
16-299 Lecture 4: Numerical Integration
Suppose we have a continuous time model of a system:

ẋ = f(x,u) (1)

How can we simulate (predict the behavior of) the system into the future? This is
done with numerical integration.

We have already seen a simple form of numerical integration, Euler integration,
when we generated a discrete time state space model from a continuous time state
space model:

xi+1 = xi + ∆ẋi (2)

where ∆ is a small time step. To predict the future, we just keep applying this
equation:

xi+n+1 = xi+n + ∆ẋi+n (3)

A slight modification of this formula, averaging the old and new velocities, is
slightly more accurate. It requires splitting up the equations for the new accelera-
tions from the equations for the new velocities. The first step is to use:

ẋ = f(x,u) (4)

The second step is to pull the accelerations out of ẋ. Then:

velocitiesnew = velocitiesold + ∆accelerations (5)

and

positionsnew = positionsold + ∆(velocitiesnew + velocitiesold)/2 (6)

There are more complex integration methods (see the Matlab documentation)
that permit a larger time step ∆. However, these methods depend on smooth dy-
namics and smooth controls (the policy is differentiable). In robotics, there are
contacts being made and broken which make the dynamics discontinuous, and the
policies often have discontinuities due to condition checking (if-then statements).
The simulation time step is often limited to being the same or smaller than the con-
trol time step, and the benefit of more complex integration methods is minimal. If

1



the controller has internal continuous states, those must be added to the “plant”
dynamics for methods that evaluate the dynamics multiple times per step. If the
controller has internal discrete states, the additional complexity of managing those
discrete states when the dynamics are evaluated multiple times at the same time
point, or time even goes backwards, discourages the use of anything other than the
methods described above. In any event, the default numerical integration method
of a simulation package is often used.

2


