
16-299 Lecture 3: The State Space
Approach

Continuous Time State Space Models
Our goal is to write the dynamics of linear systems using matrix/vector equa-

tions, so we can later use the tools of linear algebra. Let’s see how to do this with
a rock: force = mass ∗ acceleration. We start with the 2nd order differential
equation in continuous time:

θ̈ = force/m (1)

where θ is the position of a mass m.
To put this in continuous time state space form we need to define a state vector:

x =

(
θ

θ̇

)
(2)

and a command/action vector

u =
(
force

)
(3)

We can then write a matrix equation:

ẋ =

(
θ̇

θ̈

)
=

(
0 1
0 0

)(
θ

θ̇

)
+

(
0

1/m

)(
force

)
= Acx + Bcu (4)

with

Ac =

(
0 1
0 0

)
(5)

and

Bc =

(
0

1/m

)
(6)

We are going to use the matrices Ac and Bc to define the dynamics of the
system we are interested in when we use Matlab, for example.

1

Now let’s do the spring/mass/damper system:

θ̈ =
force

m
− bθ̇

m
− kθ

m
(7)

where θ is the position of a mass m.

2

Using the same state and action vectors we can write the matrix equation:

ẋ =

(
θ̇

θ̈

)
=

(
0 1

−k/m −b/m

)(
θ

θ̇

)
+

(
0

1/m

)(
force

)
= Acx + Bcu (8)

with

Ac =

(
0 1

−k/m −b/m

)
(9)

and

Bc =

(
0

1/m

)
(10)

3

Another example: Actuator Dynamics
Many actuators don’t produce a force directly. Instead, the command generates

a rate of change of force u = ḟ . Electric motors have inductance, and the voltage
out of a power amplifier generates a rate of change of the current. Hydraulic and
pneumatic systems have valves, and the opening of a valve is associated with the
rate of change of pressure. For such a system, the equations for the controlled
spring-mass-damper system are:

ẋ =

θ̇θ̈
ḟ

 =

 0 1 0
−k/m −b/m 1/m

0 0 0

θθ̇
f

+

0
0
1

(u) = Acx+Bcu (11)

with

Ac =

 0 1 0
−k/m −b/m 1/m

0 0 0

 (12)

and

Bc =

0
0
1

 (13)

4

Discrete Time State Space Models
Before computers were used for control, the controllers were made out of elec-

tric circuits, and were essentially analog computers (which operate in continuous
time). As computers were used for control, discrete time representations became
useful, because 1) computers sample sensors to generate control commands, and
2) system identification (making models) uses samples. We want to convert the
continuous time state space model into a discrete time state space model. We start
with:

ẋ = Acx + Bcu (14)

We want:

xi+1 = Adxi + Bdui (15)

where the i subscripts indicate the ith sample. We know the approximation

xi+1 = xi + ∆ẋi (16)

where ∆ is a small time step. So:

ẋ =
(Ad − 1)

∆
xi +

Bd

∆
ui (17)

So:

Ad = ∆Ac + 1 (18)

and

Bd = ∆Bc (19)

Does this make sense as the time step ∆ goes to zero?

5

A rock in discrete time
We use the same state and action as in continuous time.

x =

(
θ

θ̇

)
(20)

and a command/action vector

u =
(
force

)
(21)

We can then write a matrix equation:

6

We can then write a matrix equation:

xnext =

(
θnext
θ̇next

)
=

(
1 ∆
0 1

)(
θ

θ̇

)
+

(
0

∆/m

)(
force

)
= Adx + Bdu (22)

with

Ad =

(
1 ∆
0 1

)
(23)

and

Bd =

(
0

∆/m

)
(24)

7

Now let’s do the spring/mass/damper system:

θ̈ =
force

m
− bθ̇

m
− kθ

m
(25)

where θ is the position of a mass m.

8

Using the same state and action vectors we can write the matrix equation:

xnext =

(
θnext
θ̇next

)
=

(
0 ∆

−k∆/m −b∆/m

)(
θ

θ̇

)
+

(
0

∆/m

)(
force

)
= Adx+Bdu

(26)

with

Ad =

(
1 ∆

−k∆/m 1− b∆/m

)
(27)

and

Bd =

(
0

∆/m

)
(28)

9

Another example: Actuator Dynamics
Add u = ḟ to the previous spring-mass-damper system.

10

xnext =

θnextθ̇next
fnext

 =

 1 ∆ 0
−k∆/m 1− b∆/m ∆/m

0 0 1

θθ̇
f

+

 0
0
∆

(u) = Adx+Bdu

(29)

with

Ad =

 0 ∆ 0
−k∆/m −b∆/m ∆/m

0 0 0

 (30)

and

Bd =

 0
0
∆

 (31)

11

What Can We Do With State Space Models?
An example of the usefulness and generality of state space models is checking

whether a system is stable. The simplest case is to consider a discrete time system
with no inputs:

xi+1 = Adxi (32)

Note that

xi+2 = AdAdxi (33)

and

xi+n = An
dxi (34)

We want to know if x shrinks to zero or blows up as n goes to infinity.
This question can be answered using techniques from linear algebra. The ques-

tion of whether An
d shrinks the state to zero or causes it to blow up boils down to

whether Ad increases or decreases the length or “magnitude” of the state vector x.
The matrix Ad can be decomposed using the singular value decomposition (SVD):

Ad = UDVT (35)

where U and V are rotations (they do not change the length of a vector) and D is
a diagonal matrix:

D =


λ1 0 . . . 0
0 λ2 . . . 0
...
0 0 . . . λn

 (36)

Ad shrinks the state vector if the magnitudes (absolute values) of all the singular
values λi are less than one, and grows the state vector if any |λi| are bigger than 1.
This is a stability test for discrete time linear systems. max(λi) tells us how fast
errors are reduced.

12

Adding feedback
Suppose we had a linear control law/policy

u = −Kx (37)

where for the mass/spring/damper system

K =
(
k b

)
(38)

Inserting that policy into

xi+1 = Adxi + Bdui (39)

Gives

xi+1 = (Ad −BdK)xi = Afbxi (40)

We now have a new A matrix, Afb, and can analyze the singular values of that for
stability and also how fast errors are reduced.

13

Controllability
An interesting question is whether we can drive the system anywhere, with a

sequence of commands u0,u1, ...un−1. The state space equations allow us to write
this out in a reasonable way. For n = 2:

x2 = Adx1 + Bdu1 = Ad(Adx0 + Bdu0) + Bdu1 (41)

Let’s assume x0 = 0, since if we can reach anywhere from x0 = 0, we can do it
from anywhere. Now the equation is:

x2 = AdBdu0 + Bdu1 (42)

For n = 3:

x3 = Adx2 + Bdu2

= Ad(AdBdu0 + Bdu1) + Bdu2

= A2
dBdu0 + AdBdu1 + Bdu2

(43)

For n steps:

xn =
k=n−1∑
k=0

Ak
dBdun−k−1 (44)

We can write this another way:

xn = [An−1
d Bd + . . .+ AdBd + Bd][u

T
0 + · · ·+ uT

n−2 + uT
n−1]

T

= C
(45)

If C is full rank (no singular values are zero), you can reach anywhere in n steps.
This is called controllability (the system is “controllable”) if n is less than or equal
to the dimensionality of the state vector when C attains full rank.

Convince yourself that n > N whereN is the dimensionality of the state vector
won’t give you more control, or make an uncontrollable system controllable.

A system is “stabilizable” if the directions you can’t control in go to zero be-
cause they are stable directions.

NEED SOME MATLAB EXAMPLES.

14

