (11)

This equation is known as the characteristic equation of A, and the left hand side
is known as the characteristic polynomial.

For a 2x2 matrix(
a11 a12
a21 a22

)
(12)

the determinant of(
a11 − λ a12
a21 a22 − λ

)
(13)

is

λ2 − λ(a11 + a22) + (a11a22 − a12a21) (14)

Solutions to this equation are given by the quadratic formula:

λ =
1

2

[
(a11 + a22) ±

√
4a12a21 − (a11 − a22)2

]
(15)

3



The role of eigenvalues of Ac

In a previous lecture we noticed that if the discrete time dynamics matrix Ad

had eigenvalues with magnitudes all less than one, the system was stable. What is
the comparable test for a continuous time system?

For a linear continuous time dynamics with no input u

ẋ = Acx (16)

what is the solution given an initial state x0? In the scalar case the solution to
ẋ = ax is x(t) = eatx0. By analogy (and the explanation in the textbook Chapter
6), the solution to the matrix equation 16 above is x(t) = eActx0. What does the
notation eAct mean? We can do an eigenvalue decomposition: Ac = TDT−1,
which allows us to operate in the state space z = Tx with the dynamics ż = Dz
and a mapping back to the original state space x = T−1z. With a diagonal matrix
D for the dynamics, conceptually we can decompose the problem into independent
systems. Some subsystems or modes have first order dynamics z(t) = eλitz0
where λi is a real eigenvalue. Other subsystems or modes have pairs of complex
eigenvalues λ = σ ± iω, with solutions of the form zi(t) = eσt sin(ωt+ ψ) where
ψ is a phase shift.

Notation: Some fields of engineering (such as electrical engineering) use j
rather than i for complex numbers.

By looking at the eigenvalues of Ac we can assess the stability of the system,
and see what frequency the system will oscillate at. The real parts of all the eigen-
values have to be negative for the modes of A to decay rather than grow, and the
system to be stable. The magnitude of the real part of the eigenvalues indicate how
“fast” the system is. The complex part of an eigenvalue tells us the frequency that
mode oscillates at.

Because the system is linear, the modes can just be added to find the total
output.

4



What can full state feedback do?
With feedback u = −Kx, we can generate any eigenvalues we want, both

in continuous and discrete time dynamics. Let’s test this with a continuous time
second order system:

Ac =

(
0 1
0 0

)
(17)

Bc =

(
0
1

)
(18)

and

K =

(
k1
k2

)
(19)

What is Ac −BcK?(
0 1

−k1 −k2

)
(20)

The characteristic equation is

λ2 + λk2 + k1 (21)

which can have any roots (eigenvalues) we want:

λ =
1

2

[
−k2 ±

√
k22 − 4k1

]
(22)

Full state feedback can place eigenvalues (which are called “poles”) anywhere
(in theory). This is called pole placement.

5



Visualizing eigenvalues (poles): The complex plain
This discussion applies to continuous time. It is useful to visualize eigenval-

ues on the complex plain. In thinking about the modes, first order modes have
real eigenvalues that are on the real axis (horizontal). Second order modes have
eigenvalues

λ =
1

2

[
(a11 + a22) ±

√
4a12a21 − (a11 − a22)2

]
(23)

which can either be a pair of different real eigenvalues on the real axis, or a pair
of complex eigenvalues symmetrically placed above and below the real axis. A
purely oscillatory system (no damping) would have its eigenvalues on the imagi-
nary axis.

6



For a characteristic equation with complex roots

λ2 + 2γωnλ+ ω2
n = 0 (24)

the eigenvalues are

λ = −γωn + iωn
√

1 − γ2 (25)

and γ is the damping ratio (ζ in the picture) and ωn is the natural frequency, which
serve as polar coordinates in locating the eigenvalue. ωd is the actual frequency
the system oscillates at, and γωn is how fast the system decays or grows.

Talk about root locus plots.

7



Discrete time linear quadratic regulator
The linear quadratic regulator (LQR) is a design method for controllers based

on optimal control. Let’s consider a linear discrete time dynamic system

xnext = Adx + Bdu (26)

We need to say what we want. Let’s set a goal of x = 0 and penalize deviations
xTQx from the goal (a regulator). Let’s also penalize effort uTRu, so we can
trade off performance (staying near the control) and effort (things like fuel or
battery use). We want to minimize the sum of quadratic costs

L(x,u) = xTQx + uTRu (27)

at each time step.
To find the optimal gain matrix K we are going to introduce the concept of a

value function Vk(x). The value function tells us the total cost of the rest of the
system’s “life”, starting in state x at time step k. This is also known as the “cost-
to-go”. Systems can run forever, which means the cost has to asymptote at zero
or the value function is always infinite, and not useful. Systems can also run for a
finite time, with a terminal penalty on the last state. We will consider the infinite
time case. For the above cost function (equation 27), if the system goes to the goal,
the cost goes to zero (we are assuming perfect knowledge and no disturbances).

Our strategy is to hypothesize a value function, and then show that the value
function satisfies an iterative (recursive) equation. Let’s hypothesize that the value
function is a pure quadratic

Vk(x) = xTPkx (28)

This is a reasonable guess because a constant term can be ignored since it won’t
affect our choice of action (cost is the same for each action) and a term linear in x
(or any odd polynomial in x) has to be zero around the goal by symmetry. There
could be additional higher order even terms, but I happen to know there won’t be.

At time step k + 1 the value function is Vk+1(x). At time step k the cost for
choosing action uk is the sum of the one step cost function and the value function
for the next state:

C(uk) = L(xk,uk) + Vk+1(xk+1) (29)

8



This expands out to:

C(uk) = xT
kQxk + uT

kRuk + (Adxk + Bduk)
TPk+1(Adxk + Bduk) (30)

To find the optimal uk, we can solve

∂C(uk)

∂uk
= 0 (31)

because at optimal points the derivative of the cost with respect to the variables
being optimized is zero (insert caveats and weasel words about smoothness and
no constraints).

Notation: Some fields of engineering (such as electrical engineering) use J
rather than C for total costs.

Being somewhat sloppy

∂C(uk)

∂uk
= 2Ruk + 2BT

dPk+1Adxk + 2BT
dPk+1Bduk (32)

so

u∗
k = − (R + BT

dPk+1Bd)
−1BT

dPk+1Adxk

−K∗
kxk

(33)

(* means optimal).
Substituting this policy into the cost equation 30 above and dropping the sub-

scripts k and d and the superscript ∗ for brevity results in

C(u) = xTQx+ (−Kx)TR(−Kx) + ((A−BK)x)TPk+1(A−BK)x (34)

All of this is quadratic in x:

C(u) = xT(Q + KTRK + (A−BK)TPk+1(A−BK))x (35)

Since C(u∗) is xTPx,

Pk = Q + KTRK + (A−BK)TPk+1(A−BK) (36)

So we have an iterative equation where on each step k we first compute the optimal
K using equation 33 and then compute the value function for the current step using
equation 36. Eventually the value function and optimal gain stop changing and the

9



converged values are known as steady state values Pss and Kss. This convergence
still happens whatever symmetric positive definite P one starts with, although the
time to convergence varies. P at all time steps is symmetric and positive definite.
For finite horizon problems (N steps), PN is initialized as the terminal penalty on
xN . The finite horizon problem is typically not time invariant, so one must keep
track of Pk and Kk for each time step, rather than just use the same steady state
values on all time steps.

By substituting for K in equation 36 and algebraically manipulating the result,
one can get other equivalent iterative equations:

Pk = Q + ATPk+1A−ATPk+1BK (37)

This equation tells us that the value function at time step k is incremented by three
things:

1. The performance penalty Q acting on the current state.

2. The plant dynamics acting on the next value function ATPk+1A. The smaller
the eigenvalues of A, the quadratically smaller the contribution of the future
value function is.

3. A term −ATPk+1BK that takes into account the effect of the feedback con-
trol.

Writing the above equation without using K and dropping all subscripts gives
us the Discrete time Algebraic Ricatti Equation (DARE) https://en.wikipedia.
org/wiki/Algebraic_Riccati_equation:

P = Q + ATPA−ATPB(R + BTPB)−1BTPA (38)

This iteration is a form of dynamic programming. Dynamic programming is
an efficient way to optimize a policy/control law by stepping backwards in time,
and representing “future” costs in a value function. It is not necessary to take
into account future states, actions, or policies in optimizing the current step, as
that information is represented by the value function. The iterative equation is
typically expressed as:

Vk(xk) = min
uk

[L(xk,uk) + Vk+1(xk+1)]

= min
uk

[L(xk,uk) + Vk+1(F(xk,uk))]
(39)

10

https://en.wikipedia.org/wiki/Algebraic_Riccati_equation
https://en.wikipedia.org/wiki/Algebraic_Riccati_equation


and this equation is known as the Bellman or Hamilton-Jacobi equation. To op-
timize the cost at the current step, one must optimize the sum of the cost of the
current step and the future cost (cost-to-go) of the resulting next state.

To apply dynamic programming, costs need to be separable across time steps.
What does this mean? We can have a one step cost function which can be time
variant Lk(xk,uk), but we can’t have an arbitrary multi-step cost function

L(xk,xk+1, · · · ,xk+n,uk,uk+1, · · · ,uk+n) (40)

because then the future paths and actions actually taken would need to be consid-
ered on each time step, not just the optimal cost encoded in the value function.

LQR can easily handle time varying everything (Ak, Bk, Qk, and Rk) resulting
in time varying value functions Pk and control laws Kk. In this case there is
usually no steady state solution. Periodic systems can result in repeating the same
trajectory of value functions and control laws on each cycle.

LQR can easily handle varying goals on each time step:

Lk(xk,uk) = (xk − xdk)
TQk(xk − xdk) + uT

kRkuk (41)

and can be used to do trajectory optimization, finding optimal sequences xk and
Kk. A fast but crude way (iLQR) to do trajectory optimization for nonlinear sys-
tems is to

1. Given the current sequence of policies, simulate the trajectory forward in
time. This takes into account the full nonlinear dynamics.

2. Linearize about the current trajectory, creating a sequence of Ak and Bk

3. Use LQR to do trajectory optimization, finding a new set of optimal policies
on each step.

4. Loop

A more accurate but more expensive approach (Differential Dynamic Program-
ming or DDP) is to try to model the nonlinear dynamics with local 2nd order
models:

F(x + ∆x,u + ∆u) ≈F0 +
∂F

∂x
∆x +

∂F

∂u
+ ∆T

x

∂2F

∂2x
∆x + ∆T

x

∂2F

∂x∂u
+ ∆T

u

∂2F

∂2u
∆u

F0 + A + B +
∂A

∂x
+
∂A

∂u
+
∂B

∂x
+
∂B

∂u

11



(42)

After all, the whole point of acknowledging the nonlinear dynamics is that a linear
approximation wasn’t adequate. The modified iterative algorithm is

1. Given the current sequence of policies, simulate the trajectory forward in
time. This takes into account the full nonlinear dynamics. (Same as before).

2. Create local 2nd order models along the trajectory, creating a sequence of
Ak, Bk, ∂Ak/∂x, ∂Ak/∂u, ∂Bk/∂x, and ∂Bk/∂u.

3. Use DDP to do trajectory optimization, finding a new set of optimal policies
on each step. Google “Differential Dynamic Programming” to get the details.

4. Loop

12



Continuous time LQR

13



Impulse responses and convolution

14



Frequency response

15



s and z plain

16



LQG

17


