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1 Observability and Observers

So we have some really powerful tools for state feedback (eigenvalue placement and LQR). The problem is that we
may not know the state. In general, we only know the output y = Cx:

One possible solution: if C is invertible, then we can get the state as

x = C−1y.

The resulting control system then looks like this:

Unfortunately this hardly ever happens (C is rarely even square!).

So if we want to do state feedback, we have to build something that reconstructs the state using



• what we know about the system dynamics (A,B,C)

• the output y measured over some period of time

• the input u measured over the same period of time

The thing we want to build is called a state observer that estimates the state of the system by looking things we can
see (i.e., the inputs and outputs.)

1.1 Observability

It may not be possible to build an observer for a given system (just like it may not be possible to build a stabilizing
controller for a given system). So we introduce the concept of “observability”:

A system

ẋ = Ax+Bu

y = Cx

is said to be observable if it is possible to reconstruct the initial state x(0) by observing the input u(t) and the output
y(t) over some finite time interval t ∈ [0, tf ].

Obserbability Test:
A system is observable if and only if

rank(Wo) = n,

where

Wo =


C
CA
CA2

...
CAn−1

 .

If the system is observable, then we should be able to build an observer that takes in the system inputs and ouputs and
uses them to create and estimate of the state. Then this estimate can be used for state feedback:

Now let’s try to build an observer.

First Try: Just build a copy of the equations of motion of the actual system and integrate them to get the estimate, i.e.,

˙̂x = Ax̂+Bu

If x̂(0) = x(0), then x̂(t) = x(t) for all time, so the observer works. Unfortunatley, there are some big problems with
this:
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1. we don’t know x(0), so we can’t possibly set x̂(0) = x(0).

2. errors due to incorrect x(0) and noise on u(t) get integrated and grow without bound as time progresses.

Proposed Fix: Add a correcting term that adjusts the observer equation based on the difference between the measured
output and what the output would be if x̂ was correct:

˙̂x = Ax̂+Bu+Ko(y − Cx̂).

Two questions:

1. will this work?

2. how do we choose Ko?

We can answer both of these questions by looking at the error dynamics. (strong hint: the following derivation is
very important, and everyone will be expected to know and thoroughly understand it.) Define e(t) to be the error in
the state estimate x̂(t), i.e.,

e(t) = x(t)− x̂(t)

Now look at how e changes:

ė = ẋ− ˙̂x

= Ax+Bu− (Ax̂+Bu+KoC(x− x̂))

= A(x− x̂)−KoC(x− x̂)

= (A−KoC)e.

So the error dynamics are the same as the dynamics for an unforced system. Specifically, if the eigenvalues of the
matrix A − KoC all have negative real part, then the error is guaranteed to go to zero as t → ∞. So the problem
of building an observer boils down to the problem of placing the eigenvalues of A − KoC. So we’re faced with a
question that is a lot like the question we had for state feedback control: given a desired set of eigenvalues, can we
find a suitable Ko? If the system is observable then the answer is “yes”. Of course, there is a theorem that looks a lot
like the eigenvalue placement theorem for controllers:

eigenvalue Placement Theorem for Observers: Let Λ = {λ1, λ2, . . . , λn} be any allowable set of eigenvalues. The
pair (A,C) is observable if and only if there exists a Ko such that

eig(A−KoC) = Λ

Next time, I’ll show you how we can leverage what we already know about the controller problem to solve the observer
problem. In fact, they are really just different versions of the same problem. This concept is sometimes called duality.

2 Duality

Lets start by going over one similarity you’ve probably already noticed, namely the similarity between the controlla-
bility test.

A pair (A,B) is controllable if the n× nm matrix

Qc =
[
B AB A2B · · · An−1B

]
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has rank n.

A pair (A,C) is observable if the pn× n matrix

Qo =


C
CA
CA2

...
CAn−1


has rank n.

We can use a simple matrix fact to combine these two to come up with a new fact.

a simple matrix fact:

rank(M) = rank
(
MT

)
for any matrix M .

Here’s how we can use this fact:

rank(Qo) = rank
(
QT

o

)
= rank

([
CT ATCT

(
AT
)2
CT · · ·

(
AT
)n−1

CT
])

If we look at this last espression for a while, we recognize that it is exactly the same as the expression in the control-
lability test with A replaced by AT and B replaced by CT . This leads to the new fact:

fact: (duality between controllabilty and observability)
The pair (A,C) is observable if and only if the pair (AT , CT ) is controllable.

Now the eigenvalue placement theorem tells us that if (A,B) is controllable, then we can find a Kc to abritrarily place
the eigenvalues of A−BKc.

Using the duality fact, we can then say that if the pair (A,C) is observable, then the pair (AT , CT ) is controllable,
and we can find a Ktmp so that the eigenvalues of the matrix AT − CTKtmp match any deisred allowable set of
eigenvalues Λo. Also, we could find Ktmp using MATLAB:

Ktmp = place(AT , CT ,Λo).

We are so very close to solving eigenvalue placement for observers. We need one more simple matrix fact:

another simple matrix fact:

eig(M) = eig
(
MT

)
for any square matrix M .

Recall the problem: we wish to find a Ko to place the eigenvalues of A−KoC. Using this last fact, we see that

eig(A−KoC) = eig
(
AT − CTKT

o

)
.

We already know how to find KT
o to place the eigenvalues of the matrix on the right hand side (i.e., just set KT

o =
Ktmp.) So we can finally say what we need to say about assigning observer eigenvalues:

Theorem: eigenvalue placement for observers The pair (A,C) is observable if and only if for any allowable set of
eigenvalues Λo there exists a matrix Ko so that

eig(A−KoC) = Λo.
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Further, we can find Ko using the MATLAB place command as follows:

Ko =
(
place

(
AT , CT ,Λo

))T
.

3 Putting It State Feedback and Observer Together

Here’s a block diagram of the overall observer/state feedback control system:

Now we can clearly state the process of controller design based on state feeback. Given

ẋ = Ax+Bu

y = Cx

take the following steps:

1. find a state feedback matrix Kc such that the closed loop system

ẋ = (A−BKc)x

has desired dynamics. (do this using either eigenvalue placement or LQR.)

2. find an observer matrix Ko such that the error dynamics

ė = (A−KoB)e

has the desired dynamics. This is usually done using eigenvalue placement, and a good rule of thumb is to place
all of the observer eigenvalues to the left of all of the closed loop controller eigenvalues so that the estimate x̂
has a chance of keeping up with x.

There are no guarantees that this will work, but if you make the error dynamics of the observer much faster than the
unforced dynamics of the closed loop system then things usually work out OK.
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3.1 Working Out the Math

Let’s take a closer look at the math behind this observer/controller scheme:

ẋ = Ax+Bu

ˆ̇x = Ax̂+Bu+Ko(Cx− Cx̂)

u = −Kcx̂

Subbing in for u gives:

ẋ = Ax−BKcx̂

˙̂x = Ax̂−BKcx̂+Ko(Cx− Cx̂)

= (A−BKc −KoC)x̂+KoCx

We can now put these together into one big equation:[
ẋ
˙̂x

]
=

[
A −BKc

KoC A−BKc −KoC

]
︸ ︷︷ ︸

4
=Az

[
x
x̂

]

So if we define

z =

[
x
x̂

]
The big equation becomes

ż = Azz

and we can analyze the stability by looking at the eigenvalues of Az . It turns out that

eigAz = {eig(A−KoC), eig(A−BKc)}

6


